RESUMO
Previous studies have demonstrated that the synaptic EphB1 receptor tyrosine kinase is a major mediator of neuropathic pain, suggesting that targeting the activity of this receptor might be a viable therapeutic option. Therefore, we set out to determine if any FDA-approved drugs can act as inhibitors of the EphB1 intracellular catalytic domain. An in silico screen was first used to identify a number of tetracycline antibiotics which demonstrated potential docking to the ATP-binding catalytic domain of EphB1. Kinase assays showed that demeclocycline, chlortetracycline, and minocycline inhibit EphB1 kinase activity at low micromolar concentrations. In addition, we cocrystallized chlortetracycline and EphB1 receptor, which confirmed its binding to the ATP-binding domain. Finally, in vivo administration of the three-tetracycline combination inhibited the phosphorylation of EphB1 in the brain, spinal cord, and dorsal root ganglion (DRG) and effectively blocked neuropathic pain in mice. These results indicate that demeclocycline, chlortetracycline, and minocycline can be repurposed for treatment of neuropathic pain and potentially for other indications that would benefit from inhibition of EphB1 receptor kinase activity.
Assuntos
Sistema Nervoso Central/enzimologia , Clortetraciclina , Neuralgia , Inibidores de Proteínas Quinases , Receptor EphB1 , Animais , Clortetraciclina/química , Clortetraciclina/farmacologia , Cristalografia por Raios X , Humanos , Masculino , Camundongos , Neuralgia/tratamento farmacológico , Neuralgia/enzimologia , Domínios Proteicos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptor EphB1/antagonistas & inibidores , Receptor EphB1/química , Receptor EphB1/metabolismoRESUMO
The goal of this study was to (a) determine the minimum selection concentrations of tetracycline family antibiotics necessary to maintain plasmids carrying tetracycline-resistant genes and (b) correlate these results to environmental hotspot concentrations reported in previous studies. This study used two plasmids (pT295A and pT413A) originating from dairy manure in a surrogate Escherichia coli host CV601. The minimum selection concentrations of antibiotics tested in nutrient-rich medium were determined as follows: 0.1 mg/L for oxytetracycline, 0.45 mg/L for chlortetracycline, and 0.13-0.25 mg/L for tetracycline. Mixing oxytetracycline and chlortetracycline had minimum selection concentration values increased 2-fold compared to those in single antibiotic tests. Minimum selection concentrations found in this study were lower than reported environmental hotspot concentrations, suggesting that tetracycline family antibiotics were likely to be the driver for the selection and maintenance of these plasmids. Relatively high plasmid loss rates (>90%) were observed when culturing a strain carrying a tetracycline-resistant plasmid in antibiotic-free nutrient-rich and nutrient-defined media. Overall, results suggested that these plasmids can be maintained at concentrations environmentally relevant in wastewater treatment plants, sewage, manure, and manured soil; however, they are unstable and easily lost in the absence of antibiotics.
Assuntos
Clortetraciclina , Oxitetraciclina , Clortetraciclina/farmacologia , Oxitetraciclina/farmacologia , Esterco , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Plasmídeos/genética , Escherichia coli/genéticaRESUMO
Melanoma is still one of the most dangerous cancers. New methods of treatment are sought due to its high aggressiveness and the relatively low effectiveness of therapies. Tetracyclines are drugs exhibiting anticancer activity. Previous studies have also shown their activity against melanoma cells. The possibility of tetracycline accumulation in pigmented tissues and the increase in their toxicity under the influence of UVA radiation creates the possibility of developing a new anti-melanoma therapy. This study aimed to analyze the phototoxic effect of doxycycline and chlortetracycline on melanotic melanoma cells COLO 829 and G-361. The results indicated that tetracycline-induced phototoxicity significantly decreased the number of live cells by cell cycle arrest as well as a decrease in cell viability. The simultaneous exposure of cells to drugs and UVA caused the depolarization of mitochondria as well as inducing oxidative stress and apoptosis. It was found that the combined treatment activated initiator and effector caspases, caused DNA fragmentation and elevated p53 level. Finally, it was concluded that doxycycline demonstrated a stronger cytotoxic and phototoxic effect. UVA irradiation of melanoma cells treated with doxycycline and chlortetracycline allows for the reduction of therapeutic drug concentrations and increases the effectiveness of tested tetracyclines.
Assuntos
Clortetraciclina , Dermatite Fototóxica , Melanoma , Humanos , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Clortetraciclina/farmacologia , Tetraciclina , Melanoma/tratamento farmacológico , Dermatite Fototóxica/etiologia , Raios Ultravioleta , Tetraciclinas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem CelularRESUMO
This study aimed to identify whether chronic effects are present in the anaerobic digestion (AD) of swine manure (SM) containing chlortetracycline (CTC), which is one of the major broad-spectrum veterinary antibiotics, and to elucidate the long-term inhibitory effects and recovery from the inhibition based on AD performance and microbial community. Two continuous-stirred tank reactors treating SM with and without CTC spiking (3 mg/L) were operated for 900 days. Due to the degradation and transformation, the total concentration including CTC's epimer and isomer in the test reactor was 1.5 mg/L. The exposure level was determined according to probabilistically estimated concentrations with uncertainties in field conditions. Until the cessation of CTC exposure on day 585, the methane generation of test reactor continuously decreased to 55 ± 17 mL/g-VS/day, 53% that of control. The methane generation and organic removal were not recovered within 300 days after the CTC exposure was stopped. During the experiment, stability parameters such as pH, total ammonium nitrogen, the composition of methane and alkalinity were the same for both reactors. The concentration and composition of VFAs in the test reactor were different with those of control but not in inhibition level. Microbial profiles revealed that reduction in bacterial diversity and changed balance in microbial species resulted in the performance downgrade under the long-term antibiotic pressure. Since it is hard to recover from the inhibition and difficult to predict the inhibition using physicochemical indicators, continuous exposure to CTC needs to be avoided for the sustainable management of AD plants treating SM.
Assuntos
Clortetraciclina , Suínos , Animais , Clortetraciclina/farmacologia , Esterco/microbiologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Anaerobiose , Metano/metabolismo , Reatores BiológicosRESUMO
Tetracycline antibiotics (TCs) are a broad-spectrum antibiotic, widely used in livestock and poultry breeding. Residue of tetracycline antibiotics in animal manure may cause changes in vegetable TCs content and soil microbial community. On the basis of the investigation and analysis of TCs pollution in the soil of main vegetable bases and the livestock manure of major large-scale farms in Chongqing, China, field experiment was conducted to study the residues of tetracycline antibiotics in Brassica juncea var. gemmifera and soil under different kinds and different dosages of livestock manures. Effects of tetracycline antibiotics on the structure and diversity of soil microbial community were also investigated by high-throughput sequencing. TCs content in soil was increased by applying livestock manure. The contents of tetracycline, oxytetracycline (OTC) and chlortetracycline (CTC) in the soil under pig manure treatment were 171.07-660.20 µg kg-1, 25.38-345.78 µg kg-1 and 170.77-707.47 µg kg-1, respectively. The contents of TC, OTC and CTC in the soil under the treatment of chicken manure were 166.62-353.61 µg kg-1, 122.25-251.23 µg kg-1 and 15.12-80.91 µg kg-1, respectively. TCs in edible parts of Brassica juncea var. gemmifera was increased after livestock manure treatment Proteobacteria, Acidobacteria, Actinobacteria, Chioroflexi and Bacteroidetes under livestock manure treatment were the dominant phyla, accounting for 85.2-92.4% of the total abundance of soil bacteria. The soil OTUs under the treatment of pig manure was higher than that under the treatment of chicken manure. Biogas residue (Livestock manure after fermentation treatment) can effectively reduce the environmental and ecological risks caused by antibiotic residues.
Assuntos
Clortetraciclina , Oxitetraciclina , Suínos , Animais , Esterco , Gado , Mostardeira , Solo/química , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Clortetraciclina/farmacologia , Bactérias/genética , GalinhasRESUMO
The extensive and increasing global use of antibiotics results in the ubiquitous presence of antibiotics in the environment, which has made them "pseudo persistent organic contaminants." Despite numerous studies showing wide adverse effects of antibiotics on organisms, the chronic environmental risk of their exposure is unknown, and the molecular and cellular mechanisms of antibiotic toxicity remain unclear. Here, we systematically quantified transgenerational immune disturbances after chronic parental exposure to environmental levels of a common antibiotic, chlortetracycline (CTC), using zebrafish as a model. CTC strongly reduced the antibacterial activities of fish offspring by transgenerational immunosuppression. Both innate and adaptive immunities of the offspring were suppressed, showing significant perturbation of macrophages and neutrophils, expression of immune-related genes, and other immune functions. Moreover, these CTC-induced immune effects were either prevented or alleviated by the supplementation with PDTC, an antagonist of nuclear factor-κB (NF-κB), uncovering a seminal role of NF-κB in CTC immunotoxicity. Our results provide the evidence in fish that CTC at environmentally relevant concentrations can be transmitted over multiple generations and weaken the immune defense of offspring, raising concerns on the population hazards and ecological risk of antibiotics in the natural environment.
Assuntos
Clortetraciclina , Animais , Antibacterianos/metabolismo , Clortetraciclina/metabolismo , Clortetraciclina/farmacologia , Terapia de Imunossupressão , NF-kappa B/metabolismo , Peixe-Zebra/metabolismoRESUMO
AIM: Weaning stress can cause serious damage to piglet's health. Chlortetracycline (CTC) is widely used to ameliorate weaning stress and prevent infectious diseases in weaned piglets. However, antibiotics as growth promoters have to be limited because of increased antimicrobial resistance. In this study, we evaluated the effects of CTC on growth performance and intestinal functions in order to provide evidence for seeking antibiotic substitutes in weaned piglets. METHODS AND RESULTS: A total of 20 weaned piglets were fed a basal diet or a diet supplemented with 75 mg/kg CTC. CTC decreased the crypt depth and increased the ratio of villus height to crypt depth, whilst failing to affect growth performance and serum biochemical parameters and cytokines. 16S rRNA sequencing suggested that CTC supplementation had no effect on the diversity and composition of colonic microbiota. CONCLUSION: We speculated that gut microbiota is no longer sensitive to a low concentration of CTC due to the long-term use and low bioavailability of CTC in weaned piglets.
Assuntos
Clortetraciclina , Animais , Clortetraciclina/farmacologia , Dieta , Suplementos Nutricionais/análise , RNA Ribossômico 16S/genética , Suínos , DesmameRESUMO
Since the molecular similarities and differences among physiological capacitation and cryocapacitation have not been studied in detail, this study was designed to assess the gene and protein expression levels of the Cation channel of sperm (CatSper) 1 and 2, sodium bicarbonate (Na+/HCO3−) cotransporter (NBC) and protein kinase A (PKA) in un-capacitated (control), in vitro capacitated (CAP) and cryopreserved (CRYO) bovine spermatozoa. All samples were subjected to motility evaluation using the computer assisted sperm analysis and chlortetracycline (CTC) assay for the assessment of the capacitation patterns. Furthermore, quantitative reverse transcription PCR (qRT-PCR) and Western blots were used to monitor the expression patterns of the selected capacitation markers. The results showed a significant reduction in the gene and protein expression levels of CatSper1 and 2 in the CRYO group when compared to the CAP group (p < 0.0001). In the case of NBC, the results were not significantly different or were inconclusive. While a non-significant down-regulation of PKA was found in the CRYO group, a significant reduction in the expression of the PKA protein was found in frozen-thawed spermatozoa in comparison to the CAP group (p < 0.05). In conclusion, we may hypothesize that while in vitro capacitated and cryopreserved spermatozoa exhibit CTC-patterns consistent with capacitation events, the molecular machinery underlying CTC-positivity may be different.
Assuntos
Clortetraciclina , Capacitação Espermática , Bovinos , Masculino , Animais , Capacitação Espermática/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Criopreservação/métodos , Clortetraciclina/farmacologia , Motilidade dos Espermatozoides/fisiologiaRESUMO
This study investigated the effects of citrus extract on growth, carcass and meat quality of Duroc × Landrace × Large White pigs. One hundred and eight pigs (54 barrows, 54 females) were assigned to one of three dietary treatments for 138 days. The dietary treatments were (1) basic diet; (2) basic diet supplemented with 75 mg/kg chlortetracycline; and (3) basic diet supplemented with citrus extract (0.25 ml/kg during 56-112 days of age and 0.20 ml/kg during 113-194 days of age). No significant differences among treatments were found for growth performance, carcass characteristics, meat quality and free amino acids (p > 0.05). Feeding citrus extract tended to increase intramuscular fat (p = 0.052). Citrus extract and chlortetracycline increased C15:0 concentration (p = 0.016) and superoxide dismutase activity (p = 0.004). The pigs that received chlortetracycline exhibited the lowest (p = 0.033) muscle malondialdehyde concentration. Overall, citrus extract ameliorated some meat quality indicators without adverse effects on pig growth or carcass performance.
Assuntos
Clortetraciclina , Citrus , Ração Animal/análise , Animais , Composição Corporal , Clortetraciclina/farmacologia , Dieta/veterinária , Feminino , Carne/análise , SuínosRESUMO
Breast cancer is a major disease for women worldwide, where mortality is associated with tumour cell dissemination to distant organs. While the number of efficient anticancer therapies increased in the past 20 years, treatments targeting the invasive properties of metastatic tumour cells are still awaited. Various studies analysing invasive breast cancer cell lines have demonstrated that Arf6 is an important player of the migratory and invasive processes. These observations make Arf6 and its regulators potential therapeutic targets. As of today, no drug effective against Arf6 has been identified, with one explanation being that the activation of Arf6 is dependent on the presence of lipid membranes that are rarely included in drug screening. To overcome this issue we have set up a fluorescence-based high throughput screening that follows overtime the activation of Arf6 at the surface of lipid membranes. Using this unique screening assay, we isolated several compounds that affect Arf6 activation, among which the antibiotic chlortetracycline (CTC) appeared to be the most promising. In this report, we describe CTC in vitro biochemical characterization and show that it blocks both the Arf6-stimulated collective migration and cell invasion in a 3D collagen I gel of the invasive breast cancer cell line MDA-MB-231. Thus, CTC appears as a promising hit to target deadly metastatic dissemination and a powerful tool to unravel the molecular mechanisms of Arf6-mediated invasive processes.
Assuntos
Fatores de Ribosilação do ADP/genética , Neoplasias da Mama/tratamento farmacológico , Clortetraciclina/farmacologia , Fator 6 de Ribosilação do ADP , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Hormesis is a concentration-response phenomenon characterized by low-concentration stimulation and high-concentration inhibition, which typically has a nonmonotonic J-shaped concentration-response curve (J-CRC). The concentration addition (CA) model is the gold standard for studying mixture toxicity. However, the CA model had the predictive blind zone (PBZ) for mixture J-CRC. To solve the PBZ problem, we proposed a segmented concentration addition (SCA) method to predict mixture J-CRC, which was achieved through fitting the left and right segments of component J-CRC and performing CA prediction subsequently. We selected two model compounds including chlortetracycline hydrochloride (CTCC) and oxytetracycline hydrochloride (OTCC), both of which presented J-CRC to Aliivibrio fischeri (AVF). The seven binary mixtures (M1-M7) of CTCC and OTCC were designed according to their molar ratios of 12:1, 10:3, 8:5, 1:1, 5:8, 3:10, and 1:12 referring to the direct equipartition ray design. These seven mixtures all presented J-CRC to AVF. Based on the SCA method, we obtained mixture maximum stimulatory effect concentration (ECm) and maximum stimulatory effect (Em) predicted by SCA, both of which were not available for the CA model. The toxicity interactions of these mixtures were systematically evaluated by using a comprehensive approach, including the co-toxicity coefficient integrated with confidence interval method (CTCICI), CRC, and isobole analysis. The results showed that the interaction types were additive and antagonistic action, without synergistic action. In addition, we proposed the cross point (CP) hypothesis for toxic interactive mixtures presenting J-CRC, that there was generally a CP between mixture observed J-CRC and CA predicted J-CRC; the relative positions of observed and predicted CRCs on either side of the CP would exchange, but the toxic interaction type of mixtures remained unchanged. The CP hypothesis needs to be verified by more mixtures, especially those with synergism. In conclusion, the SCA method is expected to have important theoretical and practical significance for mixture hormesis.
Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Clortetraciclina/farmacologia , Composição de Medicamentos/métodos , Oxitetraciclina/farmacologia , Clortetraciclina/efeitos adversos , Combinação de Medicamentos , Hormese , Viabilidade Microbiana/efeitos dos fármacos , Modelos Químicos , Oxitetraciclina/efeitos adversos , Testes de ToxicidadeRESUMO
Salmonella spp. are estimated to cause 1.2 million cases of human foodborne illness each year in the United States, and pigs can often be asymptomatically colonized with Salmonella spp. (>50% of farms). Recent reports state that 18.3% of Salmonella enterica serovar Typhimurium isolates are resistant to ≥3 antimicrobial classes, and multidrug-resistant (MDR) strains are associated with an increased hospitalization rate and other complications. Chlortetracycline is commonly used in swine production to prevent/treat various diseases; therefore, chlortetracycline treatment of pigs unknowingly colonized with MDR Salmonella may have collateral effects on Salmonella spp. (and other gut bacteria). In this study, we determined the effect of in-feed chlortetracycline (400 g/ton) on shedding and colonization of pigs challenged with the MDR S Typhimurium strain DT104 (n = 11/group). We also assessed the impact on the fecal microbiota over the 12-day experimental period and on the ileum, cecum, and tonsil microbiota at 7 days postinoculation (dpi). In MDR S Typhimurium-inoculated pigs, chlortetracycline administration significantly increased fecal shedding at 2 dpi (+1.4 log10 CFU/g; P < 0.001) and enhanced tonsil colonization (+3.1 log10 CFU/g; P < 0.001). There were few major alterations detected in the gut or tonsillar microbiota of pigs treated with MDR S Typhimurium and/or chlortetracycline. The tonsillar transcriptome was largely unaffected despite increased colonization by MDR S Typhimurium following inoculation of the chlortetracycline-treated pigs. These results highlight the idea that chlortetracycline administration can enhance shedding and colonization of MDR S Typhimurium in pigs, which could increase the risk of environmental dissemination of MDR Salmonella strains.IMPORTANCESalmonella spp. are an important cause of foodborne illness in North America, and pork products are associated with sporadic cases and outbreaks of human salmonellosis. Isolates of Salmonella may be resistant to multiple antibiotics, and infections with multidrug-resistant (MDR) Salmonella spp. are more difficult to treat, leading to increased hospitalization rates. Swine operations commonly use antimicrobials, such as chlortetracycline, to prevent/treat infections, which may have collateral effects on pig microbial populations. Recently, we demonstrated that chlortetracycline induces the expression of genes associated with pathogenesis and invasion in MDR Salmonella enterica serovar Typhimurium in vitro In our current study, we show increased tonsillar colonization and fecal shedding of the MDR S Typhimurium strain DT104 from pigs administered chlortetracycline. Therefore, pigs unknowingly colonized with multidrug-resistant Salmonella spp. and receiving chlortetracycline for an unrelated infection may be at a greater risk for disseminating MDR Salmonella spp. to other pigs and to humans through environmental or pork product contamination.
Assuntos
Derrame de Bactérias/efeitos dos fármacos , Clortetraciclina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Tonsila Palatina/microbiologia , Salmonella enterica/efeitos dos fármacos , Ração Animal , Animais , Antibacterianos/farmacologia , Ceco/microbiologia , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Sorogrupo , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controleRESUMO
One hundred seventy-eight mycoplasma strains isolated from South African poultry flocks between 2003 and 2015 were identified by full-genome sequencing and phylogenetic analysis of the 16S rRNA gene and were classified as follows: Mycoplasma gallisepticum (25%), M. gallinarum (25%), M. gallinaceum, (23%), M. pullorum (14%), M. synoviae (10%), and M. iners (3%), as well as one Acheoplasma laidlawii strain (1%). MIC testing was performed on the axenic samples, and numerous strains of each species were resistant to either chlortetracycline or tylosin or both, with variable sensitivity to enrofloxacin. The strains of all species tested remained sensitive to tiamulin, except for one M. gallinaceum sample that demonstrated intermediate sensitivity. The mutation of A to G at position 2059 (A2059G) in the 23S rRNA gene, which is associated with macrolide resistance, was found in the South African M. gallisepticum and M. synoviae strains, as well as a clear correlation between macrolide resistance in M. gallinarum and M. gallinaceum and mutations G354A and G748A in the L4 ribosomal protein and 23S rRNA gene, respectively. No correlation between resistance and point mutations in the genes studied could be found for M. pullorum Only a few strains were resistant to enrofloxacin, apart from one M. synoviae strain with point mutation D420N, which has been associated with quinolone resistance, and no other known markers for quinolone resistance were found in this study. Proportionally more antimicrobial-resistant strains were detected in M. gallinaceum, M. gallinarum, and M. pullorum than in M. gallisepticum and M. synoviae Of concern, three M. gallinaceum strains showed multidrug resistance to chlortetracycline, tylosin, and oxytetracycline.IMPORTANCE Nonpathogenic poultry Mycoplasma species are often overlooked due to their lesser impact on poultry health and production compared to the OIE-listed pathogenic strains M. gallisepticum and M. synoviae The use of antimicrobials as in-feed growth promoters and for the control of mycoplasmosis is common in poultry production across the world. Here, we provide evidence that certain nonpathogenic Mycoplasma species are acquiring multidrug resistance traits. This would have significant implications if these species, for which no vaccines are applied, are able to transfer their antibiotic resistance genes to other mycoplasmas and bacteria that may enter the human food chain.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Mycoplasma/veterinária , Mycoplasma/efeitos dos fármacos , Mycoplasma/isolamento & purificação , Doenças das Aves Domésticas/microbiologia , Animais , Galinhas , Clortetraciclina/farmacologia , Diterpenos/farmacologia , Testes de Sensibilidade Microbiana , Mycoplasma/classificação , Mycoplasma/genética , Infecções por Mycoplasma/microbiologia , Filogenia , África do Sul , Tilosina/farmacologiaRESUMO
Treatment of food-producing animals with antimicrobial drugs (AMD) is controversial because of concerns regarding promotion of antimicrobial resistance (AMR). To investigate this concern, resistance genes in metagenomic bovine fecal samples during a clinical trial were analyzed to assess the impacts of treatment on beef feedlot cattle resistomes. Four groups of cattle were exposed, using a 2-by-2 factorial design, to different regimens of antimicrobial treatment. Injections of ceftiofur crystalline-free acid (a third-generation cephalosporin) were used to treat all cattle in treatment pens or only a single animal, and either chlortetracycline was included in the feed of all cattle in a pen or the feed was untreated. On days 0 and 26, respectively, pre- and posttrial fecal samples were collected, and resistance genes were characterized using shotgun metagenomics. Treatment with ceftiofur was not associated with changes to ß-lactam resistance genes. However, cattle fed chlortetracycline had a significant increase in relative abundance of tetracycline resistance genes. There was also an increase of an AMR class not administered during the study, which is a possible indicator of coselection of resistance genes. Samples analyzed in this study had previously been evaluated by culture characterization (Escherichia coli and Salmonella) and quantitative PCR (qPCR) of metagenomic fecal DNA, which allowed comparison of results with this study. In the majority of samples, genes that were selectively enriched through culture and qPCR were not identified through shotgun metagenomic sequencing in this study, suggesting that changes previously documented did not reflect changes affecting the majority of bacterial genetic elements found in the predominant fecal resistome.IMPORTANCE Despite significant concerns about public health implications of AMR in relation to use of AMD in food animals, there are many unknowns about the long- and short-term impact of common uses of AMD for treatment, control, and prevention of disease. Additionally, questions commonly arise regarding how to best measure and quantify AMR genes in relation to public health risks and how to determine which genes are most important. These data provide an introductory view of the utility of using shotgun metagenomic sequencing data as an outcome for clinical trials evaluating the impact of using AMD in food animals.
Assuntos
Bactérias/efeitos dos fármacos , Cefalosporinas/farmacologia , Clortetraciclina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Ração Animal , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/farmacologia , Bactérias/genética , Bovinos , Cefalosporinas/administração & dosagem , Clortetraciclina/administração & dosagem , DNA Bacteriano/análise , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Fezes/microbiologia , Genes Bacterianos/genética , Metagenômica , Salmonella/genética , Resistência a Tetraciclina/genéticaRESUMO
BACKGROUND: Sensitivity analysis is an essential step in mathematical modeling because it identifies parameters with a strong influence on model output, due to natural variation or uncertainty in the parameter values. Recently behavior pattern sensitivity analysis has been suggested as a method for sensitivity analyses on models with more than one mode of output behavior. The model output is classified by behavior mode and several behavior pattern measures, defined by the researcher, are calculated for each behavior mode. Significant associations between model inputs and outputs are identified by building linear regression models with the model parameters as independent variables and the behavior pattern measures as the dependent variables. We applied the behavior pattern sensitivity analysis to a mathematical model of tetracycline-resistant enteric bacteria in beef cattle administered chlortetracycline orally. The model included 29 parameters related to bacterial population dynamics, chlortetracycline pharmacokinetics and pharmacodynamics. The prevalence of enteric resistance during and after chlortetracycline administration was the model output. Cox proportional hazard models were used when linear regression assumptions were not met. RESULTS: We have expanded the behavior pattern sensitivity analysis procedure by incorporating model selection techniques to produce parsimonious linear regression models that efficiently prioritize input parameters. We also demonstrate how to address common violations of linear regression model assumptions. Finally, we explore the semi-parametric Cox proportional hazards model as an alternative to linear regression for situations with censored data. In the example mathematical model, the resistant bacteria exhibited three behaviors during the simulation period: (1) increasing, (2) decreasing, and (3) increasing during antimicrobial therapy and decreasing after therapy ceases. The behavior pattern sensitivity analysis identified bacterial population parameters as high importance in determining the trajectory of the resistant bacteria population. CONCLUSIONS: Interventions aimed at the enteric bacterial population ecology, such as diet changes, may be effective at reducing the prevalence of tetracycline-resistant enteric bacteria in beef cattle. Behavior pattern sensitivity analysis is a useful and flexible tool for conducting a sensitivity analysis on models with varied output behavior, enabling prioritization of input parameters via regression model selection techniques. Cox proportional hazard models are an alternative to linear regression when behavior pattern measures are censored or linear regression assumptions cannot be met.
Assuntos
Modelos Teóricos , Análise de Sobrevida , Administração Oral , Animais , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bovinos/microbiologia , Clortetraciclina/farmacocinética , Clortetraciclina/farmacologia , Clortetraciclina/uso terapêutico , Interpretação Estatística de Dados , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Lineares , Masculino , Modelos de Riscos Proporcionais , Resistência a TetraciclinaRESUMO
Approximately 20% of U.S. beef cattle receive prophylactic in-feed administration of chlortetracycline (CTC) to reduce bovine respiratory disease (BRD) incidence during the transition into feedlots. To determine the impact of prophylaxis on selected antimicrobial resistance genes (ARGs), 300 beef cattle were placed into 10 pens (30 head/pen). Five "CTC group" pens received in-feed CTC (10 mg/lb of body weight/d) from the fifth to ninth day after feedlot arrival, whereas the five "Control group" pens received no CTC. Fecal swabs and pen surface materials were collected for metagenomic DNA isolation on five sample occasions: arrival at the feedlot, 5 d posttreatment (dpt), and 27, 75, and 117 dpt. For each sample occasion, fecal samples and pen surface material samples were pooled by pen. Quantitative polymerase chain reaction was used to determine the abundances of 10 ARGs. Due to low detection percentages (%D) and quantification percentages (%Q), the abundances of five ARGs were not analyzed: aac(6')-Ie-aph(2'') (%D = 43%, %Q = 4%), blaCMY-2 (%D = 41%, %Q = 0%), blaCTX-M (%D = 0%, %Q = 0%), blaKPC-2 (%D = 21%, %Q = 16%), and mecA (%D = 4%, %Q = 0%). The %D and %Q for the ARGs aadA1, erm(B), tet(A), tet(B), and tet(M) were ≥98% and ≥90%, respectively. The abundances of aadA1, erm(B), tet(A), tet(B), and tet(M) resistance genes did not differ (p > 0.05) between the CTC and control groups at any sampling time for feces or pen surface material. Although only 10 ARGs were examined in this study, the results suggest that a single 5-d in-feed CTC prophylaxis of beef cattle to prevent BRD has a negligible impact on the abundances of ARGs.
Assuntos
Ração Animal , Antibacterianos/farmacologia , Doenças dos Bovinos/prevenção & controle , Clortetraciclina/farmacologia , Farmacorresistência Bacteriana/genética , Aditivos Alimentares/farmacologia , Animais , Antibioticoprofilaxia , Bovinos , Doenças dos Bovinos/microbiologia , Fezes/microbiologia , Reação em Cadeia da Polimerase , Carne Vermelha/análiseRESUMO
In the current study, sequential nitrification and anoxic experiments in synthetic municipal wastewater were exposed to 0.5 to 100 mg/L of chlortetracycline for 24 h to evaluate acute impact on the nitrification, and denitrification processes of biological treatment. Both processes were significantly (p < 0.05) inhibited at >50 mg/L of chlortetracycline, and the results revealed that nitrification was adversely affected by chlortetracycline compared with the anoxic process. In nitrification, chemical oxygen removal (COD) and ammonia oxidation kinetics were 50% inhibited at 10 mg chlortetracycline/L, and nitrite oxidation kinetics at 0.5 mg chlortetracycline/L. Likewise, in the anoxic process, 14 and 10 mg/L of chlortetracycline inhibited 50% of COD removal and nitrate reduction kinetics, respectively. In nitrification and denitrification, 90% of chlortetracycline was removed by adsorbing onto sludge suspended solids. In addition, a higher chlortetracycline concentration in anoxic effluent, compared with aerobic effluents, indicated a dissimilarity in the composition of sludge solids, pH, and biomass production for both processes.
Assuntos
Reatores Biológicos/microbiologia , Clortetraciclina/farmacologia , Desnitrificação/efeitos dos fármacos , Nitrificação/efeitos dos fármacos , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Amônia/metabolismo , Análise da Demanda Biológica de Oxigênio , Clortetraciclina/química , Concentração de Íons de Hidrogênio , Oxirredução , Eliminação de Resíduos Líquidos/instrumentação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/farmacologiaRESUMO
Tetracyclines are important antimicrobial drugs for poultry farming that are actively excreted via feces and urine. Droppings are one of the main components in broiler bedding, which is commonly used as an organic fertilizer. Therefore, bedding becomes an unintended carrier of antimicrobial residues into the environment and may pose a highly significant threat to public health. For this depletion study, 60 broiler chickens were treated with 20% chlortetracycline (CTC) under therapeutic conditions. Concentrations of CTC and 4-epi-CTC were then determined in their droppings. Additionally, this work also aimed to detect the antimicrobial activity of these droppings and the phenotypic susceptibility to tetracycline in E. coli isolates, as well as the presence of tet(A), tet(B), and tet(G) resistance genes. CTC and 4-epi-CTC concentrations that were found ranged from 179.5 to 665.8 µg/kg. Based on these data, the depletion time for chicken droppings was calculated and set at 69 days. All samples presented antimicrobial activity, and a resistance to tetracyclines was found in bacterial strains that were isolated from these samples. Resistance genes tet(A) and tet(B) were also found in these samples.
Assuntos
Antibacterianos/isolamento & purificação , Antiporters/genética , Proteínas de Bactérias/genética , Clortetraciclina/isolamento & purificação , Resíduos de Drogas/isolamento & purificação , Infecções por Escherichia coli/veterinária , Doenças das Aves Domésticas/prevenção & controle , Animais , Animais Recém-Nascidos , Antibacterianos/farmacologia , Antiporters/metabolismo , Proteínas de Bactérias/metabolismo , Galinhas , Clortetraciclina/farmacologia , Resíduos de Drogas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Fezes/química , Expressão Gênica , Masculino , Testes de Sensibilidade Microbiana , Doenças das Aves Domésticas/microbiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMO
Antimicrobial drugs are used to treat pathogenic bacterial infections in animals and humans. The by-stander enteric bacteria of the treated host's intestine can become exposed to the drug or its metabolites reaching the intestine in antimicrobially active form. We consider which processes and variables need to be accounted for to project the antimicrobial concentrations in the host's intestine. Those include: the drug's fraction (inclusive of any active metabolites) excreted in bile; the drug's fractions and intestinal segments of excretion via other mechanisms; the rates and intestinal segments of the drug's absorption and re-absorption; the rates and intestinal segments of the drug's abiotic and biotic degradation in the intestine; the digesta passage time through the intestinal segments; the rates, mechanisms, and reversibility of the drug's sorption to the digesta and enteric microbiome; and the volume of luminal contents in the intestinal segments. For certain antimicrobials, the antimicrobial activity can further depend on the aeration and chemical conditions in the intestine. Model forms that incorporate the inter-individual variation in those relevant variables can support projections of the intestinal antimicrobial concentrations in populations of treated host, such as food animals. To illustrate the proposed modeling framework, we develop two examples of treatments of bovine respiratory disease in beef steers by oral chlortetracycline and injectable third-generation cephalosporin ceftiofur. The host's diet influences the digesta passage time, volume, and digesta and microbiome composition, and may influence the antimicrobial loss due to degradation and sorption in the intestine. We consider two diet compositions in the illustrative simulations. The examples highlight the extent of current ignorance and need for empirical data on the variables influencing the selective pressures imposed by antimicrobial treatments on the host's intestinal bacteria.
Assuntos
Complexo Respiratório Bovino/tratamento farmacológico , Cefalosporinas/administração & dosagem , Cefalosporinas/farmacologia , Clortetraciclina/administração & dosagem , Clortetraciclina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Biológicos , Administração Oral , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/farmacologia , Complexo Respiratório Bovino/microbiologia , Injeções/veterinária , MasculinoRESUMO
Broiler chickens may serve as reservoirs for human colonization by vancomycin-resistant Enterococcus (VRE). We examined the effects of vancomycin and two commonly used antimicrobial feed additives on VRE colonization in broiler chickens during grow-out. Chicks received unsupplemented feed or feed containing vancomycin, chlortetracycline, or tylosin from day of hatch to grow-out at 6 weeks. At 3 days of age, chicks received by crop gavage 107 colony-forming units (CFUs) of a human or poultry VRE isolate. Cecal contents were monitored weekly for VRE, short-chain fatty acids (SCFAs), and bacterial denaturing gradient gel electrophoresis (DGGE) profile methods. Vancomycin promoted persistent and high-level colonization with human- and poultry-derived VRE to grow-out in comparison with controls, while treatment with chlortetracycline and tylosin did not. Colonization by the poultry isolate in control, chlortetracycline, and tylosin groups persisted throughout the grow-out period with low concentrations present at 6 weeks, whereas the human isolate decreased to an undetectable level by week 6. Vancomycin resulted in significant reductions in cecal acetic acid and butyric acid in comparison with controls, but chlortetracycline and tylosin did not. DGGE profiles contained two main clusters with all vancomycin profiles in a smaller cluster and all other profiles in a larger cluster. These results demonstrate that vancomycin, but not chlortetracycline or tylosin, disrupted the indigenous microbiota and SCFA patterns of broiler chickens and promoted colonization by VRE.