Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 618
Filtrar
1.
Nat Immunol ; 17(3): 315-22, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26692174

RESUMO

T cell proliferation is initiated by T cell antigen receptor (TCR) triggering, soluble growth factors or both. In characterizing T cells lacking the septin cytoskeleton, we found that successful cell division has discrete septin-dependent and septin-independent pathways. Septin-deficient T cells failed to complete cytokinesis when prompted by pharmacological activation or cytokines. In contrast, cell division was not dependent on septins when cell-cell contacts, such as those with antigen-presenting cells, provided a niche. This septin-independent pathway was mediated by phosphatidylinositol-3-OH kinase activation through a combination of integrins and costimulatory signals. We were able to differentiate between cytokine- and antigen-driven expansion in vivo and thus show that targeting septins has strong potential to moderate detrimental bystander or homeostatic cytokine-driven proliferation without influencing expansion driven by conventional antigen-presentation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proliferação de Células/genética , Citocinese/imunologia , Septinas/imunologia , Animais , Células Apresentadoras de Antígenos , Sinalização do Cálcio , Citocinas/farmacologia , Citocinese/efeitos dos fármacos , Citocinese/genética , Citometria de Fluxo , Immunoblotting , Integrinas , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Fosfatidilinositol 3-Quinases , Fosforilação , Receptores de Antígenos de Linfócitos T , Fator de Transcrição STAT5/metabolismo , Septinas/genética
2.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38546617

RESUMO

Abscission is the final step of cytokinesis that allows the physical separation of sister cells through the scission of the cellular membrane. This deformation is driven by ESCRT-III proteins, which can bind membranes and form dynamic helices. A crucial step in abscission is the recruitment of ESCRT-III proteins at the right time and place. Alix is one of the best characterized proteins that recruits ESCRT-III proteins from yeast to mammals. However, recent studies in vivo have revealed that pathways acting independently or redundantly with Alix are also required at abscission sites in different cellular contexts. Here, we show that Lgd acts redundantly with Alix to properly localize ESCRT-III to the abscission site in germline stem cells (GSCs) during Drosophila oogenesis. We further demonstrate that Lgd is phosphorylated at multiple sites by the CycB/Cdk1 kinase. We found that these phosphorylation events potentiate the activity of Shrub, a Drosophila ESCRT-III, during abscission of GSCs. Our study reveals that redundancy between Lgd and Alix, and coordination with the cell cycle kinase Cdk1, confers robust and timely abscission of Drosophila germline stem cells.


Assuntos
Proteínas de Drosophila , Complexos Endossomais de Distribuição Requeridos para Transporte , Células Germinativas , Células-Tronco , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Ciclina B , Citocinese/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células Germinativas/metabolismo , Mamíferos/metabolismo , Células-Tronco/metabolismo
3.
Mol Cell ; 75(1): 131-144.e3, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31204167

RESUMO

In Saccharomyces cerevisiae, dicentric chromosomes stemming from telomere fusions preferentially break at the fusion. This process restores a normal karyotype and protects chromosomes from the detrimental consequences of accidental fusions. Here, we address the molecular basis of this rescue pathway. We observe that tandem arrays tightly bound by the telomere factor Rap1 or a heterologous high-affinity DNA binding factor are sufficient to establish breakage hotspots, mimicking telomere fusions within dicentrics. We also show that condensins generate forces sufficient to rapidly refold dicentrics prior to breakage by cytokinesis and are essential to the preferential breakage at telomere fusions. Thus, the rescue of fused telomeres results from a condensin- and Rap1-driven chromosome folding that favors fusion entrapment where abscission takes place. Because a close spacing between the DNA-bound Rap1 molecules is essential to this process, Rap1 may act by stalling condensins.


Assuntos
Adenosina Trifosfatases/genética , Cromossomos Fúngicos/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Telômero/metabolismo , Fatores de Transcrição/genética , Adenosina Trifosfatases/metabolismo , Pontos de Quebra do Cromossomo , Cromossomos Fúngicos/ultraestrutura , Citocinese/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Cariótipo , Modelos Genéticos , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Shelterina , Telômero/ultraestrutura , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(11): e2308570121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442170

RESUMO

Cytokinesis is the last step of cell division and is regulated by the small GTPase RhoA. RhoA activity is required for all steps of cytokinesis, including prior to abscission when daughter cells are ultimately physically separated. Like germ cells in all animals, the Caenorhabditis elegans embryonic germline founder cell initiates cytokinesis but does not complete abscission, leaving a stable intercellular bridge between the two daughter cells. Here, we identify and characterize C. elegans OSGN-1 as a cytokinetic regulator that promotes RhoA activity during late cytokinesis. Sequence analyses and biochemical reconstitutions reveal that OSGN-1 is a flavin-containing monooxygenase (MO). Genetic analyses indicate that the MO activity of OSGN-1 is required to maintain active RhoA at the end of cytokinesis in the germline founder cell and to stabilize the intercellular bridge. Deletion of OSGIN1 in human cells results in an increase in binucleation as a result of cytokinetic furrow regression, and this phenotype can be rescued by expressing a catalytically active form of C. elegans OSGN-1, indicating that OSGN-1 and OSGIN1 are functional orthologs. We propose that OSGN-1 and OSGIN1 are conserved MO enzymes required to maintain RhoA activity at the intercellular bridge during late cytokinesis and thus favor its stability, enabling proper abscission in human cells and bridge stabilization in C. elegans germ cells.


Assuntos
Citocinese , Dermatite , Oxigenases , Animais , Humanos , Citocinese/genética , Caenorhabditis elegans/genética , Divisão Celular
5.
Development ; 150(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36789950

RESUMO

We show that the zebrafish maternal-effect mutation too much information (tmi) corresponds to zebrafish prc1-like (prc1l), which encodes a member of the MAP65/Ase1/PRC1 family of microtubule-associated proteins. Embryos from tmi homozygous mutant mothers display cytokinesis defects in meiotic and mitotic divisions in the early embryo, indicating that Prc1l has a role in midbody formation during cell division at the egg-to-embryo transition. Unexpectedly, maternal Prc1l function is also essential for the reorganization of vegetal pole microtubules required for the segregation of dorsal determinants. Whereas Prc1 is widely regarded to crosslink microtubules in an antiparallel conformation, our studies provide evidence for an additional function of Prc1l in the bundling of parallel microtubules in the vegetal cortex of the early embryo during cortical rotation and prior to mitotic cycling. These findings highlight common yet distinct aspects of microtubule reorganization that occur during the egg-to-embryo transition, driven by maternal product for the midbody component Prc1l and required for embryonic cell division and pattern formation.


Assuntos
Citocinese , Proteínas Associadas aos Microtúbulos , Peixe-Zebra , Animais , Divisão Celular , Citocinese/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo
6.
Development ; 150(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36661358

RESUMO

Organ morphogenesis needs orchestration of a series of cellular events, including cell division, cell shape change, cell rearrangement and cell death. Cytokinesis, the final step of cell division, is involved in the control of organ size, shape and function. Mechanistically, it is unclear how the molecules involved in cytokinesis regulate organ size and shape. Here, we demonstrate that the centralspindlin complex coordinates cell division and epithelial morphogenesis by regulating cytokinesis. Loss of the centralspindlin components CYK-4 and ZEN-4 disrupts cell division, resulting in altered cell arrangement and malformation of the Caenorhabditis elegans spermatheca. Further investigation revealed that most spermathecal cells undergo nuclear division without completion of cytokinesis. Germline mutant-based analyses suggest that CYK-4 regulates cytokinesis of spermathecal cells in a GTPase activator activity-independent manner. Spermathecal morphology defects can be enhanced by double knockdown of rho-1 and cyk-4, and partially suppressed by double knockdown of cdc-42 and cyk-4. Thus, the centralspindlin components CYK-4 and ZEN-4, together with RHO-1 and CDC-42, are central players of a signaling network that guides spermathecal morphogenesis by enabling completion of cytokinesis.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Citocinese/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Morfogênese/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
7.
Plant Cell ; 35(7): 2678-2693, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37017144

RESUMO

Formative asymmetric divisions produce cells with different fates and are critical for development. We show the maize (Zea mays) myosin XI protein, OPAQUE1 (O1), is necessary for asymmetric divisions during maize stomatal development. We analyzed stomatal precursor cells before and during asymmetric division to determine why o1 mutants have abnormal division planes. Cell polarization and nuclear positioning occur normally in the o1 mutant, and the future site of division is correctly specified. The defect in o1 becomes apparent during late cytokinesis, when the phragmoplast forms the nascent cell plate. Initial phragmoplast guidance in o1 is normal; however, as phragmoplast expansion continues o1 phragmoplasts become misguided. To understand how O1 contributes to phragmoplast guidance, we identified O1-interacting proteins. Maize kinesins related to the Arabidopsis thaliana division site markers PHRAGMOPLAST ORIENTING KINESINs (POKs), which are also required for correct phragmoplast guidance, physically interact with O1. We propose that different myosins are important at multiple steps of phragmoplast expansion, and the O1 actin motor and POK-like microtubule motors work together to ensure correct late-stage phragmoplast guidance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Zea mays/genética , Zea mays/metabolismo , Cinesinas/metabolismo , Divisão Celular Assimétrica , Citocinese/genética , Microtúbulos/metabolismo , Arabidopsis/metabolismo , Miosinas/genética , Miosinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte Vesicular/metabolismo
8.
PLoS Genet ; 19(10): e1010984, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782660

RESUMO

During C. elegans oocyte meiosis I cytokinesis and polar body extrusion, cortical actomyosin is locally remodeled to assemble a contractile ring that forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness limits membrane ingression throughout the oocyte during meiosis I polar body extrusion. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a group of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize during meiosis I to structures called linear elements, which are present within the assembling oocyte spindle and also are distributed throughout the oocyte in proximity to, but appearing to underlie, the actomyosin cortex. We further show that KNL-1 and BUB-1, like CLS-2, promote the proper organization of sub-cortical microtubules and also limit membrane ingression throughout the oocyte. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules leads to, respectively, excess or decreased membrane ingression throughout the oocyte. Furthermore, taxol treatment, and genetic backgrounds that elevate the levels of cortically associated microtubules, both suppress excess membrane ingression in cls-2 mutant oocytes. We propose that linear elements influence the organization of sub-cortical microtubules to generate a stiffness that limits cortical actomyosin-driven membrane ingression throughout the oocyte during meiosis I polar body extrusion. We discuss the possibility that this regulation of sub-cortical microtubule dynamics facilitates actomyosin contractile ring dynamics during C. elegans oocyte meiosis I cell division.


Assuntos
Actomiosina , Proteínas de Caenorhabditis elegans , Animais , Actomiosina/genética , Actomiosina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Corpos Polares , Citocinese/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Meiose/genética , Oócitos/metabolismo , Paclitaxel , Proteínas Associadas aos Microtúbulos/genética
9.
J Biol Chem ; 300(4): 107124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432637

RESUMO

Rab35 (Ras-associated binding protein) is a small GTPase that regulates endosomal membrane trafficking and functions in cell polarity, cytokinesis, and growth factor signaling. Altered Rab35 function contributes to progression of glioblastoma, defects in primary cilia formation, and altered cytokinesis. Here, we report a pediatric patient with global developmental delay, hydrocephalus, a Dandy-Walker malformation, axial hypotonia with peripheral hypertonia, visual problems, and conductive hearing impairment. Exome sequencing identified a homozygous missense variant in the GTPase fold of RAB35 (c.80G>A; p.R27H) as the most likely candidate. Functional analysis of the R27H-Rab35 variant protein revealed enhanced interaction with its guanine-nucleotide exchange factor, DENND1A and decreased interaction with a known effector, MICAL1, indicating that the protein is in an inactive conformation. Cellular expression of the variant drives the activation of Arf6, a small GTPase under negative regulatory control of Rab35. Importantly, variant expression leads to delayed cytokinesis and altered length, number, and Arl13b composition of primary cilia, known factors in neurodevelopmental disease. Our findings provide evidence of altered Rab35 function as a causative factor of a neurodevelopmental disorder.


Assuntos
Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Proteínas rab de Ligação ao GTP , Feminino , Humanos , Masculino , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Linhagem Celular , Cílios/metabolismo , Cílios/genética , Cílios/patologia , Citocinese/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutação com Perda de Função , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína
10.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37039135

RESUMO

During cytokinesis, a series of coordinated events partition a dividing cell. Accurate regulation of cytokinesis is essential for proliferation and genome integrity. In fission yeast, these coordinated events ensure that the actomyosin ring and septum start ingressing only after chromosome segregation. How cytokinetic events are coordinated remains unclear. The GTPase Cdc42 promotes recruitment of certain cell wall-building enzymes whereas the GTPase Rho1 activates these enzymes. We show that Cdc42 prevents early Rho1 activation during fission yeast cytokinesis. Using an active Rho probe, we find that although the Rho1 activators Rgf1 and Rgf3 localize to the division site in early anaphase, Rho1 is not activated until late anaphase, just before the onset of ring constriction. We find that loss of Cdc42 activation enables precocious Rho1 activation in early anaphase. Furthermore, we provide functional and genetic evidence that Cdc42-dependent Rho1 inhibition is mediated by the Cdc42 target Pak1 kinase. Our work proposes a mechanism of Rho1 regulation by active Cdc42 to coordinate timely septum formation and cytokinesis fidelity.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Citocinese/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Actomiosina/metabolismo , Quinases Ativadas por p21/genética , Proteínas rho de Ligação ao GTP/metabolismo
11.
PLoS Biol ; 20(9): e3001599, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36170207

RESUMO

Cell division, wherein 1 cell divides into 2 daughter cells, is fundamental to all living organisms. Cytokinesis, the final step in cell division, begins with the formation of an actomyosin contractile ring, positioned midway between the segregated chromosomes. Constriction of the ring with concomitant membrane deposition in a specified spatiotemporal manner generates a cleavage furrow that physically separates the cytoplasm. Unique lipids with specific biophysical properties have been shown to localize to intercellular bridges (also called midbody) connecting the 2 dividing cells; however, their biological roles and delivery mechanisms remain largely unknown. In this study, we show that ceramide phosphoethanolamine (CPE), the structural analog of sphingomyelin, has unique acyl chain anchors in Drosophila spermatocytes and is essential for meiotic cytokinesis. The head group of CPE is also important for spermatogenesis. We find that aberrant central spindle and contractile ring behavior but not mislocalization of phosphatidylinositol phosphates (PIPs) at the plasma membrane is responsible for the male meiotic cytokinesis defect in CPE-deficient animals. Further, we demonstrate the enrichment of CPE in multivesicular bodies marked by Rab7, which in turn localize to cleavage furrow. Volume electron microscopy analysis using correlative light and focused ion beam scanning electron microscopy shows that CPE-enriched Rab7 positive endosomes are juxtaposed on contractile ring material. Correlative light and transmission electron microscopy reveal Rab7 positive endosomes as a multivesicular body-like organelle that releases its intraluminal vesicles in the vicinity of ingressing furrows. Genetic ablation of Rab7 or Rab35 or expression of dominant negative Rab11 results in significant meiotic cytokinesis defects. Further, we show that Rab11 function is required for localization of CPE positive endosomes to the cleavage furrow. Our results imply that endosomal delivery of CPE to ingressing membranes is crucial for meiotic cytokinesis.


Assuntos
Citocinese , Esfingomielinas , Actomiosina/metabolismo , Animais , Citocinese/genética , Drosophila/genética , Endossomos/metabolismo , Masculino , Meiose , Fosfatos de Fosfatidilinositol/metabolismo
12.
Genes Dev ; 31(1): 34-45, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130345

RESUMO

Centrosomes, the main microtubule-organizing centers in animal cells, are replicated exactly once during the cell division cycle to form the poles of the mitotic spindle. Supernumerary centrosomes can lead to aberrant cell division and have been causally linked to chromosomal instability and cancer. Here, we report that an increase in the number of mature centrosomes, generated by disrupting cytokinesis or forcing centrosome overduplication, triggers the activation of the PIDDosome multiprotein complex, leading to Caspase-2-mediated MDM2 cleavage, p53 stabilization, and p21-dependent cell cycle arrest. This pathway also restrains the extent of developmentally scheduled polyploidization by regulating p53 levels in hepatocytes during liver organogenesis. Taken together, the PIDDosome acts as a first barrier, engaging p53 to halt the proliferation of cells carrying more than one mature centrosome to maintain genome integrity.


Assuntos
Centrossomo/fisiologia , Genes p53/genética , Complexos Multiproteicos/metabolismo , Ativação Transcricional/genética , Células A549 , Animais , Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Células Cultivadas , Centrossomo/patologia , Citocinese/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Humanos , Fígado/citologia , Fígado/embriologia , Camundongos , Organogênese/genética
13.
Traffic ; 23(10): 478-495, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36068165

RESUMO

Fission yeast cytokinesis is driven by simultaneous septum synthesis, membrane furrowing and actomyosin ring constriction. The septum consists of a primary septum flanked by secondary septa. First, delivery of the glucan synthase Bgs1 and membrane vesicles initiate primary septum synthesis and furrowing. Next, Bgs4 is delivered for secondary septum formation. It is unclear how septum synthesis is coordinated with membrane furrowing. Cdc42 promotes delivery of Bgs1 but not Bgs4. We find that after primary septum initiation, Cdc42 inactivators Rga4 and Rga6 localize to the division site. In rga4Δrga6Δ mutants, Cdc42 activity is enhanced during late cytokinesis and cells take longer to separate. Electron micrographs of the division site in these mutants exhibit malformed septum with irregular membrane structures. These mutants have a larger division plane with enhanced Bgs1 delivery but fail to enhance accumulation of Bgs4 and several exocytic proteins. Additionally, these mutants show endocytic defects at the division site. This suggests that Cdc42 regulates primary septum formation and only certain membrane trafficking events. As cytokinesis progresses Rga4 and Rga6 localize to the division site to decrease Cdc42 activity to allow coupling of Cdc42-independent membrane trafficking events with septum formation for proper septum morphology.


Assuntos
Citocinese , Proteínas Ativadoras de GTPase , Proteínas de Schizosaccharomyces pombe , Actomiosina/metabolismo , Citocinese/genética , Citocinese/fisiologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo
14.
J Cell Sci ; 135(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022791

RESUMO

Cytokinesis occurs at the end of mitosis as a result of the ingression of a contractile ring that cleaves the daughter cells. The core machinery regulating this crucial process is conserved among metazoans. Multiple pathways control ring assembly, but their contribution in different cell types is not known. We found that in the Caenorhabditis elegans embryo, AB and P1 cells fated to be somatic tissue and germline, respectively, have different cytokinesis kinetics supported by distinct myosin levels and organization. Through perturbation of RhoA or polarity regulators and the generation of tetraploid strains, we found that ring assembly is controlled by multiple fate-dependent factors that include myosin levels, and mechanisms that respond to cell size. Active Ran coordinates ring position with the segregating chromatids in HeLa cells by forming an inverse gradient with importins that control the cortical recruitment of anillin. We found that the Ran pathway regulates anillin in AB cells but functions differently in P1 cells. We propose that ring assembly delays in P1 cells caused by low myosin and Ran signaling coordinate the timing of ring closure with their somatic neighbors. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Citocinese/genética , Células HeLa , Humanos , Miosinas/genética , Miosinas/metabolismo
15.
J Cell Sci ; 135(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35048989

RESUMO

Septins are a family of filament-forming GTP-binding proteins that regulate fundamental cellular activities, such as cytokinesis and cell polarity. In general, septin filaments function as barriers and scaffolds on the cell cortex. However, little is known about the mechanism that governs the recruitment and localization of the septin complex to the cell cortex. Here, we identified the Cdc42 GTPase-activating protein Rga6 as a key protein involved in promoting the localization of the septin complex to the cell cortex in the fission yeast Schizosaccharomyces pombe. Rga6 interacts with the septin complex and partially colocalizes with the septin complex on the cell cortex. Live-cell microscopy analysis further showed septin enrichment at the cortical regions adjacent to the growing cell tip. The septin enrichment likely plays a crucial role in confining active Cdc42 to the growing cell tip. Hence, our findings support a model whereby Rga6 regulates polarized cell growth partly through promoting targeted localization of the septin complex on the cell cortex. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas Ativadoras de GTPase , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Septinas , Citocinese/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Septinas/genética , Septinas/metabolismo
16.
Plant Cell Rep ; 43(4): 97, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488911

RESUMO

KEY MESSAGE: Plants exhibit a unique pattern of cytosolic Ca2+ dynamics to correlate with microtubules to regulate cytokinesis, which significantly differs from those observed in animal and yeast cells. Calcium (Ca2+) transients mediated signaling is known to be essential in cytokinesis across eukaryotic cells. However, the detailed spatiotemporal dynamics of Ca2+ during plant cytokinesis remain largely unexplored. In this study, we employed GCaMP5, a genetically encoded Ca2+ sensor, to investigate cytokinetic Ca2+ transients during cytokinesis in Nicotiana tabacum Bright Yellow-2 (BY-2) cells. We validated the effectiveness of GCaMP5 to capture fluctuations in intracellular free Ca2+ in transgenic BY-2 cells. Our results reveal that Ca2+ dynamics during BY-2 cell cytokinesis are distinctly different from those observed in embryonic and yeast cells. It is characterized by an initial significant Ca2+ spike within the phragmoplast region. This spike is followed by a decrease in Ca2+ concentration at the onset of cytokinesis in phragmoplast, which then remains elevated in comparison to the cytosolic Ca2+ until the completion of cell plate formation. At the end of cytokinesis, Ca2+ becomes uniformly distributed in the cytosol. This pattern contrasts with the typical dual waves of Ca2+ spikes observed during cytokinesis in animal embryonic cells and fission yeasts. Furthermore, applications of pharmaceutical inhibitors for either Ca2+ or microtubules revealed a close correlation between Ca2+ transients and microtubule organization in the regulation of cytokinesis. Collectively, our findings highlight the unique dynamics and crucial role of Ca2+ transients during plant cell cytokinesis, and provides new insights into plant cell division mechanisms.


Assuntos
Cálcio , Citocinese , Animais , Citocinese/genética , Nicotiana/genética , Saccharomyces cerevisiae , Divisão Celular , Microtúbulos
17.
J Cell Sci ; 134(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100550

RESUMO

Goldberg-Shprintzen disease (GOSHS) is a rare microcephaly syndrome accompanied by intellectual disability, dysmorphic facial features, peripheral neuropathy and Hirschsprung disease. It is associated with recessive mutations in the gene encoding kinesin family member 1-binding protein (KIF1BP, also known as KIFBP). The encoded protein regulates axon microtubules dynamics, kinesin attachment and mitochondrial biogenesis, but it is not clear how its loss could lead to microcephaly. We identified KIF1BP in the interactome of citron kinase (CITK, also known as CIT), a protein produced by the primary hereditary microcephaly 17 (MCPH17) gene. KIF1BP and CITK interact under physiological conditions in mitotic cells. Similar to CITK, KIF1BP is enriched at the midbody ring and is required for cytokinesis. The association between KIF1BP and CITK can be influenced by CITK activity, and the two proteins may antagonize each other for their midbody localization. KIF1BP knockdown decreases microtubule stability, increases KIF23 midbody levels and impairs midbody localization of KIF14, as well as of chromosome passenger complex. These data indicate that KIF1BP is a CITK interactor involved in midbody maturation and abscission, and suggest that cytokinesis failure may contribute to the microcephaly phenotype observed in GOSHS.


Assuntos
Anormalidades Craniofaciais , Doença de Hirschsprung , Citocinese/genética , Células HeLa , Humanos , Fuso Acromático
18.
J Cell Sci ; 134(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33328327

RESUMO

The budding yeast phosphatase Cdc14 has a central role in mitotic exit and cytokinesis. Puzzlingly, a uniform picture for the three human CDC14 paralogues CDC14A, CDC14B and CDC14C in cell cycle control has not emerged to date. Redundant functions between the three CDC14 phosphatases could explain this unclear picture. To address the possibility of redundancy, we tested expression of CDC14 and analysed cell cycle progression of cells with single and double deletions in CDC14 genes. Our data suggest that CDC14C is not expressed in human RPE1 cells, excluding a function in this cell line. Single- and double-knockouts (KO) of CDC14A and CDC14B in RPE1 cells indicate that both phosphatases are not important for the timing of mitotic phases, cytokinesis and cell proliferation. However, cycling CDC14A KO and CDC14B KO cells show altered ciliogenesis compared to wild-type cells. The cilia of cycling CDC14A KO cells are longer, whereas CDC14B KO cilia are more frequent and disassemble faster. In conclusion, this study demonstrates that the cell cycle functions of CDC14 proteins are not conserved between yeast and human cells.


Assuntos
Monoéster Fosfórico Hidrolases , Proteínas de Saccharomyces cerevisiae , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Divisão Celular , Citocinese/genética , Fosfatases de Especificidade Dupla/genética , Humanos , Mitose , Monoéster Fosfórico Hidrolases/genética , Proteínas Tirosina Fosfatases/genética
19.
J Cell Sci ; 134(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34435638

RESUMO

Rho5 is the yeast homolog of the human small GTPase Rac1. We characterized the genes encoding Rho5 and the subunits of its dimeric activating guanine-nucleotide-exchange factor (GEF), Dck1 and Lmo1, in the yeast Kluyveromyces lactis. Rapid translocation of the three GFP-tagged components to mitochondria upon oxidative stress and carbon starvation indicate a similar function of KlRho5 in energy metabolism and mitochondrial dynamics as described for its Saccharomyces cerevisiae homolog. Accordingly, Klrho5 deletion mutants are hyper-resistant towards hydrogen peroxide. Moreover, synthetic lethalities of rho5 deletions with key components in nutrient sensing, such as sch9 and gpr1, are not conserved in K. lactis. Instead, Klrho5 deletion mutants display morphological defects with strengthened lateral cell walls and protruding bud scars. The latter result from aberrant cytokinesis, as observed by following the budding process in vivo and by transmission electron microscopy of the bud neck region. This phenotype can be suppressed by KlCDC42G12V, which encodes a hyper-active variant. Data from live-cell fluorescence microscopy support the notion that KlRho5 interferes with the actin moiety of the contractile actomyosin ring, with consequences different from those previously reported for mutants lacking myosin.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas de Saccharomyces cerevisiae , Actomiosina/metabolismo , Citocinese/genética , Humanos , Kluyveromyces , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
J Cell Sci ; 134(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33912919

RESUMO

Cytokinesis is the process that separates a cell into two daughter cells at the end of mitosis. Most of our knowledge of cytokinesis comes from overexpression studies, which affects our interpretation of protein function. Gene editing can circumvent this issue by introducing functional mutations or fluorescent probes directly into a gene locus. However, despite its potential, gene editing is just starting to be used in the field of cytokinesis. Here, we discuss the benefits of using gene editing tools for the study of cytokinesis and highlight recent studies that successfully used CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) technology to answer critical questions regarding the function of cytokinesis proteins. We also present methodologies for editing essential genes and discuss how CRISPR interference (CRISPRi) and activation (CRISPRa) can enable precise control of gene expression to answer important questions in the field. Finally, we address the need for gene editing to study cytokinesis in more physiologically relevant contexts. Therefore, this Review provides a roadmap for gene editing to be used in the study of cytokinesis and other cellular processes.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Citocinese/genética , Edição de Genes , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa