Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Biol Chem ; 294(43): 15862-15874, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31439667

RESUMO

De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway involves highly endergonic biochemical reactions that must be fine-tuned with energy homeostasis. Previous studies have shown that CTP:phosphocholine cytidylyltransferase (CCT) is an important regulatory enzyme in this pathway and that its activity can be controlled at both transcriptional and posttranslational levels. Here we identified an important additional mechanism regulating plant CCT1 activity. Comparative analysis revealed that Arabidopsis CCT1 (AtCCT1) contains catalytic and membrane-binding domains that are homologous to those of rat CCT1. In contrast, the C-terminal phosphorylation domain important for stringent regulation of rat CCT1 was apparently missing in AtCCT1. Instead, we found that AtCCT1 contains a putative consensus site (Ser-187) for modification by sucrose nonfermenting 1-related protein kinase 1 (SnRK1 or KIN10/SnRK1.1), involved in energy homeostasis. Phos-tag SDS-PAGE coupled with MS analysis disclosed that SnRK1 indeed phosphorylates AtCCT1 at Ser-187, and we found that AtCCT1 phosphorylation substantially reduces its activity by as much as 70%. An S187A variant exhibited decreased activity, indicating the importance of Ser-187 in catalysis, and this variant was less susceptible to SnRK1-mediated inhibition. Protein truncation and liposome binding studies indicated that SnRK1-mediated AtCCT1 phosphorylation directly affects the catalytic domain rather than interfering with phosphatidate-mediated AtCCT1 activation. Overexpression of the AtCCT1 catalytic domain in Nicotiana benthamiana leaves increased PC content, and SnRK1 co-expression reduced this effect. Taken together, our results suggest that SnRK1 mediates the phosphorylation and concomitant inhibition of AtCCT1, revealing an additional mode of regulation for this key enzyme in plant PC biosynthesis.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Arabidopsis/química , Domínio Catalítico , Colina-Fosfato Citidililtransferase/química , Sequência Conservada , Evolução Molecular , Cinética , Modelos Biológicos , Fosforilação , Fosforilcolina/metabolismo , Fosfosserina/metabolismo , Folhas de Planta/genética , Domínios Proteicos , Ratos , Homologia Estrutural de Proteína , Nicotiana/genética
2.
J Biol Chem ; 293(18): 7070-7084, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29519816

RESUMO

The activity of CTP:phosphocholine cytidylyltransferase (CCT), a key enzyme in phosphatidylcholine synthesis, is regulated by reversible interactions of a lipid-inducible amphipathic helix (domain M) with membrane phospholipids. When dissociated from membranes, a portion of the M domain functions as an auto-inhibitory (AI) element to suppress catalysis. The AI helix from each subunit binds to a pair of α helices (αE) that extend from the base of the catalytic dimer to create a four-helix bundle. The bound AI helices make intimate contact with loop L2, housing a key catalytic residue, Lys122 The impacts of the AI helix on active-site dynamics and positioning of Lys122 are unknown. Extensive MD simulations with and without the AI helix revealed that backbone carbonyl oxygens at the point of contact between the AI helix and loop L2 can entrap the Lys122 side chain, effectively competing with the substrate, CTP. In silico, removal of the AI helices dramatically increased αE dynamics at a predicted break in the middle of these helices, enabling them to splay apart and forge new contacts with loop L2. In vitro cross-linking confirmed the reorganization of the αE element upon membrane binding of the AI helix. Moreover, when αE bending was prevented by disulfide engineering, CCT activation by membrane binding was thwarted. These findings suggest a novel two-part auto-inhibitory mechanism for CCT involving capture of Lys122 and restraint of the pliable αE helices. We propose that membrane binding enables bending of the αE helices, bringing the active site closer to the membrane surface.


Assuntos
Colina-Fosfato Citidililtransferase/química , Animais , Sítios de Ligação , Ligação Competitiva , Catálise , Domínio Catalítico , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Glicina/química , Ligação de Hidrogênio , Lisina/química , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Ratos
3.
Biochim Biophys Acta ; 1841(9): 1264-71, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24832487

RESUMO

In eukaryotic cells, phospholipids are synthesized exclusively in the defined organelles specific for each phospholipid species. To explain the reason for this compartmental specificity in the case of phosphatidylcholine (PC) synthesis, we constructed and characterized a Saccharomyces cerevisiae strain that lacked endogenous phosphatidylethanolamine (PE) methyltransferases but had a recombinant PE methyltransferase from Acetobacter aceti, which was fused with a mitochondrial targeting signal from yeast Pet100p and a 3×HA epitope tag. This fusion protein, which we named as mitopmt, was determined to be localized to the mitochondria by fluorescence microscopy and subcellular fractionation. The expression of mitopmt suppressed the choline auxotrophy of a double deletion mutant of PEM1 and PEM2 (pem1Δpem2Δ) and enabled it to synthesize PC in the absence of choline. This growth suppression was observed even if the Kennedy pathway was inactivated by the repression of PCT1 encoding CTP:phosphocholine cytidylyltransferase, suggesting that PC synthesized in the mitochondria is distributed to other organelles without going through the salvage pathway. The pem1Δpem2Δ strain deleted for PSD1 encoding the mitochondrial phosphatidylserine decarboxylase was able to grow because of the expression of mitopmt in the presence of ethanolamine, implying that PE from other organelles, probably from the ER, was converted to PC by mitopmt. These results suggest that PC could move out of the mitochondria, and raise the possibility that its movement is not under strict directional limitations.


Assuntos
Regulação Fúngica da Expressão Gênica , Mitocôndrias/genética , Fosfatidilcolinas/biossíntese , Fosfatidiletanolamina N-Metiltransferase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetobacter/química , Acetobacter/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboxiliases/deficiência , Carboxiliases/genética , Colina , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/genética , Colina-Fosfato Citidililtransferase/metabolismo , Etanolamina/metabolismo , Teste de Complementação Genética , Isoenzimas/deficiência , Isoenzimas/genética , Mitocôndrias/enzimologia , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Fosfatidiletanolamina N-Metiltransferase/deficiência , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Transgenes
4.
J Cell Sci ; 124(Pt 24): 4253-66, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22223883

RESUMO

Farnesylated prelamin A accumulates when the final endoproteolytic maturation of the protein fails to occur and causes a dysmorphic nuclear phenotype; however, the morphology and mechanisms of biogenesis of these changes remain unclear. We show here that acute prelamin A accumulation after reduction in the activity of the ZMPSTE24 endoprotease by short interfering RNA knockdown, results in the generation of a complex nucleoplasmic reticulum that depends for its formation on the enzyme CTP:phosphocholine-cytidylyltransferase-α (CCT-α, also known as choline-phosphate cytidylyltransferase A). This structure can form during interphase, confirming that it is independent of mitosis and therefore not a consequence of disordered nuclear envelope assembly. Serial-section dual-axis electron tomography reveals that these invaginations can take two forms: one in which the inner nuclear membrane infolds alone with an inter membrane space interior, and the other in which an invagination of both nuclear membranes occurs, enclosing a cytoplasmic core. Both types of invagination can co-exist in one nucleus and both are frequently studded with nuclear pore complexes (NPC), which reduces NPC abundance on the nuclear surface.


Assuntos
Colina-Fosfato Citidililtransferase/fisiologia , Membrana Nuclear/ultraestrutura , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Animais , Núcleo Celular/ultraestrutura , Células Cultivadas , Colina-Fosfato Citidililtransferase/análise , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Lamina Tipo A , Lamina Tipo B/análise , Proteínas de Membrana/antagonistas & inibidores , Metaloendopeptidases/antagonistas & inibidores , Camundongos , Mitose , Membrana Nuclear/química , Membrana Nuclear/enzimologia , Poro Nuclear/ultraestrutura , Proteínas Nucleares/análise , Proteínas Nucleares/química , Prenilação , Precursores de Proteínas/análise , Precursores de Proteínas/química
5.
J Biol Chem ; 286(33): 28940-28947, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21705805

RESUMO

In the human malaria parasite Plasmodium falciparum, the synthesis of the major and essential membrane phospholipid, phosphatidylcholine, occurs via the CDP-choline and the serine decarboxylase phosphoethanolamine methylation (SDPM) pathways, which are fueled by host choline, serine, and fatty acids. Both pathways share the final two steps catalyzed by two essential enzymes, P. falciparum CTP:phosphocholine cytidylyltransferase (PfCCT) and choline-phosphate transferase (PfCEPT). We identified a novel class of phospholipid mimetics, which inhibit the growth of P. falciparum as well as Leishmania and Trypanosoma species. Metabolic analyses showed that one of these compounds, PG12, specifically blocks phosphatidylcholine biosynthesis from both the CDP-choline and SDPM pathways via inhibition of PfCCT. In vitro studies using recombinant PfCCT showed a dose-dependent inhibition of the enzyme by PG12. The potent antimalarial of this compound, its low cytotoxicity profile, and its established mode of action make it an excellent lead to advance for further drug development and efficacy in vivo.


Assuntos
Antimaláricos/farmacologia , Materiais Biomiméticos/farmacologia , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Malária Falciparum/tratamento farmacológico , Fosfolipídeos/farmacologia , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/química , Materiais Biomiméticos/química , Colina-Fosfato Citidililtransferase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Malária Falciparum/enzimologia , Fosfolipídeos/química , Proteínas de Protozoários/metabolismo
6.
Nat Commun ; 11(1): 4480, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900992

RESUMO

Macroautophagy initiates by formation of isolation membranes, but the source of phospholipids for the membrane biogenesis remains elusive. Here, we show that autophagic membranes incorporate newly synthesized phosphatidylcholine, and that CTP:phosphocholine cytidylyltransferase ß3 (CCTß3), an isoform of the rate-limiting enzyme in the Kennedy pathway, plays an essential role. In starved mouse embryo fibroblasts, CCTß3 is initially recruited to autophagic membranes, but upon prolonged starvation, it concentrates on lipid droplets that are generated from autophagic degradation products. Omegasomes and isolation membranes emanate from around those lipid droplets. Autophagy in prolonged starvation is suppressed by knockdown of CCTß3 and is enhanced by its overexpression. This CCTß3-dependent mechanism is also present in U2OS, an osteosarcoma cell line, and autophagy and cell survival in starvation are decreased by CCTß3 depletion. The results demonstrate that phosphatidylcholine synthesis through CCTß3 activation on lipid droplets is crucial for sustaining autophagy and long-term cell survival.


Assuntos
Autofagia/fisiologia , Colina-Fosfato Citidililtransferase/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Animais , Autofagossomos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/genética , Meios de Cultura , Ativação Enzimática , Técnicas de Silenciamento de Genes , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosfatidilcolinas/metabolismo
7.
J R Soc Interface ; 5(28): 1371-86, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18426775

RESUMO

The alkyllysophospholipid (ALP) analogues Mitelfosine and Edelfosine are anticancer drugs whose mode of action is still the subject of debate. It is agreed that the primary interaction of these compounds is with cellular membranes. Furthermore, the membrane-associated protein CTP: phosphocholine cytidylyltransferase (CCT) has been proposed as the critical target. We present the evaluation of our hypothesis that ALP analogues disrupt membrane curvature elastic stress and inhibit membrane-associated protein activity (e.g. CCT), ultimately resulting in apoptosis. This hypothesis was tested by evaluating structure-activity relationships of ALPs from the literature. In addition we characterized the lipid typology, cytotoxicity and critical micelle concentration of novel ALP analogues that we synthesized. Overall we find the literature data and our experimental data provide excellent support for the hypothesis, which predicts that the most potent ALP analogues will be type I lipids.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Colina-Fosfato Citidililtransferase/metabolismo , Neoplasias/tratamento farmacológico , Éteres Fosfolipídicos/farmacologia , Antineoplásicos/metabolismo , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Elasticidade , Células HL-60 , Humanos , Micelas , Estrutura Molecular , Éteres Fosfolipídicos/metabolismo , Estresse Mecânico , Relação Estrutura-Atividade , Sais de Tetrazólio , Tiazóis
8.
Sci Rep ; 8(1): 8932, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895950

RESUMO

The plasmodial CTP:phosphocholine cytidylyltransferase (PfCCT) is a promising antimalarial target, which can be inhibited to exploit the need for increased lipid biosynthesis during the erythrocytic life stage of Plasmodium falciparum. Notable structural and regulatory differences of plasmodial and mammalian CCTs offer the possibility to develop species-specific inhibitors. The aim of this study was to use CHO-MT58 cells expressing a temperature-sensitive mutant CCT for the functional characterization of PfCCT. We show that heterologous expression of wild type PfCCT restores the viability of CHO-MT58 cells at non-permissive (40 °C) temperatures, whereas catalytically perturbed or structurally destabilized PfCCT variants fail to provide rescue. Detailed in vitro characterization indicates that the H630N mutation diminishes the catalytic rate constant of PfCCT. The flow cytometry-based rescue assay provides a quantitative readout of the PfCCT function opening the possibility for the functional analysis of PfCCT and the high throughput screening of antimalarial compounds targeting plasmodial CCT.


Assuntos
Colina-Fosfato Citidililtransferase/metabolismo , Fosfatidilcolinas/biossíntese , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Antimaláricos/farmacologia , Biocatálise/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/genética , Cricetinae , Cricetulus , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Temperatura
9.
Regul Pept ; 140(3): 117-24, 2007 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-17218027

RESUMO

We previously reported that vasoactive intestinal peptide (VIP) promoted synthesis of phosphatidylcholine (PC) in alveolar type II (ATII) cells. But the intracellular mechanism for this effect was unknown. In this work, we investigated the intracellular signal transduction pathway for VIP promoted synthesis of PC, the major lipid component of pulmonary surfactant (PS), by using an antagonist of VIP receptors, inhibitor of protein kinase C (PKC) and antisense oligonucleotides (AS-ODN) for c-fos oncogene. Our results showed that: 1 in circle [D-P-Cl-Phe(6)-Leu(17)]-VIP (10(-6) mol/l), an antagonist of VIP receptors, could decrease the quantity of [(3)H] choline incorporation, microsomal choline-phosphate cytidylyltransferase (CCT) mRNA expression and CCT activity induced by VIP (10(-8) mol/l) in cultured lung explants to the control levels; 2 in circle VIP (10(-8) mol/l) upregulated c-Fos protein expression in ATII cells. AS-ODN for c-fos oncogene (9x10(-6) mol/l) could block the elevation of [(3)H] choline incorporation, microsomal CCT mRNA expression and CCT activity induced by VIP in cultured lung explants and in ATII cells; 3 in circle H7 (10(-5) mol/l), a PKC inhibitor could also reduce VIP induced [(3)H] choline incorporation, microsomal CCT mRNA expression and CCT activity in cultured lung explants and in ATII cells. These results demonstrated that VIP receptors, PKC and c-Fos protein played important roles in the signaling pathway through which VIP promoted the synthesis of PC.


Assuntos
Genes fos/fisiologia , Fosfatidilcolinas/metabolismo , Proteína Quinase C/metabolismo , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia , Animais , Células Cultivadas , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Genes fos/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Oligonucleotídeos Antissenso/farmacologia , Técnicas de Cultura de Órgãos , Proteína Quinase C/antagonistas & inibidores , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
10.
Vascul Pharmacol ; 45(1): 65-71, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16750656

RESUMO

Given the heterogeneous nature of metabolic dysfunctions associated with insulin resistance and type 2 diabetes (T2D), a single pharmaceutical cannot be expected to provide complication-free therapy in all patients. Thiazolidinediones (TZD) increase insulin sensitivity, reduce blood glucose and improve cardiovascular parameters. However, in addition to increasing fat mass, TZD have the potential in certain individuals to exacerbate underlying hepatosteatosis and diabetic cardiomyopathy. Pharmacogenetics should allow patient selection to maximize therapy and minimize risk. To this end, we have combined two genetically diverse inbred strains, NON/Lt and NZO/Lt, to produce a "negative heterosis" increasing the frequency of T2D in F1 males. As in humans with T2D, treatment of diabetic and hyperlipemic F1 males with rosiglitazone (Rosi), an agonist of peroxisome proliferator-activated gamma receptor (PPARgamma), reverses these disease phenotypes. However, the hybrid genome perturbed both major pathways for phosphatidylcholine (PC) biosynthesis in the liver, and effected remarkable alterations in the composition of cardiolipin in heart mitochondria. These metabolic defects severely exacerbated an underlying hepatosteatosis and increased levels of the adipokine, plasminogen activator inhibitor-1 (PAI-1), a risk factor for cardiovascular events. This model system demonstrates how the power of mouse genetics can be used to identify the metabolic signatures of individuals who may be prone to drug side effects.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/efeitos adversos , Fígado/efeitos dos fármacos , Fosfatidilcolinas/metabolismo , Tiazolidinedionas/efeitos adversos , Animais , Cardiolipinas/metabolismo , Sistema Cardiovascular/metabolismo , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/metabolismo , Cruzamentos Genéticos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Obesos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Fosfatidiletanolamina N-Metiltransferase/antagonistas & inibidores , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Rosiglitazona
11.
Biochim Biophys Acta ; 1534(2-3): 85-95, 2001 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-11786295

RESUMO

Streptococcus pneumoniae is a member of a small group of bacteria that display phosphocholine on the cell surface, covalently attached to the sugar groups of teichoic acid and lipoteichoic acid. The putative pathway for this phosphocholine decoration is, in its first two enzymes, functionally similar to the CDP-choline pathway used for phosphatidylcholine biosynthesis in eukaryotes. We show that the licC gene encodes a functional CTP:phosphocholine cytidylyltransferase (CCT). The enzyme has been expressed and purified to homogeneity. Assay conditions were optimized, particularly with respect to linearity with time, pH, Mg(2+), and ammonium sulfate concentration. The pure enzyme has K(M) values of 890+/-240 microM for CTP, and 390+/-170 microM for phosphocholine. The k(cat) is 17.5+/-4.0 s(-1). S. pneumoniae CTP:phosphocholine cytidylyltransferase (SpCCT) is specific for CTP or dCTP as the nucleotide substrate. SpCCT is strongly inhibited by Ca(2+). The IC(50) values for recombinant and native SpCCT are 0.32+/-0.04 and 0.27+/-0.03 mM respectively. The enzyme is also inhibited by all other tested divalent cations, including Mg(2+) at high concentrations. The cloning and expression of this enzyme sets the stage for design of inhibitors as possible antipneumococcal drugs.


Assuntos
Colina-Fosfato Citidililtransferase/genética , Genes Bacterianos , Streptococcus pneumoniae/genética , Sequência de Aminoácidos , Sulfato de Amônio , Cálcio/farmacologia , Cátions Bivalentes , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/biossíntese , Colina-Fosfato Citidililtransferase/química , Clonagem Molecular , Magnésio , Dados de Sequência Molecular , Alinhamento de Sequência , Streptococcus pneumoniae/enzimologia
12.
Biochim Biophys Acta ; 1585(2-3): 87-96, 2002 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-12531541

RESUMO

Phosphatidylcholine (PC) constitutes a major portion of cellular phospholipids and displays unique molecular species in different cell types and tissues. Inhibition of the CDP-choline pathway in most mammalian cells or overexpression of the hepatic phosphatidylethanolamine methylation pathway in hepatocytes leads to perturbation of PC homeostasis, growth arrest or even cell death. Although many agents that perturb PC homeostasis and induce cell death have been identified, the signaling pathways that mediate this cell death have not been well defined. This review summarizes recent progress in understanding the relationship between PC homeostasis and cell death.


Assuntos
Apoptose/fisiologia , Moléculas de Adesão Celular , Fosfatidilcolinas/fisiologia , Proteínas Supressoras de Tumor , Animais , Linhagem Celular , Colina/metabolismo , Colina Quinase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Diacilglicerol Colinofosfotransferase/antagonistas & inibidores , Ativação Enzimática , Homeostase , Humanos , Glicoproteínas de Membrana/metabolismo , Metilação , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Transdução de Sinais , Esfingomielinas/metabolismo
13.
Biochim Biophys Acta ; 1483(3): 301-15, 2000 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-10666565

RESUMO

PtdCho accumulation is a periodic, S phase-specific event that is modulated in part by cell cycle-dependent fluctuations in CTP:phosphocholine cytidylyltransferase (CCT) activity. A supply of fatty acids is essential to generate the diacylglycerol (DG) precursors for phosphatidylcholine (PtdCho) biosynthesis but it is not known whether the DG supply is also coupled to the cell cycle. Although the rate of fatty acid synthesis in a macrophage cell line was dramatically stimulated in response to the growth factor, CSF-1, it was not regulated by the cell cycle. Increased fatty acid synthesis correlated with elevated acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) steady-state mRNA levels. Cellular fatty acid synthesis was essential for membrane PL synthesis. Cerulenin inhibition of endogenous fatty acid synthesis also inhibited PtdCho synthesis, which was not relieved by exogenous fatty acids. Inhibition of CCT activity by the addition of lysophosphatidylcholine (lysoPtdCho) or temperature-shift of a conditionally defective CCT diverted newly synthesized DG to the TG pool where it accumulated. Enforced expression of CCT stimulated PtdCho biosynthesis and reduced TG synthesis. Thus, the cellular DG supply did not regulate PtdCho biosynthesis and CCT activity governs the partitioning of DG into either the PL or TG pools, thereby controlling both PtdCho and TG biosynthesis.


Assuntos
Diglicerídeos/metabolismo , Ácidos Graxos/biossíntese , Fosfatidilcolinas/biossíntese , Acetatos/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Células CHO , Ciclo Celular , Linhagem Celular , Cerulenina/farmacologia , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/metabolismo , Cricetinae , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Mitógenos , Temperatura , Triglicerídeos/biossíntese , Trítio
14.
Biochim Biophys Acta ; 1389(1): 1-12, 1998 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-9443598

RESUMO

The mechanisms that account for the anti-proliferative properties of the biologically active lysophospholipid analog hexadecylphosphocholine (HexPC) were investigated in HL60 cells. HexPC inhibited the incorporation of choline into phosphatidylcholine and the pattern of accumulation of soluble choline-derived metabolites pinpointed CTP:phosphocholine cytidylyltransferase (CT) as the inhibited step in vivo. HexPC also inhibited recombinant CT in vitro. HexPC treatment led to accumulation of cells in G2/M phase, triggered DNA fragmentation and caused morphological changes associated with apoptosis. The supplementation of HexPC-treated cells with exogenous lysophosphatidylcholine (LPC) completely reversed the cytotoxic effects of HexPC and restored HL60 cell proliferation in the presence of the drug. LPC provided an alternate pathway for phosphatidylcholine synthesis via the acylation of exogenous LPC. This result contrasted with the response of HL60 cells to 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3) where LPC overcame the cytotoxic effects but did not support continued cell proliferation. Morphological integrity, DNA stability and cell viability were maintained in cells treated with LPC plus either antineoplastic agent. Thus the inhibition of phosphatidylcholine biosynthesis at the CT step accounts for the cytotoxicity of both HexPC and ET-18-OCH3 which is overridden by providing an alternate pathway for phosphatidylcholine synthesis via the acylation of exogenous LPC.


Assuntos
Divisão Celular/efeitos dos fármacos , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Lisofosfatidilcolinas/farmacologia , Fosforilcolina/análogos & derivados , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Colina/metabolismo , Colina-Fosfato Citidililtransferase/genética , Colina-Fosfato Citidililtransferase/metabolismo , Citidina Difosfato Colina/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Células HL-60 , Humanos , Fosfatidilcolinas/biossíntese , Éteres Fosfolipídicos/farmacologia , Fosfolipídeos/metabolismo , Fosforilcolina/metabolismo , Fosforilcolina/farmacologia , Proteínas Recombinantes/metabolismo
15.
FASEB J ; 16(13): 1814-6, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12223447

RESUMO

Glucosylceramide (GlcCer) accumulates in the inherited metabolic disorder, Gaucher disease, because of the defective activity of lysosomal glucocerebrosidase. We previously demonstrated that upon GlcCer accumulation, cultured hippocampal neurons exhibit modified growth patterns, altered endoplasmic reticulum density, and altered calcium release from intracellular stores. We here examined the relationship between GlcCer accumulation and phospholipid synthesis. After treatment of neurons with an active site-directed inhibitor of glucocerebrosidase, or in neurons obtained from a mouse model of Gaucher disease, [14C]methyl choline incorporation into [14C]phosphatidylcholine ([14C]PC) and [14C]sphingomyelin was elevated, as were [14C]CDP-choline levels, suggesting that CTP:phosphocholine cytidylyltransferase (CCT) is activated. Indeed, CCT activity was elevated in neurons that had accumulated GlcCer. GlcCer, but not galactosylceramide (GalCer), stimulated CCT activity in rat brain homogenates, and significantly higher levels of CCT were membrane associated in cortical homogenates from a mouse model of Gaucher disease compared with wild-type mice. Because CCT mRNA and protein levels were unaltered in either neurons or brain tissue that had accumulated GlcCer, it appeared likely that GlcCer activates CCT by a post-translational mechanism. This was verified by examination of the effect of GlcCer on CCT purified about 1200-fold from rat brain. GlcCer stimulated CCT activity, with stimulation observed at levels as low as 2.5 mol% and with maximal activation reached at 10 mol%. In contrast, GalCer had no effect. Together, these data demonstrate that GlcCer directly activates CCT, which results in elevated PC synthesis, which may account for some of the changes in growth rates observed upon neuronal GlcCer accumulation.


Assuntos
Colina-Fosfato Citidililtransferase/metabolismo , Colina/análogos & derivados , Doença de Gaucher/metabolismo , Glucosilceramidas/metabolismo , Inositol/análogos & derivados , Neurônios/metabolismo , Fosfatidilcolinas/biossíntese , Animais , Axônios/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Radioisótopos de Carbono , Divisão Celular , Colina/metabolismo , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Galactosilceramidas/farmacologia , Doença de Gaucher/genética , Doença de Gaucher/patologia , Genótipo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Glucosilceramidas/farmacologia , Inositol/farmacologia , Metabolismo dos Lipídeos , Camundongos , Mutação , Ratos
16.
FEBS Lett ; 589(9): 992-1000, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25771858

RESUMO

Phosphatidylcholine is the major lipid component of the malaria parasite membranes and is required for parasite multiplication in human erythrocytes. Plasmodium falciparum CTP:phosphocholine cytidylyltransferase (PfCCT) is the rate-limiting enzyme of the phosphatidylcholine biosynthesis pathway and thus considered as a potential antimalarial target. In contrast to its mammalian orthologs, PfCCT contains a duplicated catalytic domain. Here, we show that both domains are catalytically active with similar kinetic parameters. A virtual screening strategy allowed the identification of a drug-size molecule competitively inhibiting the enzyme. This compound also prevented phosphatidylcholine biosynthesis in parasites and exerted an antimalarial effect. This study constitutes the first step towards a rationalized design of future new antimalarial agents targeting PfCCT.


Assuntos
Domínio Catalítico , Colina-Fosfato Citidililtransferase/metabolismo , Citidina Difosfato Colina/análogos & derivados , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Antimaláricos/química , Antimaláricos/farmacologia , Vias Biossintéticas/genética , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/genética , Citidina Difosfato Colina/química , Citidina Difosfato Colina/farmacologia , Humanos , Immunoblotting , Cinética , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Fosfatidilcolinas/biossíntese , Fosfatidilcolinas/química , Plasmodium falciparum/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Homologia de Sequência de Aminoácidos
17.
Hypertension ; 65(2): 430-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452470

RESUMO

C-reactive protein (CRP), an innate immune mediator, is elevated in the circulation before symptoms in patients with preeclampsia, a severe hypertensive pregnancy disorder with high mortality and morbidity. However, the specific sources underlying increased CRP and the role of elevated CRP in preeclampsia are undefined. Here, we report that circulating CRP levels are significantly increased in a large cohort of normotensive pregnant individuals when compared with nulligravid women and is further increased in patients with preeclampsia. These findings led us to discover further that placental syncytiotrophoblasts are previously unrecognized cellular sources of CRP and underlie elevated CRP in normotensive pregnant women and the additional increase in patients with preeclampsia. Next, we demonstrated that injection of CRP induces preeclampsia features, including hypertension (157 mm Hg CRP treated versus 119 mm Hg control), proteinuria (35.0 mg/µg CRP treated versus 14.1 mg/µg control), kidney, and placental damage and increased levels of sFlt-1 in pregnant mice but not in nonpregnant mice. Our study implicates that phosphocholine transferase, a placental-specific enzyme post-translationally modifying neurokinin B, is essential for the pathogenic role of CRP in preeclampsia through activation of the neurokinin 3 receptor. Overall, our studies have provided significant new insight on the pathogenic role of CRP in preeclampsia and highlighted innovative therapeutic strategies.


Assuntos
Proteína C-Reativa/fisiologia , Colina-Fosfato Citidililtransferase/fisiologia , Neurocinina B/metabolismo , Pré-Eclâmpsia/etiologia , Receptores da Neurocinina-3/fisiologia , Animais , Biomarcadores , Proteína C-Reativa/análise , Proteína C-Reativa/toxicidade , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Modelos Animais de Doenças , Método Duplo-Cego , Feminino , Humanos , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fosforilcolina/metabolismo , Placenta/patologia , Pré-Eclâmpsia/induzido quimicamente , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Ligação Proteica , Processamento de Proteína Pós-Traducional , Quinolinas/farmacologia , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Receptores da Neurocinina-3/antagonistas & inibidores , Receptores da Neurocinina-3/metabolismo , Proteínas Recombinantes/toxicidade , Método Simples-Cego , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue
18.
Vet Parasitol ; 204(3-4): 104-10, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-24938827

RESUMO

Miltefosine, a membrane-active synthetic ether-lipid analogue, has antiproliferative and antiparasitic effects. In this study, the inhibitory effects of miltefosine were evaluated against three Babesia species and Theileria equi in vitro and against Babesia microti in mice. The drug showed significant growth inhibition from an initial parasitemia of 1% for Babesia bovis, Babesia bigemina, Babesia caballi, and T. equi with IC50 values of 25, 10.2, 10.4, and 99 µM, respectively. Complete inhibition was observed at 200 µM of miltefosine on the third day of culture for the three Babesia species and 400 µM on the fourth day for T. equi. Reverse-transcription PCR (RT-PCR) showed that miltefosine inhibited the transcription of choline-phosphate cytidylyltransferase in B. bovis. Miltefosine at a dose rate of 30 mg/kg resulted in a 71.7% inhibition of B. microti growth in BALB/c mice. Miltefosine might be used for drug therapy in babesiosis.


Assuntos
Antiparasitários/uso terapêutico , Babesia/efeitos dos fármacos , Babesiose/tratamento farmacológico , Fosforilcolina/análogos & derivados , Theileria/efeitos dos fármacos , Theileriose/tratamento farmacológico , Animais , Babesia/crescimento & desenvolvimento , Babesiose/parasitologia , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Parasitemia/veterinária , Fosforilcolina/uso terapêutico , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Theileria/crescimento & desenvolvimento , Theileriose/parasitologia
19.
J Mol Biol ; 425(9): 1546-64, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23238251

RESUMO

CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in the synthesis of phosphatidylcholine, is activated by binding membranes using a lipid-induced amphipathic helix (domain M). Domain M functions to silence catalysis when CCT is not membrane engaged. The silencing mechanism is unknown. We used photo-cross-linking and mass spectrometry to identify contacts between domain M and other CCT domains in its soluble form. Each of four sites in domain M forged cross-links to the same set of peptides that flank the active site and overlap at helix αE at the base of the active site. These cross-links were broken in the presence of activating lipid vesicles. Mutagenesis of domain M revealed that multiple hydrophobic residues within a putative auto-inhibitory (AI) motif contribute to the contact with helix αE and silencing. Helix αE was confirmed as the docking site for domain M by deuterium exchange analysis. We compared the dynamics and fold stability of CCT domains by site-directed fluorescence anisotropy and urea denaturation. The results suggest a bipartite structure for domain M: a disordered N-terminal portion and an ordered C-terminal AI motif with an unfolding transition identical with that of helix αE. Reduction in hydrophobicity of the AI motif decreased its order and fold stability, as did deletion of the catalytic domain. These results support a model in which catalytic silencing is mediated by the docking of an amphipathic AI motif onto the amphipathic helices αE. An unstructured leash linking αE with the AI motif may facilitate both the silencing contact and its membrane-triggered disruption.


Assuntos
Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/química , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Regulação Alostérica/genética , Sítio Alostérico/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Colina-Fosfato Citidililtransferase/genética , Proteínas de Membrana/antagonistas & inibidores , Modelos Moleculares , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Secundária de Proteína/genética , Ratos
20.
Cell Metab ; 14(4): 504-15, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21982710

RESUMO

Lipid droplets (LDs) are cellular storage organelles for neutral lipids that vary in size and abundance according to cellular needs. Physiological conditions that promote lipid storage rapidly and markedly increase LD volume and surface. How the need for surface phospholipids is sensed and balanced during this process is unknown. Here, we show that phosphatidylcholine (PC) acts as a surfactant to prevent LD coalescence, which otherwise yields large, lipolysis-resistant LDs and triglyceride (TG) accumulation. The need for additional PC to coat the enlarging surface during LD expansion is provided by the Kennedy pathway, which is activated by reversible targeting of the rate-limiting enzyme, CTP:phosphocholine cytidylyltransferase (CCT), to growing LD surfaces. The requirement, targeting, and activation of CCT to growing LDs were similar in cells of Drosophila and mice. Our results reveal a mechanism to maintain PC homeostasis at the expanding LD monolayer through targeted activation of a key PC synthesis enzyme.


Assuntos
Colina-Fosfato Citidililtransferase/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fosfatidilcolinas/fisiologia , Animais , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/genética , Drosophila , Lipólise , Camundongos , Ácido Oleico/metabolismo , Fosfatidilcolinas/biossíntese , Interferência de RNA , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa