Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 25, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281938

RESUMO

BACKGROUND: Fungal plant pathogens have dynamic genomes that allow them to rapidly adapt to adverse conditions and overcome host resistance. One way by which this dynamic genome plasticity is expressed is through effector gene loss, which enables plant pathogens to overcome recognition by cognate resistance genes in the host. However, the exact nature of these loses remains elusive in many fungi. This includes the tomato pathogen Cladosporium fulvum, which is the first fungal plant pathogen from which avirulence (Avr) genes were ever cloned and in which loss of Avr genes is often reported as a means of overcoming recognition by cognate tomato Cf resistance genes. A recent near-complete reference genome assembly of C. fulvum isolate Race 5 revealed a compartmentalized genome architecture and the presence of an accessory chromosome, thereby creating a basis for studying genome plasticity in fungal plant pathogens and its impact on avirulence genes. RESULTS: Here, we obtained near-complete genome assemblies of four additional C. fulvum isolates. The genome assemblies had similar sizes (66.96 to 67.78 Mb), number of predicted genes (14,895 to 14,981), and estimated completeness (98.8 to 98.9%). Comparative analysis that included the genome of isolate Race 5 revealed high levels of synteny and colinearity, which extended to the density and distribution of repetitive elements and of repeat-induced point (RIP) mutations across homologous chromosomes. Nonetheless, structural variations, likely mediated by transposable elements and effecting the deletion of the avirulence genes Avr4E, Avr5, and Avr9, were also identified. The isolates further shared a core set of 13 chromosomes, but two accessory chromosomes were identified as well. Accessory chromosomes were significantly smaller in size, and one carried pseudogenized copies of two effector genes. Whole-genome alignments further revealed genomic islands of near-zero nucleotide diversity interspersed with islands of high nucleotide diversity that co-localized with repeat-rich regions. These regions were likely generated by RIP, which generally asymmetrically affected the genome of C. fulvum. CONCLUSIONS: Our results reveal new evolutionary aspects of the C. fulvum genome and provide new insights on the importance of genomic structural variations in overcoming host resistance in fungal plant pathogens.


Assuntos
Ascomicetos , Solanum lycopersicum , Solanum lycopersicum/genética , Elementos de DNA Transponíveis/genética , Genes Fúngicos , Cladosporium/genética , Cladosporium/metabolismo , Plantas/metabolismo , Cromossomos/metabolismo , Nucleotídeos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo
2.
Environ Microbiol ; 26(3): e16613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509764

RESUMO

Raspberry production is under threat from the emerging fungal pathogenic genus Cladosporium. We used amplicon-sequencing, coupled with qPCR, to investigate how fruit age, fruit location within a polytunnel, polytunnel location and sampling date affected the fruit epiphytic microbiome. Fruit age was the most important factor impacting the fungal microbiome, followed by sampling date and polytunnel location. In contrast, polytunnel location and fruit age were important factors impacting the bacterial microbiome composition, followed by the sampling date. The within-tunnel location had a small significant effect on the fungal microbiome and no effect on the bacterial microbiome. As fruit ripened, fungal diversity increased and the bacterial diversity decreased. Cladosporium was the most abundant fungus of the fruit epiphytic microbiome, accounting for nearly 44% of all fungal sequences. Rotorod air samplers were used to study how the concentration of airborne Cladosporium inoculum (quantified by qPCR) varied between location (inside and outside the polytunnel) and time (daytime vs. nighttime). Quantified Cladosporium DNA was significantly higher during the day than the night and inside the polytunnel than the outside. This study demonstrated the dynamic nature of epiphytic raspberry fruit microbiomes and airborne Cladosporium inoculum within polytunnels, which will impact disease risks on raspberry fruit.


Assuntos
Cladosporium , Rubus , Cladosporium/genética , Rubus/microbiologia , Frutas/microbiologia
3.
Appl Environ Microbiol ; 90(4): e0147723, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38445906

RESUMO

Plastic degradation by biological systems emerges as a prospective avenue for addressing the pressing global concern of plastic waste accumulation. The intricate chemical compositions and diverse structural facets inherent to polyurethanes (PU) substantially increase the complexity associated with PU waste management. Despite the extensive research endeavors spanning over decades, most known enzymes exhibit a propensity for hydrolyzing waterborne PU dispersion (i.e., the commercial Impranil DLN-SD), with only a limited capacity for the degradation of bulky PU materials. Here, we report a novel cutinase (CpCut1) derived from Cladosporium sp. P7, which demonstrates remarkable efficiency in the degrading of various polyester-PU materials. After 12-h incubation at 55°C, CpCut1 was capable of degrading 40.5% and 20.6% of thermoplastic PU film and post-consumer foam, respectively, while achieving complete depolymerization of Impranil DLN-SD. Further analysis of the degradation intermediates suggested that the activity of CpCut1 primarily targeted the ester bonds within the PU soft segments. The versatile performance of CpCut1 against a spectrum of polyester-PU materials positions it as a promising candidate for the bio-recycling of waste plastics.IMPORTANCEPolyurethane (PU) has a complex chemical composition that frequently incorporates a variety of additives, which poses significant obstacles to biodegradability and recyclability. Recent advances have unveiled microbial degradation and enzymatic depolymerization as promising waste PU disposal strategies. In this study, we identified a gene encoding a cutinase from the PU-degrading fungus Cladosporium sp. P7, which allowed the expression, purification, and characterization of the recombinant enzyme CpCut1. Furthermore, this study identified the products derived from the CpCut1 catalyzed PU degradation and proposed its underlying mechanism. These findings highlight the potential of this newly discovered fungal cutinase as a remarkably efficient tool in the degradation of PU materials.


Assuntos
Hidrolases de Éster Carboxílico , Cladosporium , Poliuretanos , Poliuretanos/química , Poliuretanos/metabolismo , Cladosporium/genética , Cladosporium/metabolismo , Estudos Prospectivos , Biodegradação Ambiental , Poliésteres/metabolismo , Plásticos
4.
Biotechnol J ; 19(8): e2400245, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39118577

RESUMO

Enzymes that degrade ß-glucan play important roles in various industries, including those related to brewing, animal feed, and health care. Csph16A, an endo-ß-1,3(4)-glucanase encoded by a gene from the halotolerant, xerotolerant, and radiotrophic black fungus Cladosporium sphaerospermum, was cloned and expressed in Pichia pastoris. Two isoforms (Csph16A.1 and Csph16A.2) are produced, arising from differential glycosylation. The proteins were predicted to contain a catalytic Lam16A domain, along with a C-terminal domain (CTD) of unknown function which exhibits minimal secondary structure. Employing PCR-mediated gene truncation, the CTD of Csph16A was excised to assess its functional impact on the enzyme and determine potential alterations in biotechnologically relevant characteristics. The truncated mutant, Csph16A-ΔC, exhibited significantly enhanced thermal stability at 50°C, with D-values 14.8 and 23.5 times greater than those of Csph16A.1 and Csph16A.2, respectively. Moreover, Csph16A-ΔC demonstrated a 20%-25% increase in halotolerance at 1.25 and 1.5 M NaCl, respectively, compared to the full-length enzymes. Notably, specific activity against cereal ß-glucan, lichenan, and curdlan was increased by up to 238%. This study represents the first characterization of a glucanase from the stress-tolerant fungus C. sphaerospermum and the first report of a halotolerant and engineered endo-ß-1,3(4)-glucanase. Additionally, it sheds light on a group of endo-ß-1,3(4)-glucanases from Antarctic rock-inhabiting black fungi harboring a Lam16A catalytic domain and a novel CTD of unknown function.


Assuntos
Estabilidade Enzimática , beta-Glucanas , beta-Glucanas/metabolismo , Cladosporium/enzimologia , Cladosporium/genética , Domínios Proteicos , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Endo-1,3(4)-beta-Glucanase/genética , Endo-1,3(4)-beta-Glucanase/metabolismo , Endo-1,3(4)-beta-Glucanase/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Clonagem Molecular , Temperatura , Saccharomycetales
6.
Braz. j. biol ; 82: e237428, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1278480

RESUMO

This study was conducted at the Agriculture College University of Karbala, Iraq to isolate and morphologically and molecularly diagnose thirteen Cladosporium isolates collected from tomato plant residues present in desert regions of Najaf and Karbala provinces, Iraq. We diagnosed the obtained isolates by PCR amplification using the ITS1 and ITS4 universal primer pair followed by sequencing. PCR amplification and analysis of nucleotide sequences using the BLAST program showed that all isolated fungi belong to Cladosporium sphaerospermum. Analysis of the nucleotide sequences of the identified C. sphaerospermum isolates 2, 6, 9, and 10 showed a genetic similarity reached 99%, 98%, 99%, and 99%, respectively, with those previously registered at the National Center for Biotechnology Information (NCBl). By comparing the nucleotide sequences of the identified C. sphaerospermum isolates with the sequences belong to the same fungi and available at NCBI, it was revealed that the identified C. sphaerospermum isolates 2, 6, 9, and 10 have a genetic variation with those previously recorded at the National Center for Biotechnology Information (NCBl); therefore, the identified sequences of C. sphaerospermum isolates have been registered in GenBank database (NCBI) under the accession numbers MN896004, MN896107, MN896963, and MN896971, respectively.


Este estudo foi conduzido na Agriculture College University of Karbala, Iraque, para isolar e diagnosticar morfológica e molecularmente treze isolados de Cladosporium coletados de resíduos de plantas de tomate presentes nas regiões desérticas das províncias de Najaf e Karbala, no Iraque. Diagnosticamos os isolados obtidos por amplificação por PCR usando o par de primers universais ITS1 e ITS4 seguido de sequenciamento. A amplificação por PCR e a análise de sequências de nucleotídeos usando o programa BLAST mostraram que todos os fungos isolados pertencem a Cladosporium sphaerospermum. A análise das sequências de nucleotídeos dos isolados 2, 6, 9 e 10 de C. sphaerospermum identificados mostrou similaridade genética de 99%, 98%, 99% e 99%, respectivamente, com aqueles previamente registrados no National Center for Biotechnology Informações (NCBl). Ao comparar as sequências de nucleotídeos dos isolados de C. sphaerospermum identificados com as sequências pertencentes aos mesmos fungos e disponíveis no NCBI, foi revelado que os isolados 2, 6, 9 e 10 de C. sphaerospermum identificados têm variação genética com aqueles anteriormente registrados no National Center for Biotechnology Information (NCBl). Portanto, as sequências identificadas de isolados de C. sphaerospermum foram registradas no banco de dados GenBank (NCBI) sob os números de acesso MN896004, MN896107, MN896963 e MN896971, respectivamente.


Assuntos
Humanos , Cladosporium/genética , Solanum lycopersicum/genética , Reação em Cadeia da Polimerase
7.
Braz. j. biol ; 82: 1-8, 2022. tab, ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468562

RESUMO

This study was conducted at the Agriculture College University of Karbala, Iraq to isolate and morphologically and molecularly diagnose thirteen Cladosporium isolates collected from tomato plant residues present in desert regions of Najaf and Karbala provinces, Iraq. We diagnosed the obtained isolates by PCR amplification using the ITS1 and ITS4 universal primer pair followed by sequencing. PCR amplification and analysis of nucleotide sequences using the BLAST program showed that all isolated fungi belong to Cladosporium sphaerospermum. Analysis of the nucleotide sequences of the identified C. sphaerospermum isolates 2, 6, 9, and 10 showed a genetic similarity reached 99%, 98%, 99%, and 99%, respectively, with those previously registered at the National Center for Biotechnology Information (NCBl). By comparing the nucleotide sequences of the identified C. sphaerospermum isolates with the sequences belong to the same fungi and available at NCBI, it was revealed that the identified C. sphaerospermum isolates 2, 6, 9, and 10 have a genetic variation with those previously recorded at the National Center for Biotechnology Information (NCBl); therefore, the identified sequences of C. sphaerospermum isolates have been registered in GenBank database (NCBI) under the accession numbers MN896004, MN896107, MN896963, and MN896971, respectively.


Este estudo foi conduzido na Agriculture College University of Karbala, Iraque, para isolar e diagnosticar morfológica e molecularmente treze isolados de Cladosporium coletados de resíduos de plantas de tomate presentes nas regiões desérticas das províncias de Najaf e Karbala, no Iraque. Diagnosticamos os isolados obtidos por amplificação por PCR usando o par de primers universais ITS1 e ITS4 seguido de sequenciamento. A amplificação por PCR e a análise de sequências de nucleotídeos usando o programa BLAST mostraram que todos os fungos isolados pertencem a Cladosporium sphaerospermum. A análise das sequências de nucleotídeos dos isolados 2, 6, 9 e 10 de C. sphaerospermum identificados mostrou similaridade genética de 99%, 98%, 99% e 99%, respectivamente, com aqueles previamente registrados no National Center for Biotechnology Informações (NCBl). Ao comparar as sequências de nucleotídeos dos isolados de C. sphaerospermum identificados com as sequências pertencentes aos mesmos fungos e disponíveis no NCBI, foi revelado que os isolados 2, 6, 9 e 10 de C. sphaerospermum identificados têm variação genética com aqueles anteriormente registrados no National Center for Biotechnology Information (NCBl). Portanto, as sequências identificadas de isolados de C. sphaerospermum foram registradas no banco de dados GenBank (NCBI) sob os números de acesso MN896004, MN896107, MN896963 e MN896971, respectivamente.


Assuntos
Animais , Citrus/parasitologia , Cladosporium/genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa