Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.704
Filtrar
Mais filtros

Coleção SES
Intervalo de ano de publicação
1.
J Immunol ; 212(4): 689-701, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149922

RESUMO

The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 µM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 µM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.


Assuntos
Complemento C1s , Via Clássica do Complemento , Animais , Ovinos , Peptídeo Hidrolases , Complemento C1/metabolismo , Endopeptidases , Piridinas/farmacologia
2.
J Immunol ; 213(2): 235-243, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38819221

RESUMO

The development of agonists capable of activating the human complement system by binding to the C1 complex presents a novel approach for targeted cell killing. Bispecific nanobodies and Abs can successfully use C1 for this purpose; however, efficacy varies significantly between epitopes, Ab type, and bispecific design. To address this variability, we investigated monomeric agonists of C1 in the form of bispecific nanobodies, which lack Fc domains that lead to oligomerization in Abs. These therefore offer an ideal opportunity to explore the geometric parameters crucial for C1 activation. In this study, we explored the impact of linker length as a metric for Ag and epitope location. DNA nanotechnology and protein engineering allowed us to design linkers with controlled lengths and flexibilities, revealing a critical range of end-to-end distances for optimal complement activation. We discovered that differences in complement activation were not caused by differential C1 activation or subsequent cleavage of C4, but instead impacted C4b deposition and downstream membrane lysis. Considering the importance of Ab class and subclass, this study provides insights into the structural requirements of C1 binding and activation, highlighting linker and hinge engineering as a potential strategy to enhance potency over specific cellular targets. Additionally, using DNA nanotechnology to modify geometric parameters demonstrated the potential for synthetic biology in complement activation. Overall, this research offers valuable insights into the design and optimization of agonists for targeted cell killing through complement activation.


Assuntos
Anticorpos Biespecíficos , Ativação do Complemento , Engenharia de Proteínas , Humanos , Ativação do Complemento/imunologia , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Complemento C1/imunologia , Anticorpos de Domínio Único/imunologia , Epitopos/imunologia , Ligação Proteica , Complemento C4b/imunologia
3.
J Immunol ; 209(6): 1146-1155, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002230

RESUMO

IgG molecules are crucial for the human immune response against bacterial infections. IgGs can trigger phagocytosis by innate immune cells, like neutrophils. To do so, IgGs should bind to the bacterial surface via their variable Fab regions and interact with Fcγ receptors and complement C1 via the constant Fc domain. C1 binding to IgG-labeled bacteria activates the complement cascade, which results in bacterial decoration with C3-derived molecules that are recognized by complement receptors on neutrophils. Next to FcγRs and complement receptors on the membrane, neutrophils also express the intracellular neonatal Fc receptor (FcRn). We previously reported that staphylococcal protein A (SpA), a key immune-evasion protein of Staphylococcus aureus, potently blocks IgG-mediated complement activation and killing of S. aureus by interfering with IgG hexamer formation. SpA is also known to block IgG-mediated phagocytosis in absence of complement, but the mechanism behind it remains unclear. In this study, we demonstrate that SpA blocks IgG-mediated phagocytosis and killing of S. aureus and that it inhibits the interaction of IgGs with FcγRs (FcγRIIa and FcγRIIIb, but not FcγRI) and FcRn. Furthermore, our data show that multiple SpA domains are needed to effectively block IgG1-mediated phagocytosis. This provides a rationale for the fact that SpA from S. aureus contains four to five repeats. Taken together, our study elucidates the molecular mechanism by which SpA blocks IgG-mediated phagocytosis and supports the idea that in addition to FcγRs, the intracellular FcRn is also prevented from binding IgG by SpA.


Assuntos
Imunoglobulina G , Fagocitose , Receptores de IgG , Proteína Estafilocócica A , Staphylococcus aureus , Complemento C1 , Humanos , Imunoglobulina G/imunologia , Receptores de Complemento , Receptores de IgG/metabolismo , Proteína Estafilocócica A/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035177

RESUMO

Cytoadhesion of Plasmodium falciparum-infected erythrocytes (IEs) to the endothelial lining of blood vessels protects parasites from splenic destruction, but also leads to detrimental inflammation and vessel occlusion. Surface display of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion ligands exposes them to host antibodies and serum proteins. PfEMP1 are important targets of acquired immunity to malaria, and through evolution, the protein family has expanded and diversified to bind a select set of host receptors through antigenically diversified receptor-binding domains. Here, we show that complement component 1s (C1s) in serum cleaves PfEMP1 at semiconserved arginine motifs located at interdomain regions between the receptor-binding domains, rendering the IE incapable of binding the two main PfEMP1 receptors, CD36 and endothelial protein C receptor (EPCR). Bioinformatic analyses of PfEMP1 protein sequences from 15 P. falciparum genomes found the C1s motif was present in most PfEMP1 variants. Prediction of C1s cleavage and loss of binding to endothelial receptors was further corroborated by testing of several different parasite lines. These observations suggest that the parasites have maintained susceptibility for cleavage by the serine protease, C1s, and provides evidence for a complex relationship between the complement system and the P. falciparum cytoadhesion virulence determinant.


Assuntos
Aderência Bacteriana , Complemento C1/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Sequência Conservada , Humanos
5.
FASEB J ; 36(6): e22347, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35579659

RESUMO

C1q/TNF-related proteins (CTRP1-15) constitute a conserved group of secreted proteins of the C1q family with diverse functions. In vitro studies have shown that CTRP11/C1QL4 can inhibit adipogenesis, antagonize myoblast fusion, and promote testosterone synthesis and secretion. Whether CTRP11 is required for these processes in vivo remains unknown. Here, we show that knockout (KO) mice lacking CTRP11 have normal skeletal muscle mass and function, and testosterone level, suggesting that CTRP11 is dispensable for skeletal muscle development and testosterone production. We focused our analysis on whether this nutrient-responsive secreted protein plays a role in controlling sugar and fat metabolism. At baseline when mice are fed a standard chow, CTRP11 deficiency affects metabolic parameters in a sexually dimorphic manner. Only Ctrp11-KO female mice have significantly higher fasting serum ketones and reduced physical activity. In the refeeding phase following food withdrawal, Ctrp11-KO female mice have reduced food intake and increased metabolic rate and energy expenditure, highlighting CTRP11's role in fasting-refeeding response. When challenged with a high-fat diet to induce obesity and metabolic dysfunction, CTRP11 deficiency modestly exacerbates obesity-induced glucose intolerance, with more pronounced effects seen in Ctrp11-KO male mice. Switching to a low-fat diet after obesity induction results in greater fat loss in wild type relative to KO male mice, suggesting impaired response to obesity reversal and reduced metabolic flexibility in the absence of CTRP11. Collectively, our data provide genetic evidence for novel sex-dependent metabolic regulation by CTRP11, but note the overall modest contribution of CTRP11 to systemic energy homeostasis.


Assuntos
Complemento C1/metabolismo , Complemento C1q , Dieta Hiperlipídica , Animais , Complemento C1q/metabolismo , Metabolismo Energético/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Testosterona
6.
Proc Natl Acad Sci U S A ; 116(24): 11900-11905, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31147461

RESUMO

Antigen binding by serum Ig-M (IgM) protects against microbial infections and helps to prevent autoimmunity, but causes life-threatening diseases when mistargeted. How antigen-bound IgM activates complement-immune responses remains unclear. We present cryoelectron tomography structures of IgM, C1, and C4b complexes formed on antigen-bearing lipid membranes by normal human serum at 4 °C. The IgM-C1-C4b complexes revealed C4b product release as the temperature-limiting step in complement activation. Both IgM hexamers and pentamers adopted hexagonal, dome-shaped structures with Fab pairs, dimerized by hinge domains, bound to surface antigens that support a platform of Fc regions. C1 binds IgM through widely spread C1q-collagen helices, with C1r proteases pointing outward and C1s bending downward and interacting with surface-attached C4b, which further interacts with the adjacent IgM-Fab2 and globular C1q-recognition unit. Based on these data, we present mechanistic models for antibody-mediated, C1q-transmitted activation of C1 and for C4b deposition, while further conformational rearrangements are required to form C3 convertases.


Assuntos
Ativação do Complemento/imunologia , Complemento C1/imunologia , Complemento C4/imunologia , Imunoglobulina M/imunologia , Anticorpos/imunologia , Antígenos/imunologia , Sítios de Ligação/imunologia , Humanos , Modelos Moleculares
7.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216207

RESUMO

Immunoglobulin G (IgG) adopts a modular multidomain structure that mediates antigen recognition and effector functions, such as complement-dependent cytotoxicity. IgG molecules are self-assembled into a hexameric ring on antigen-containing membranes, recruiting the complement component C1q. In order to provide deeper insights into the initial step of the complement pathway, we report a high-speed atomic force microscopy study for the quantitative visualization of the interaction between mouse IgG and the C1 complex composed of C1q, C1r, and C1s. The results showed that the C1q in the C1 complex is restricted regarding internal motion, and that it has a stronger binding affinity for on-membrane IgG2b assemblages than C1q alone, presumably because of the lower conformational entropy loss upon binding. Furthermore, we visualized a 1:1 stoichiometric interaction between C1/C1q and an IgG2a variant that lacks the entire CH1 domain in the absence of an antigen. In addition to the canonical C1q-binding site on Fc, their interactions are mediated through a secondary site on the CL domain that is cryptic in the presence of the CH1 domain. Our findings offer clues for novel-modality therapeutic antibodies.


Assuntos
Complemento C1/imunologia , Imunoglobulina G/imunologia , Ligação Proteica/imunologia , Animais , Sítios de Ligação/imunologia , Ativação do Complemento/imunologia , Camundongos
8.
Clin Immunol ; 230: 108819, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34358691

RESUMO

Acquired angioedema due to C1 inhibitor deficiency (C1-INH-AAE) is a rare disease characterized by adult-onset recurrent non-urticarial angioedema with low levels of C1-INH. It is associated with lymphoproliferative disorders, and treatments are off-label with variable success. We conducted a systematic literature review to include patients with C1-INH-AAE identified in PubMed and Embase databases between January 2006 and February 2021. Clinical features of these patients were summarized, and factors associated with disease remission were explored. A total of 121 patients were included in the current study with a median age at diagnosis of 64 years and 45.5% being male. An associated disease was recorded in 94 patients (77.7%), and lymphoproliferative disorder was the most reported (59/94, 62.8%). Anti-C1-INH autoantibodies were present in 45 of 71 patients (63.4%). Factors impacting disease remissions included age (odds ratio [OR] 0.951, 95% confidence interval [CI] 0.909-0.994, p = 0.027), male (OR 0.327, 95% CI 0.124-0.866, p = 0.025), presence of monoclonal gammopathy (OR 0.133, 95% CI 0.041-0.429, p = 0.001), requirement of specific on-demand treatment (OR 0.216, 95% CI 0.066-0.709, p = 0.012) and rituximab use (OR 2.865, 95% CI 1.038-7.911, p = 0.042). A total of nine patients (7.4%) died at last follow up and most were unrelated to C1-INH-AAE. Our results imply that C1-INH-AAE is primarily associated with underlying B or plasma cell abnormalities, and clone-directed therapies could be promising options for its long-term management.


Assuntos
Angioedema/etiologia , Proteína Inibidora do Complemento C1/metabolismo , Complemento C1/antagonistas & inibidores , Idoso , Angioedema/imunologia , Angioedema/terapia , Autoanticorpos/sangue , Proteína Inibidora do Complemento C1/imunologia , Proteína Inibidora do Complemento C1/uso terapêutico , Feminino , Humanos , Transtornos Linfoproliferativos/complicações , Masculino , Pessoa de Meia-Idade , Paraproteinemias/complicações , Resultado do Tratamento
9.
FASEB J ; 33(4): 4893-4906, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30608882

RESUMO

C1q-like 4 (C1QL4), a novel member of the C1q- and TNF-related protein family, was found to be highly expressed in rodent and human testis. However, the localization, developmental, and hormonally regulated expression and biologic function of C1ql4 in the testis have not been investigated. Here, we demonstrated that C1ql4 mRNA and protein levels in murine testes gradually increased from the postnatal period to the adult stage and were up-regulated by LH in vivo. In situ hybridization demonstrated that the distribution and expression levels of C1ql4 mRNA varied at different developmental stages, although C1ql4 mRNA was detected in the seminiferous tubule and interstitial Leydig cells. Recombinant C1QL4 did not affect cell proliferation but did increase testosterone production in TM3 Leydig cells, as well as in cultured seminiferous tubules. C1QL4-induced testosterone secretion in Leydig cells was accompanied by increased expression of steroidogenic acute regulatory (StAR) protein and steroidogenic enzymes. During this process, the c-Raf/extracellular signal-regulated protein kinase kinases 1 and 2/ERK1/2/mitogen- and stress-activated protein kinase-1 and cAMP/PKA/cAMP-responsive element binding protein signaling cascades were activated by C1QL4. The cell-adhesion GPCR brain-specific angiogenesis inhibitor 3 (BAI3), a putative receptor of C1QL4, was detected in the seminiferous tubule and interstitial Leydig cells during testicular development. Knockdown of Bai3 expression in Leydig cells led to a reduction in Star expression, accompanied by increases in phosphorylation of ERK1/2 and intercellular cAMP levels. However, C1QL4-induced StAR expression was not completely suppressed in the Bai3-deficient Leydig cells, and phosphorylation of ERK1/2 and intercellular cAMP levels were not significantly changed before and after C1QL4 stimulation. Our results suggested that although BAI3 played a role in C1QL4-induced steroidogenesis, there was an unidentified receptor that mediated C1QL4-activated testosterone secretion in Leydig cells through phosphorylation of ERK1/2 and up-regulation of intracellular cAMP levels. Taken together, our results showed, for the first time to our knowledge, that C1QL4 served as a novel acute regulator of testosterone secretion, and BAI3 functioned as a new receptor that is involved in steroidogenesis in Leydig cells. BAI3-independent ERK1/2 activation and cAMP activation mediated C1QL4-induced testosterone secretion. This study expanded the reproductive roles and mechanisms of C1QL4 and BAI3 signaling pathways.-Tan, A., Ke, S., Chen, Y., Chen, L., Lu, X., Ding, F., Yang, L., Tang, Y., Yu, Y. Expression patterns of C1ql4 and its cell-adhesion GPCR Bai3 in the murine testis and functional roles in steroidogenesis.


Assuntos
Complemento C1/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Testículo/citologia , Testículo/metabolismo , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Complemento C1/farmacologia , AMP Cíclico/metabolismo , Imunofluorescência , Imuno-Histoquímica , Hibridização In Situ , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Túbulos Seminíferos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Testosterona/metabolismo
10.
Nano Lett ; 19(7): 4787-4796, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184907

RESUMO

IgG antibodies play a central role in protection against pathogens by their ability to alert and activate the innate immune system. Here, we show that IgGs assemble into oligomers on antigenic surfaces through an ordered, Fc domain-mediated process that can be modulated by protein engineering. Using high-speed atomic force microscopy, we unraveled the molecular events of IgG oligomer formation on surfaces. IgG molecules were recruited from solution although assembly of monovalently binding molecules also occurred through lateral diffusion. Monomers were observed to assemble into hexamers with all intermediates detected, but in which only hexamers bound C1. Functional characterization of oligomers on cells also demonstrated that C1 binding to IgG hexamers was a prerequisite for maximal activation, whereas tetramers, trimers, and dimers were mostly inactive. We present a dynamic IgG oligomerization model, which provides a framework for exploiting the macromolecular assembly of IgGs on surfaces for tool, immunotherapy, and vaccine design.


Assuntos
Ativação do Complemento , Complemento C1/química , Imunoglobulina G/química , Multimerização Proteica , Complemento C1/imunologia , Humanos , Imunoglobulina G/imunologia
11.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375205

RESUMO

The complement system is involved in promoting secondary injury after traumatic brain injury (TBI), but the roles of the classical and lectin pathways leading to complement activation need to be clarified. To this end, we aimed to determine the ability of the brain to activate the synthesis of classical and lectin pathway initiators in response to TBI and to examine their expression in primary microglial cell cultures. We have modeled TBI in mice by controlled cortical impact (CCI), a clinically relevant experimental model. Using Real-time quantitative polymerase chain reaction (RT-qPCR) we analyzed the expression of initiators of classical the complement component 1q, 1r and 1s (C1q, C1r, and C1s) and lectin (mannose binding lectin A, mannose binding lectin C, collectin 11, ficolin A, and ficolin B) complement pathways and other cellular markers in four brain areas (cortex, striatum, thalamus and hippocampus) of mice exposed to CCI from 24 h and up to 5 weeks. In all murine ipsilateral brain structures assessed, we detected long-lasting, time- and area-dependent significant increases in the mRNA levels of all classical (C1q, C1s, C1r) and some lectin (collectin 11, ficolin A, ficolin B) initiator molecules after TBI. In parallel, we observed significantly enhanced expression of cellular markers for neutrophils (Cd177), T cells (Cd8), astrocytes (glial fibrillary acidic protein-GFAP), microglia/macrophages (allograft inflammatory factor 1-IBA-1), and microglia (transmembrane protein 119-TMEM119); moreover, we detected astrocytes (GFAP) and microglia/macrophages (IBA-1) protein level strong upregulation in all analyzed brain areas. Further, the results obtained in primary microglial cell cultures suggested that these cells may be largely responsible for the biosynthesis of classical pathway initiators. However, microglia are unlikely to be responsible for the production of the lectin pathway initiators. Immunofluorescence analysis confirmed that at the site of brain injury, the C1q is localized in microglia/macrophages and neurons but not in astroglial cells. In sum, the brain strongly reacts to TBI by activating the local synthesis of classical and lectin complement pathway activators. Thus, the brain responds to TBI with a strong, widespread and persistent upregulation of complement components, the targeting of which may provide protection in TBI.


Assuntos
Lesões Encefálicas Traumáticas/genética , Ativação do Complemento/genética , Lectina de Ligação a Manose da Via do Complemento/genética , Lectinas/genética , Animais , Lesões Encefálicas Traumáticas/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Complemento C1/genética , Complemento C1/metabolismo , Complemento C1q/genética , Complemento C1q/metabolismo , Complemento C1r/genética , Complemento C1r/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Hipocampo/metabolismo , Humanos , Lectinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neostriado/metabolismo , Tálamo/metabolismo , Fatores de Tempo
12.
Int J Mol Sci ; 21(5)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121610

RESUMO

Several studies have suggested that there is a link between membrane attack complex (MAC) deposition in the retina and the progression of diabetic retinopathy (DR). Our recent investigation demonstrated that circulating IgG-laden extracellular vesicles contribute to an increase in retinal vascular permeability in DR through activation of the complement system. However, the mechanism through which extracellular vesicle-induced complement activation contributes to retinal vascular cytolytic damage in DR is not well understood. In this study, we demonstrate that IgG-laden extracellular vesicles in rat plasma activate the classical complement pathway, and in vitro Streptozotocin (STZ)-induced rat diabetic plasma results in MAC deposition and cytolytic damage in human retinal endothelial cells (HRECs). Moreover, removal of the plasma extracellular vesicles reduced the MAC deposition and abrogated cytolytic damage seen in HRECs. Together, the results of this study demonstrate that complement activation by IgG-laden extracellular vesicles in plasma could lead to MAC deposition and contribute to endothelium damage and progression of DR.


Assuntos
Ativação do Complemento/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Células Endoteliais/patologia , Vesículas Extracelulares/metabolismo , Retina/patologia , Animais , Morte Celular , Sobrevivência Celular , Complemento C1/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Vesículas Extracelulares/ultraestrutura , Humanos , Imunoglobulinas/metabolismo , Masculino , Ratos Sprague-Dawley
13.
PLoS Pathog ; 13(7): e1006531, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28742139

RESUMO

Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis.


Assuntos
Proteínas de Bactérias/imunologia , Bordetella pertussis/imunologia , Complemento C1/imunologia , Complemento C2/imunologia , Complemento C4/imunologia , Fatores de Virulência de Bordetella/imunologia , Coqueluche/imunologia , Proteínas de Bactérias/genética , Bordetella pertussis/genética , Humanos , Virulência , Fatores de Virulência de Bordetella/genética , Coqueluche/microbiologia
14.
J Immunol ; 199(11): 3883-3891, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061764

RESUMO

Complement is crucial to the immune response, but dysregulation of the system causes inflammatory disease. Complement is activated by three pathways: classical, lectin, and alternative. The classical and lectin pathways are initiated by the C1r/C1s (classical) and MASP-1/MASP-2 (lectin) proteases. Given the role of complement in disease, there is a requirement for inhibitors to control the initiating proteases. In this article, we show that a novel inhibitor, gigastasin, from the giant Amazon leech, potently inhibits C1s and MASP-2, whereas it is also a good inhibitor of MASP-1. Gigastasin is a poor inhibitor of C1r. The inhibitor blocks the active sites of C1s and MASP-2, as well as the anion-binding exosites of the enzymes via sulfotyrosine residues. Complement deposition assays revealed that gigastasin is an effective inhibitor of complement activation in vivo, especially for activation via the lectin pathway. These data suggest that the cumulative effects of inhibiting both MASP-2 and MASP-1 have a greater effect on the lectin pathway than the more potent inhibition of only C1s of the classical pathway.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Complemento C1/antagonistas & inibidores , Inativadores do Complemento/química , Via Clássica do Complemento/efeitos dos fármacos , Lectina de Ligação a Manose da Via do Complemento/efeitos dos fármacos , Sanguessugas/química , Serina Proteases Associadas a Proteína de Ligação a Manose/antagonistas & inibidores , Peptídeos/química , Inibidores de Serina Proteinase/química , Animais , Domínio Catalítico/efeitos dos fármacos , Células Cultivadas , Inativadores do Complemento/farmacologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Peptídeos/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Inibidores de Serina Proteinase/farmacologia
15.
PLoS Pathog ; 12(1): e1005404, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26808924

RESUMO

Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems.


Assuntos
Proteínas de Bactérias/imunologia , Borrelia burgdorferi/imunologia , Ativação do Complemento/imunologia , Via Clássica do Complemento/imunologia , Interações Hospedeiro-Parasita/imunologia , Evasão da Resposta Imune/imunologia , Complemento C1/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Immunoblotting , Imunoprecipitação , Doença de Lyme/imunologia
16.
J Immunol ; 197(6): 2051-60, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27591336

RESUMO

Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules.


Assuntos
Via Clássica do Complemento , Evasão da Resposta Imune , Animais , Complemento C1/fisiologia , Complemento C1q/fisiologia , Convertases de Complemento C3-C5/antagonistas & inibidores , Humanos
17.
J Immunol ; 197(12): 4829-4837, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807190

RESUMO

Human IgG1 type I CD20 Abs, such as rituximab and ofatumumab (OFA), efficiently induce complement-dependent cytotoxicity (CDC) of CD20+ B cells by binding of C1 to hexamerized Fc domains. Unexpectedly, we found that type I CD20 Ab F(ab')2 fragments, as well as C1q-binding-deficient IgG mutants, retained an ability to induce CDC, albeit with lower efficiency than for whole or unmodified IgG. Experiments using human serum depleted of specific complement components demonstrated that the observed lytic activity, which we termed "accessory CDC," remained to be dependent on C1 and the classical pathway. We hypothesized that CD20 Ab-induced clustering of the IgM or IgG BCR was involved in accessory CDC. Indeed, accessory CDC was consistently observed in B cell lines expressing an IgM BCR and in some cell lines expressing an IgG BCR, but it was absent in BCR- B cell lines. A direct relationship between BCR expression and accessory CDC was established by transfecting the BCR into CD20+ cells: OFA-F(ab')2 fragments were able to induce CDC in the CD20+BCR+ cell population, but not in the CD20+BCR- population. Importantly, OFA-F(ab')2 fragments were able to induce CDC ex vivo in malignant B cells isolated from patients with mantle cell lymphoma and Waldenström macroglobulinemia. In summary, accessory CDC represents a novel effector mechanism that is dependent on type I CD20 Ab-induced BCR clustering. Accessory CDC may contribute to the excellent capacity of type I CD20 Abs to induce CDC, and thereby to the antitumor activity of such Abs in the clinic.


Assuntos
Anticorpos Monoclonais/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD20/metabolismo , Linfócitos B/efeitos dos fármacos , Via Clássica do Complemento , Imunoterapia Adotiva/métodos , Linfoma de Células B/terapia , Rituximab/metabolismo , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Antígenos CD20/imunologia , Linfócitos B/imunologia , Linhagem Celular Tumoral , Complemento C1/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Imunoglobulina M/genética , Imunoglobulina M/metabolismo , Linfoma de Células B/imunologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Rituximab/genética , Rituximab/uso terapêutico
18.
J Struct Biol ; 197(2): 155-162, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27663685

RESUMO

Phase plates in cryo-electron tomography (cryoET) improve contrast, increasing the ability to discern separate molecules and molecular complexes in dense biomolecular environments. Here, we applied this new technology to the activation of the human complement system. Binding of C1 to antigen-antibody complexes initiates a cascade of proteolytic events that deposits molecules onto adjacent surfaces and terminates with the formation of membrane-attack-complex (MAC) pores in the targeted membranes. We imaged steps in this process using a Volta phase plate mounted on a Titan Krios equipped with a Falcon-II direct electron detector. The data show patches of single-layer antibodies on the surface and C1 bound to antibody platforms, with ca. ∼4% of instances where C1r and C1s proteases have dissociated from C1, and potentially instances of C1 transiently interacting with its substrate C4 or product C4b. Next, extensive deposition of C4b and C3b molecules is apparent, although individual molecules cannot always be properly distinguished with the current methods. Observations of MAC pores include formation of both single and composite pores, and instances of potential soluble-MAC dissociation upon failure of membrane insertion. Overall, application of the Volta phase plate cryoET markedly improved the contrast in the tomograms, which allowed for individual components to be more readily interpreted. However, variability in the phase shift induced by the phase-plate during the course of an experiment, together with incomplete sampling during tomogram acquisition, limited the interpretability of the resulting tomograms. Our studies exemplify the potential in studying molecular processes with complex spatial topologies by phase-plate cryoET.


Assuntos
Complemento C1/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Humanos
19.
J Neuroinflammation ; 14(1): 141, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28732515

RESUMO

BACKGROUND: The necessity of including both males and females in molecular neuroscience research is now well understood. However, there is relatively limited basic biological data on brain sex differences across the lifespan despite the differences in age-related neurological dysfunction and disease between males and females. METHODS: Whole genome gene expression of young (3 months), adult (12 months), and old (24 months) male and female C57BL6 mice hippocampus was analyzed. Subsequent bioinformatic analyses and confirmations of age-related changes and sex differences in hippocampal gene and protein expression were performed. RESULTS: Males and females demonstrate both common expression changes with aging and marked sex differences in the nature and magnitude of the aging responses. Age-related hippocampal induction of neuroinflammatory gene expression was sexually divergent and enriched for microglia-specific genes such as complement pathway components. Sexually divergent C1q protein expression was confirmed by immunoblotting and immunohistochemistry. Similar patterns of cortical sexually divergent gene expression were also evident. Additionally, inter-animal gene expression variability increased with aging in males, but not females. CONCLUSIONS: These findings demonstrate sexually divergent neuroinflammation with aging that may contribute to sex differences in age-related neurological diseases such as stroke and Alzheimer's, specifically in the complement system. The increased expression variability in males suggests a loss of fidelity in gene expression regulation with aging. These findings reveal a central role of sex in the transcriptomic response of the hippocampus to aging that warrants further, in depth, investigations.


Assuntos
Envelhecimento , Citocinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/metabolismo , Microglia/metabolismo , Caracteres Sexuais , Fatores Etários , Animais , Complemento C1/genética , Complemento C1/metabolismo , Biologia Computacional , Citocinas/genética , Feminino , Perfilação da Expressão Gênica , Hipocampo/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Transcriptoma
20.
Nihon Jibiinkoka Gakkai Kaiho ; 120(3): 217-23, 2017 03.
Artigo em Japonês | MEDLINE | ID: mdl-30010306

RESUMO

Angioedema is characterized by rapid and severe swelling of the subcutaneous and submucosal tissues. Angioedema involving the upper airway can lead to life-threatening airway obstruction, and needs prompt diagnosis and treatment. Herein, we report a case of acute angioedema which was suspected as having been caused by estrogen imbalance. A 32-year-old woman who was taking a fertility drug for infertility treatment, presented with sudden swelling of the face and neck region and breathing difficulty. Her symptoms continued to progress despite antibiotic and corticosteroid administration. We suspected hereditary angioedema (HAE), and administered a C1-inactivator, which led to immediate and dramatic resolution of the symptoms. Since the C4 and C1-inhibitor levels were normal, the possibility of HAE type III was considered. However, another possibility was that her complicated hormonal condition, including oral intake of a fertility drug, menstruation, and mental stress may have led to estrogen imbalance causing angioedema. Currently, a variety of hormone therapies is widely used ; therefore, caution is needed against the development of estrogen-dependent angioedema.


Assuntos
Angioedema/tratamento farmacológico , Complemento C1/antagonistas & inibidores , Doença Aguda , Adulto , Angioedema/diagnóstico por imagem , Feminino , Humanos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa