Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.376
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Genome Res ; 33(3): 371-385, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36963844

RESUMO

Alternative splicing (AS) regulates gene expression and increases proteomic diversity for the fine tuning of stress responses in plants, but the exact mechanism through which AS functions in plant stress responses is not thoroughly understood. Here, we investigated how AS functions in poplar (Populus trichocarpa), a popular plant for bioremediation, in response to lead (Pb) stress. Using a proteogenomic analysis, we determine that Pb stress induced alterations in AS patterns that are characterized by an increased use of nonconventional splice sites and a higher abundance of Pb-responsive splicing factors (SFs) associated with Pb-responsive transcription factors. A strong Pb(II)-inducible chaperone protein, PtHSP70, that undergoes AS was further characterized. Overexpression of its two spliced isoforms, PtHSP70-AS1 and PtHSP70-AS2, in poplar and Arabidopsis significantly enhances the tolerance to Pb. Further characterization shows that both isoforms can directly bind to Pb(II), and PtHSP70-AS2 exhibits 10-fold higher binding capacities and a greater increase in expression under Pb stress, thereby reducing cellular toxicity through Pb(II) extrusion and conferring Pb tolerance. AS of PtHSP70 is found to be regulated by PtU1-70K, a Pb(II)-inducible core SF involved in 5'-splice site recognition. Because the same splicing pattern is also found in HSP70 orthologs in other plant species, AS of HSP70 may be a common regulatory mechanism to cope with Pb(II) toxicity. Overall, we have revealed a novel post-transcriptional machinery that mediates heavy metal tolerance in diverse plant species. Our findings offer new molecular targets and bioengineering strategies for phytoremediation and provide new insight for future directions in AS research.


Assuntos
Arabidopsis , Populus , Proteogenômica , Processamento Alternativo , Proteômica , Populus/genética , Populus/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101975

RESUMO

Early life exposure to environmental lead (Pb) has been linked to decreased IQ, behavior problems, lower lifetime earnings, and increased criminal activity. Beginning in the 1970s, limits on Pb in paint, gasoline, food cans, and regulated water utilities sharply curtailed US environmental Pb exposure. Nonetheless, hundreds of thousands of US children remain at risk. This study reports on how unregulated private well water is an underrecognized Pb exposure source that is associated with an increased risk of teenage juvenile delinquency. We build a longitudinal dataset linking blood Pb measurements for 13,580 children under age 6 to their drinking water source, individual- and neighborhood-level demographics, and reported juvenile delinquency records. We estimate how early life Pb exposure from private well water influences reported delinquency. On average, children in homes with unregulated private wells had 11% higher blood Pb than those with community water service. This higher blood Pb was significantly associated with reported delinquency. Compared to children with community water service, those relying on private wells had a 21% (95% CI: 5 to 40%) higher risk of being reported for any delinquency and a 38% (95% CI: 10 to 73%) increased risk of being reported for serious delinquency after age 14. These results suggest that there could be substantial but as-yet-unrecognized social benefits from intervention programs to prevent children's exposure to Pb from private wells, on which 13% of the US population relies.


Assuntos
Água Potável , Exposição Ambiental/efeitos adversos , Delinquência Juvenil , Chumbo/toxicidade , Poluentes Químicos da Água/toxicidade , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Fatores de Risco , Estados Unidos/epidemiologia
3.
J Biol Chem ; 299(8): 105023, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423307

RESUMO

Exposure to environmental chemicals such as lead (Pb) during vulnerable developmental periods can result in adverse health outcomes later in life. Human cohort studies have demonstrated associations between developmental Pb exposure and Alzheimer's disease (AD) onset in later life which were further corroborated by findings from animal studies. The molecular pathway linking developmental Pb exposure and increased AD risk, however, remains elusive. In this work, we used human iPSC-derived cortical neurons as a model system to study the effects of Pb exposure on AD-like pathogenesis in human cortical neurons. We exposed neural progenitor cells derived from human iPSC to 0, 15, and 50 ppb Pb for 48 h, removed Pb-containing medium, and further differentiated them into cortical neurons. Immunofluorescence, Western blotting, RNA-sequencing, ELISA, and FRET reporter cell lines were used to determine changes in AD-like pathogenesis in differentiated cortical neurons. Exposing neural progenitor cells to low-dose Pb, mimicking a developmental exposure, can result in altered neurite morphology. Differentiated neurons exhibit altered calcium homeostasis, synaptic plasticity, and epigenetic landscape along with elevated AD-like pathogenesis markers, including phosphorylated tau, tau aggregates, and Aß42/40. Collectively, our findings provide an evidence base for Ca dysregulation caused by developmental Pb exposure as a plausible molecular mechanism accounting for increased AD risk in populations with developmental Pb exposure.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Chumbo , Animais , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Homeostase , Células-Tronco Pluripotentes Induzidas/patologia , Chumbo/toxicidade , Neurônios/patologia
4.
Anal Chem ; 96(2): 668-675, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38176010

RESUMO

Lead is a widespread environmental hazard that can adversely affect multiple biological functions. Blood cells are the initial targets that face lead exposure. However, a systematic assessment of lead dynamics in blood cells at single-cell resolution is still absent. Herein, C57BL/6 mice were fed with lead-contaminated food. Peripheral blood was harvested at different days. Extracted red blood cells and leukocytes were stained with 19 metal-conjugated antibodies and analyzed by mass cytometry. We quantified the time-lapse lead levels in 12 major blood cell subpopulations and established the distribution of lead heterogeneity. Our results show that the lead levels in all major blood cell subtypes follow lognormal distributions but with distinctively individual skewness. The lognormal distribution suggests a multiplicative accumulation of lead with stochastic turnover of cells, which allows us to estimate the lead lifespan of different blood cell populations by calculating the distribution skewness. These findings suggest that lead accumulation by single blood cells follows a stochastic multiplicative process.


Assuntos
Chumbo , Longevidade , Animais , Camundongos , Chumbo/toxicidade , Camundongos Endogâmicos C57BL , Leucócitos , Eritrócitos
5.
Cell Physiol Biochem ; 58: 336-360, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39092511

RESUMO

BACKGROUND/AIMS: Individual resistance to hypoxia is an important feature of the physiological profile of an organism, particularly in relation to lead-induced toxicity. METHODS: Our study focused on evaluating parameters of mitochondrial oxygen consumption, microsomal oxidation, intensity of lipoperoxidation processes and antioxidant defences in the liver of rats with low (LR) and high (HR) resistance to hypoxia to elucidate the mechanisms of action of L-arginine and the NO synthase inhibitor L-NNA before or after exposure to lead nitrate. RESULTS: Our study suggests that the redistribution of oxygen-dependent processes towards mitochondrial processes under the influence of the nitric oxide precursor amino acid L-arginine is an important mechanism for maintaining mitochondrial respiratory chain function during per os lead nitrate exposure (3.6 mg lead nitrate/kg bw per day for 30 days). Animals were given L-arginine at a dose of 600 mg/kg bw (i.p., 30 min) before and after exposure to lead nitrate or the NO synthase inhibitor Nω-nitro-L-arginine (L-NNA) at a dose of 35 mg/kg bw (i.p., 30 min) before and after exposure to lead nitrate. Our experiments demonstrated the efficacy of using lead nitrate to simulate lead-related toxic processes via Pb levels in liver tissue; we demonstrated significantly reduced levels of nitrites and nitrates, i.e. stable metabolites of the nitric oxide system, in both LR and HR animals. The effect of the amino acid L-arginine stabilised the negative effects of lead nitrate exposure in both groups of LR and HR rats. We observed the efficiency of mitochondrial energy supply processes and showed a greater vulnerability of NADH-dependent oxidation during lead nitrate exposure in the liver of HR rats. CONCLUSION: L-arginine initiated the processes of oxidation of NADH-dependent substrates in the LR group, whereas in the HR group this directionality of processes was more effective when the role of the nitric oxide system was reduced (use of L-NNA). Our study of key antioxidant enzyme activities in rat liver tissue during lead nitrate exposure revealed changes in the catalase-peroxidase activity ratio. We found different activities of antioxidant enzymes in the liver tissue of rats treated with lead nitrate and L-arginine or L-NNA, with a significant increase in GPx activity in the LR group when L-arginine was administered both before and after exposure to lead nitrate.


Assuntos
Arginina , Hipóxia , Chumbo , Nitratos , Nitroarginina , Ratos Wistar , Animais , Arginina/metabolismo , Arginina/farmacologia , Nitratos/metabolismo , Masculino , Ratos , Nitroarginina/farmacologia , Hipóxia/metabolismo , Chumbo/toxicidade , Fígado/metabolismo , Fígado/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Catalase/metabolismo
6.
Biochem Biophys Res Commun ; 709: 149827, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38554600

RESUMO

This study explored the uptake of lead in the epigeic earthworm Dendrobaena veneta exposed to 0, 1000, and 2500 µg Pb/g soil. The soil metal content was extracted using strong acid digestion and water leaching, and analysed by means of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to estimate absolute and bioavailable concentrations of metals in the soil. The guts and heads of lead-exposed earthworms were processed into formalin-fixed and paraffin embedded sections for high-resolution multi-element metallomic imaging via Laser Ablation ICP-MS (LA-ICP-MS). Metallomic maps of phosphorus, zinc, and lead were produced at 15-µm resolution in the head and gut of D. veneta. Additional 4-µm resolution metallomic maps of the earthworm brains were taken, revealing the detailed localisation of metals in the brain. The Pb bioaccumulated in the chloragogenous tissues of the earthworm in a dose-dependent manner, making it possible to track the extent of soil contamination. The bioaccumulation of P and Zn in earthworm tissues was independent of Pb exposure concentration. This approach demonstrates the utility of LA-ICP-MS as a powerful approach for ecotoxicology and environmental risk assessments.


Assuntos
Metais Pesados , Oligoquetos , Poluentes do Solo , Animais , Ecotoxicologia , Chumbo/toxicidade , Chumbo/análise , Metais Pesados/toxicidade , Encéfalo , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
7.
BMC Plant Biol ; 24(1): 748, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103795

RESUMO

Lead affects photosynthesis and growth and has serious toxic effects on plants. Here, the differential expressed proteins (DEPs) in D. huoshanense were investigated under different applications of lead acetate solutions. Using label-free quantitative proteomics methods, more than 12,000 peptides and 2,449 proteins were identified. GO and KEGG functional annotations show that these differential proteins mainly participate in carbohydrate metabolism, energy metabolism, amino acid metabolism, translation, protein folding, sorting, and degradation, as well as oxidation and reduction processes. A total of 636 DEPs were identified, and lead could induce the expression of most proteins. KEGG enrichment analysis suggested that proteins involved in processes such as homologous recombination, vitamin B6 metabolism, flavonoid biosynthesis, cellular component organisation or biogenesis, and biological regulation were significantly enriched. Nearly 40 proteins are involved in DNA replication and repair, RNA synthesis, transport, and splicing. The effect of lead stress on D. huoshanense may be achieved through photosynthesis, oxidative phosphorylation, and the production of excess antioxidant substances. The expression of 9 photosynthesis-related proteins and 12 oxidative phosphorylation-related proteins was up-regulated after lead stress. Furthermore, a total of 3 SOD, 12 POD, 3 CAT, and 7 ascorbate-related metabolic enzymes were identified. Under lead stress, almost all key enzymes involved in the synthesis of antioxidant substances are up-regulated, which may facilitate the scavenging of oxygen-free radical scavenging. The expression levels of some key enzymes involved in sugar and glycoside synthesis, the phenylpropanoid synthesis pathway, and the terpene synthesis pathway also increased. More than 30 proteins involved in heavy metal transport were also identified. Expression profiling revealed a significant rise in the expression of the ABC-type multidrug resistance transporter, copper chaperone, and P-type ATPase with exposure to lead stress. Our findings lay the basis for research on the response and resistance of D. huoshanense to heavy metal stress.


Assuntos
Dendrobium , Chumbo , Proteínas de Plantas , Proteômica , Estresse Fisiológico , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Chumbo/toxicidade , Dendrobium/efeitos dos fármacos , Dendrobium/metabolismo , Dendrobium/genética , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos
8.
BMC Plant Biol ; 24(1): 557, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877427

RESUMO

In the course of their life, plants face a multitude of environmental anomaly that affects their growth and production. In recent decades, lead (Pb) gained an increasing attention as it is among the most significant contaminants in the environment. Therefore, in this study the effects of Pb concentrations (0, 50 and 100 ppm) on Vicia faba plants and attempts to alleviate this stress using chitosan (Chs; 0 and 0.1%) were performed. The results validated that with increasing Pb concentrations, a decline in growth, pigments and protein contents was observed. In the same time, a significant upsurge in the stress markers, both malondialdehyde (MDA) and H2O2, was observed under Pb stress. Nonetheless, foliar spraying with Chs improves the faba bean growth, pigment fractions, protein, carbohydrates, reduces MDA and H2O2 contents and decreases Pb concentrations under Pb stress. Pb mitigation effects by Chs are probably related with the activity of antioxidant enzymes, phenylalanine ammonia lyase (PAL) and proline. The application of Chs enhanced the activities of peroxidase, catalase and PAL by 25.77, 17.71 and 20.07%, respectively at 100 ppm Pb compared to their control. Plant genomic material exhibits significant molecular polymorphism, with an average polymorphism of 91.66% across all primers. To assess the genetic distance created among treatments, the dendrogram was constructed and the results of the similarity index ranged from 0.75 to 0.95, indicating genetic divergence. Our research offers a thorough comprehension of the role of Chs in lessening the oxidative stress, which will encourage the use of Chs in agricultural plant protection.


Assuntos
Quitosana , Chumbo , Estresse Oxidativo , Vicia faba , Vicia faba/efeitos dos fármacos , Vicia faba/genética , Vicia faba/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Quitosana/farmacologia , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/genética
9.
BMC Plant Biol ; 24(1): 726, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080516

RESUMO

BACKGROUND: Pb stress, a toxic abiotic stress, critically affects maize production and food security. Although some progress has been made in understanding the damage caused by Pb stress and plant response strategies, the regulatory mechanisms and resistance genes involved in the response to lead stress in crops are largely unknown. RESULTS: In this study, to uncover the response mechanism of maize to Pb stress phenotype, physiological and biochemical indexes, the transcriptome, and the metabolome under different concentrations of Pb stress were combined for comprehensive analysis. As a result, the development of seedlings and antioxidant system were significantly inhibited under Pb stress, especially under relatively high Pb concentrations. Transcriptome analysis revealed 3559 co-differentially expressed genes(co-DEG) under the four Pb concentration treatments (500 mg/L, 1000 mg/L, 2000 mg/L, and 3000 mg/L Pb(NO3)2), which were enriched mainly in the GO terms related to DNA-binding transcription factor activity, response to stress, response to reactive oxygen species, cell death, the plasma membrane and root epidermal cell differentiation. Metabolome analysis revealed 72 and 107 differentially expressed metabolites (DEMs) under T500 and T2000, respectively, and 36 co-DEMs. KEGG analysis of the DEMs and DEGs revealed a common metabolic pathway, namely, flavonoid biosynthesis. An association study between the flavonoid biosynthesis-related DEMs and DEGs revealed 20 genes associated with flavonoid-related metabolites, including 3 for genistin and 17 for calycosin. CONCLUSION: In summary, the study reveals that flavonoid metabolism plays an important role in response to Pb stress in maize, which not only provides genetic resources for the genetic improvement of maize Pb tolerance in the future but also enriches the theoretical basis of the maize Pb stress response.


Assuntos
Flavonoides , Chumbo , Plântula , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Flavonoides/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transcriptoma , Metaboloma/efeitos dos fármacos , Perfilação da Expressão Gênica
10.
BMC Plant Biol ; 24(1): 744, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098900

RESUMO

BACKGROUND: Soil contamination by heavy metals is a critical environmental challenge, with Pb being of particular concern due to its propensity to be readily absorbed and accumulated by plants, despite its lack of essential biological functions or beneficial roles in cellular metabolism. Within the scope of phytoremediation, the use of plants for the decontamination of various environmental matrices, the present study investigated the potential of activated charcoal (AC) to enhance the tolerance and mitigation capacity of S. sesban seedlings when exposed to Pb. The experiment was conducted as a factorial arrangement in a completely randomized design in hydroponic conditions. The S. sesban seedlings were subjected to a gradient of Pb concentrations (0, 0.02, 0.2, 2, and 10 mg/L) within the nutrient solution, alongside two distinct AC treatments (0 and 1% inclusion in the culture media). The study reached its conclusion after 60 days. RESULTS: The seedlings exposed to Pb without AC supplementation indicated an escalation in peroxidase (POX) activity, reactive oxygen species (ROS), and malondialdehyde (MDA) levels, signaling an increase in oxidative stress. Conversely, the incorporation of AC into the treatment regime markedly bolstered the antioxidative defense system, as evidenced by the significant elevation in antioxidant capacity and a concomitant reduction in the biomarkers of oxidative stress (POX, ROS, and MDA). CONCLUSIONS: With AC application, a notable improvement was observed in the chlorophyll a, total chlorophyll, and plant fresh and dry biomass. These findings illuminate the role of activated charcoal as a viable adjunct in phytoremediation strategies aimed at ameliorating heavy metal stress in plants.


Assuntos
Biodegradação Ambiental , Carvão Vegetal , Hidroponia , Chumbo , Sesbania , Poluentes do Solo , Carvão Vegetal/farmacologia , Chumbo/toxicidade , Chumbo/metabolismo , Sesbania/metabolismo , Sesbania/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Malondialdeído/metabolismo
11.
Curr Opin Nephrol Hypertens ; 33(5): 543-550, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39017648

RESUMO

PURPOSE OF REVIEW: While high levels of lead exposure, as occurs accidentally or occupationally, can cause toxicity across multiple organ systems, the hazard of commonly encountered levels of lead in the environment remains unresolved. Challenges to researching the health effects of lead include its complex interplay with renal function, rendering analyses at risk of unaccounted confounding, and the likely small effect size of environmental levels of exposure. While children are known to be disproportionately susceptible to lead toxicity, resulting in appropriately more stringent regulatory surveillance for those under 5 years old, emerging evidence suggests that those with chronic kidney disease (CKD) similarly are at a greater risk. This review summarizes the role of environmental lead toxicity as a potential cause and consequence of CKD. RECENT FINDINGS: Whether environmental lead exposure causes CKD remains debatable, with little recent research advancing the conflicting, mostly cross-sectional, analyses from years ago. However, an emerging body of evidence suggests that CKD increases the susceptibility to lead toxicity. Higher circulating lead levels and lower urinary excretion result in greater lead accumulation in CKD, with simultaneous greater risk of clinically meaningful disease. Recent studies suggest that levels of lead found commonly in the United States drinking water supply, and currently permissible by the Environmental Protection Agency, associate with hematologic toxicity in those with advanced CKD. Whether environmental lead contamination may have additional negative health impact among this at-risk population, including cardiovascular and neurocognitive disease, warrants further study. SUMMARY: The underlying pathophysiology of kidney disease synergizes the susceptibility to environmental lead toxicity for those with CKD. Low levels of exposure, as found commonly in the United States water supply, may have adverse health impact in CKD. Further research will be needed to determine if more stringent environmental regulations are warranted to protect the health of all.


Assuntos
Exposição Ambiental , Chumbo , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/fisiopatologia , Chumbo/sangue , Chumbo/efeitos adversos , Chumbo/toxicidade , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Poluentes Ambientais/toxicidade , Fatores de Risco , Animais , Intoxicação por Chumbo/epidemiologia , Intoxicação por Chumbo/sangue , Intoxicação por Chumbo/complicações , Rim/efeitos dos fármacos , Rim/fisiopatologia , Rim/metabolismo
12.
Toxicol Appl Pharmacol ; 483: 116831, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266873

RESUMO

The detrimental impact of heavy metals on cardiovascular well-being is a global concern, and engaging in suitable physical activity has been shown to confer cardiovascular advantage. Nevertheless, the potential of exercise to mitigate the deleterious effects of heavy metals on stroke remains uncertain. We conducted a cross-sectional survey to assess the influence of blood cadmium and blood lead on stroke occurrence, while also examining the role of physical activity. Weighted multivariate regression analysis was employed to examine the potential correlation, while subgroup and interaction analyses were used to investigate the sensitivity and robustness of the results. After controlling risk factors, it revealed a positive correlation between blood cadmium and lead levels and the occurrence of stroke. Specifically, a 50% increase in blood cadmium was associated with a 28% increase in stroke incidence, while a 50% increase in blood lead was associated with a 47% increase in stroke incidence. To estimate the non-linear relationship, we employed restricted cubic models. The results demonstrate a gradual decrease in the slope of the model curve as the intensity of physical activity increases, implying that engaging in physical activity may contribute to a reduction in the occurrence of stroke caused by blood cadmium and lead. Our findings suggest that blood cadmium and lead could be considered an autonomous risk factor for stroke within the general population of the United States. Moreover, engaging in physical activity has the potential to mitigate the potential detrimental consequences associated with exposure to heavy metals.


Assuntos
Metais Pesados , Acidente Vascular Cerebral , Humanos , Estados Unidos/epidemiologia , Cádmio/toxicidade , Chumbo/toxicidade , Inquéritos Nutricionais , Estudos Transversais , Metais Pesados/toxicidade , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/prevenção & controle
13.
Am J Public Health ; 114(3): 309-318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382019

RESUMO

Objectives. To examine whether a previously reported association between airborne lead exposure and children's cognitive function replicates across a geographically diverse sample of the United States. Methods. Residential addresses of children (< 5 years) were spatially joined to the Risk-Screening Environmental Indicators model of relative airborne lead toxicity. Cognitive outcomes for children younger than 8 years were available for 1629 children with IQ data and 1476 with measures of executive function (EF; inhibitory control, cognitive flexibility). We used generalized linear models using generalized estimating equations to examine the associations of lead, scaled by interquartile range (IQR), accounting for individual- and area-level confounders. Results. An IQR increase in airborne lead was associated with a 0.74-point lower mean IQ score (b = -0.74; 95% confidence interval = -1.00, -0.48). The association between lead and EF was nonlinear and was modeled with a knot at the 97.5th percentile of lead in our sample. Lead was significantly associated with lower mean inhibitory control but not with cognitive flexibility. This effect was stronger among males for both IQ and inhibitory control. Conclusions. Early-life exposure to airborne lead is associated with lower cognitive functioning. (Am J Public Health. 2024;114(3):309-318. https://doi.org/10.2105/AJPH.2023.307519).


Assuntos
Cognição , Chumbo , Masculino , Criança , Humanos , Estados Unidos/epidemiologia , Chumbo/toxicidade , Estudos Prospectivos , Modelos Lineares , Avaliação de Resultados em Cuidados de Saúde , Exposição Ambiental/efeitos adversos
14.
Mol Biol Rep ; 51(1): 71, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175215

RESUMO

BACKGROUND: Pollution with heavy metals (HMs) is time- and concentration-dependent. Lead and zinc pollute the aquatic environment, causing severe health issues in aquatic animals. MATERIALS AND METHODS: Nile tilapia, the predominant cultured fish in Egypt, were experimentally exposed to 10% of LC50 of lead nitrate (PbNO3) and zinc sulfate (ZnSO4). Samples were collected in three different periods, 4, 6, and 8 weeks, in addition to a trial to treat the experimental fish infected with Aeromonas hydrophila, with an antibiotic (florfenicol). RESULTS: Liver enzymes were linearly upsurged in a time-dependent manner in response to HMs exposure. ALT was 92.1 IU/l and AST was 82.53 IU/l after eight weeks. In the eighth week of the HMs exposure, in the hepatic tissue, the levels of glutathione peroxidase (GPx), catalase (CAT), and metallothionein (MT) were increased to 117.8 U/mg prot, 72.2 U/mg prot, and 154.5 U/mg prot, respectively. On exposure to HMs, gene expressions of some cytokines were linearly downregulated in a time-dependent manner compared to the control. After four weeks of exposure to the HMs, the oxidative burst activity (OBA) of immune cells was decreased compared to the control 9.33 and 10.3 cells, respectively. Meanwhile, the serum bactericidal activity (SBA) significantly declined to 18.5% compared to the control 32.6% after eight weeks of exposure. Clinical signs of A. hydrophila infection were exaggerated in polluted fish, with a mortality rate (MR) of 100%. The re-isolation rate of A. hydrophila was decreased in fish treated with florfenicol regardless of the pollution impacts after eight weeks of HMs exposure. CONCLUSION: It could be concluded that the immune suppression and oxidative stress resulting from exposure to HMs are time-dependent. Clinical signs and post-mortem lesions in polluted fish infected with A. hydrophila were prominent. Infected-Nile tilapia had weak responses to florfenicol treatment due to HMs exposure.


Assuntos
Ciclídeos , Chumbo , Animais , Chumbo/toxicidade , Sulfato de Zinco , Nitratos , Aeromonas hydrophila
15.
J Biochem Mol Toxicol ; 38(1): e23547, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37867311

RESUMO

Lead at any levels can result in detrimental health effects affecting various organ systems. These systematic manifestations under Pb exposure and the underlying probable pathophysiological mechanisms have not been elucidated completely. With advancements in molecular research under Pb exposure, epigenetics is one of the emerging field that has opened many possibilities for appreciating the role of Pb exposure in modulating gene expression profiles. In terms of epigenetic alterations reported in Pb toxicity, DNA methylation, and microRNA alterations are extensively explored in both experimental and epidemiological studies, however, the understanding of histone modifications under Pb exposure is still in its infant stage limited to experimental models. In this review, we aim to present a synoptic view of histone modifications explored in relation to Pb exposure attempting to bring out this potential lacunae in research. The scarcity of studies associating histone modifications with Pb toxicity, and the paucity of their validation in human cohort further emphasizes the strong research potential of this field. We summarize the review by presenting our hypotheses regarding the involvement of these histone modification in various diseases modalities associated with Pb toxicity.


Assuntos
Código das Histonas , Chumbo , Humanos , Chumbo/toxicidade , Epigênese Genética , Metilação de DNA , Processamento de Proteína Pós-Traducional
16.
Environ Res ; 246: 118068, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157961

RESUMO

BACKGROUND: Relatively little is known about the immediate and prospective neurodevelopmental impacts of joint exposure to multiple metals (i.e., metal mixtures) in early childhood. OBJECTIVES: To estimate associations of early childhood (∼3 years of age) blood metal concentrations with cognitive test scores at early and mid-childhood (∼8 years of age). METHODS: We studied children from the Project Viva cohort. We measured erythrocyte concentrations of seven essential (Co, Cu, Mg, Mn, Mo, Se, and Zn) and eight non-essential metals (As, Ba, Cd, Cs, Hg, Pb, Sn, and Sr) in early childhood blood samples. Trained research assistants administered cognitive tests assessing vocabulary, visual-motor ability, memory, and general intelligence (standard deviations: ∼10 points), in early and mid-childhood. We employed multivariable linear regression to examine associations of individual metals with test scores adjusting for confounders, other concurrently measured metals, and first-trimester maternal blood metals. We also estimated joint associations and explored interaction between metals in mixture analyses. RESULTS: We analyzed 349 children (median whole blood Pb ∼1 µg/dL). In cross-sectional analyses, each doubling of Pb was associated with lower visual-motor function (mean difference: -2.43 points, 95% confidence interval (CI): -4.01, -0.86) and receptive vocabulary, i.e., words understood (-1.45 points, 95% CI: -3.26, 0.36). Associations of Pb with mid-childhood cognition were weaker and less precise by comparison. Mg was positively associated with cognition in cross-sectional but not prospective analyses, and cross-sectional associations were attenuated in a sensitivity analysis removing adjustment for concurrent metals. We did not observe joint associations nor interactions. DISCUSSION: In this cohort with low blood Pb levels, increased blood Pb was robustly associated with lower cognitive ability in cross-sectional analyses, even after adjustment for prenatal Pb exposure, and regardless of adjustment for metal co-exposures. However, associations with mid-childhood cognition were attenuated and imprecise, suggesting some buffering of Pb neurotoxicity in early life. WHAT THIS STUDY ADDS: Relatively few studies have comprehensively separated the effects of neurotoxic metals such as lead (Pb) from pre- and postnatal co-occurring metals, nor examined persistence of associations across childhood. In a cohort of middle-class children, we found higher early childhood (∼3 y) blood Pb was associated with lower scores on cognitive tests, independent of other metals and prenatal blood Pb. However, early childhood Pb was only weakly associated with cognition in mid-childhood (∼8 y). Our results suggest the effects of low-level Pb exposure may attenuate over time in some populations, implying the presence of factors that may buffer Pb neurotoxicity in early life.


Assuntos
Chumbo , Mercúrio , Gravidez , Feminino , Humanos , Pré-Escolar , Criança , Estudos Transversais , Chumbo/toxicidade , Cognição , Testes Neuropsicológicos
17.
Environ Res ; 252(Pt 3): 119012, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704010

RESUMO

Microplastics and heavy metals are ubiquitous and persistent contaminants that are widely distributed worldwide, yet little is known about the effects of their interaction on soil ecosystems. A soil incubation experiment was conducted to investigate the individual and combined effects of polyethylene microplastics (PE-MPs) and lead (Pb) on soil enzymatic activities, microbial biomass, respiration rate, and community diversity. The results indicate that the presence of PE-MPs notably reduced soil pH and elevated soil Pb bioavailability, potentially exacerbated the combined toxicity on the biogeochemical cycles of soil nutrients, microbial biomass carbon and nitrogen, and the activities of soil urease, sucrase, and alkaline phosphatase. Soil CO2 emissions increased by 7.9% with PE-MPs alone, decreased by 46.3% with single Pb, and reduced by 69.4% with PE-MPs and Pb co-exposure, compared to uncontaminated soils. Specifically, the presence of PE-MPs and Pb, individually and in combination, facilitated the soil metabolic quotient, leading to reduced microbial metabolic efficiency. Moreover, the addition of Pb and PE-MPs modified the composition of the microbial community, leading to the enrichment of specific taxa. Tax4Fun analysis showed the effects of Pb, PE-MPs and their combination on the biogeochemical processes and ecological functions of microbes were mainly by altering amino acid metabolism, carbohydrate metabolism, membrane transport, and signal transduction. These findings offer valuable insights into the ecotoxicological effects of combined PE-MPs and Pb on soil microbial dynamics, reveals key assembly mechanisms and environmental drivers, and highlights the potential threat of MPs and heavy metals to the multifunctionality of soil ecosystems.


Assuntos
Biomassa , Chumbo , Microplásticos , Polietileno , Microbiologia do Solo , Poluentes do Solo , Chumbo/toxicidade , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Polietileno/toxicidade , Solo/química , Ecotoxicologia
18.
Environ Res ; 251(Pt 2): 118708, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493858

RESUMO

The mode of action (MOA) framework is proposed to inform a biological link between chemical exposures and adverse health effects. Despite a significant increase in knowledge and awareness, the application of MOA in human health risk assessment (RA) remains limited. This study aims to discuss the adoption of MOA for health RA within a regulatory context, taking our previously proposed but not yet validated MOA for lead neurotoxicity as an example. We first conducted a quantitative weight of evidence (qWOE) assessment, which revealed that the MOA has a moderate confidence. Then, targeted bioassays were performed within an in vitro blood-brain barrier (BBB) model to quantitatively validate the scientific validity of key events (KEs) in terms of essentiality and concordance of empirical support (dose/temporal concordance), which increases confidence in utilizing the MOA for RA. Building upon the quantitative validation data, we further conducted benchmark dose (BMD) analysis to map dose-response relationships for the critical toxicity pathways, and the lower limit of BMD at a 5% response (BMDL5) was identified as the point of departure (POD) value for adverse health effects. Notably, perturbation of the Aryl Hydrocarbon Receptor (AHR) signaling pathway exhibited the lowest POD value, measured at 0.0062 µM. Considering bioavailability, we further calculated a provisional health-based guidance value (HBGV) for children's lead intake, determining it to be 2.56 µg/day. Finally, the health risk associated with the HBGV was assessed using the hazard quotient (HQ) approach, which indicated that the HBGV established in this study is a relative safe reference value for lead intake. In summary, our study described the procedure for utilizing MOA in health RA and set an example for MOA-based human health risk regulation.


Assuntos
Chumbo , Medição de Risco/métodos , Humanos , Chumbo/toxicidade , Barreira Hematoencefálica/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Relação Dose-Resposta a Droga
19.
Environ Res ; 242: 117807, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043898

RESUMO

BACKGROUND: Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) represent significant components of environmental pollution, typically occurring as mixtures, raising concerns about their potential impact on human health. However, the combined effect of HMs and PAHs exposure on depression has not been explored. METHODS: Leveraging National Health and Nutrition Examination Survey (NHANES) data spanning 2005 to 2016, we employ survey-weighted multiple logistic regression models to probe the interrelation between HMs, PAHs, and depression. This exploration is complemented by age and gender-stratified analyses, as well as a determination of the dose-response linkage via restricted cubic spline regression. Furthermore, the combined impact of HMs and PAHs on depression was evaluated through a range of statistical methodologies. RESULTS: The study encompasses 7732 adults. Our findings unveil notable associations, indicating the significant influence of cadmium (Cd), lead (Pb), and all six PAHs metabolites on depression. Moreover, mixed exposure to HMs and PAHs emerges as a substantial contributor to an augmented depression risk, with Cd, Pb, 1-hydroxynaphthalene (1-NAP), 2-hydroxyfluorene (2-FLU), and 1-hydroxypyrene (1-PYR) likely driving this positive relationship. Intriguingly, subgroup analyses highlight greater prominence of these connections among individuals aged 20-59 and among women. Furthermore, the results tentatively suggest a potential interplay between Cd and 2-NAP in relation to depression. CONCLUSION: This study posits that exposure to both individual and combined HMs and PAHs may be associated with an elevated risk of depression. Further prospective investigations are warranted to substantiate these findings.


Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Humanos , Feminino , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Inquéritos Nutricionais , Cádmio , Depressão/induzido quimicamente , Depressão/epidemiologia , Chumbo/toxicidade , Metais Pesados/toxicidade , Biomarcadores
20.
Environ Res ; 243: 117875, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072110

RESUMO

Arsenic (As) and lead (Pb) are toxins found in the natural surroundings, and the harmful health outcomes caused by the co-exposure of such toxins have become a considerable problem. However, the joint neurotoxicity of As and Pb to neurodevelopment and the underlying mechanisms remain unclear. Pluripotent stem cell-derived human brain organoids are emerging animal model alternatives for understanding neurological-related diseases. Therefore, we utilized brain organoids with optic vesicles (OVB-organoids) to systematically analyze the neurotoxicity of As and Pb. After 24 h of As and/or Pb exposure, hematoxylin-eosin staining revealed that As and Pb exposure could cause disorders in the structure of the ventricular zone and general cell disarrangement in OVB-organoids. Immunostaining displayed that OVB-organoids are more susceptible to As and Pb co-exposure than independent exposure in apoptosis, proliferation, and cell differentiation. Meanwhile, even though As and Pb could both hinder cell proliferation, contrary to Pb, As could induce an increasing proportion of mitotic (G2/M) cells. The proteome landscape of OVB-organoids illustrated that Pb synergized with As in G2/M arrest and the common role of As and Pb in carcinogenesis. Besides, proteomics analyses suggested the consequential role of autophagy and Wnt pathway in the neurotoxicity of As and Pb co-exposure. Overall, our findings provide penetrating insights into the cell cycle, carcinogenesis, autophagy, and Wnt pathway underlying the As and Pb binary exposure scenarios, which could enhance our understanding of the mixture neurotoxicity mechanisms.


Assuntos
Arsênio , Animais , Humanos , Arsênio/toxicidade , Arsênio/metabolismo , Proteoma/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Encéfalo/metabolismo , Organoides/metabolismo , Carcinogênese/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa