Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 507
Filtrar
Mais filtros

Coleção SES
Eixos temáticos
Intervalo de ano de publicação
1.
Cell ; 149(6): 1298-313, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682250

RESUMO

Wnt signaling plays critical roles in development of various organs and pathogenesis of many diseases, and augmented Wnt signaling has recently been implicated in mammalian aging and aging-related phenotypes. We here report that complement C1q activates canonical Wnt signaling and promotes aging-associated decline in tissue regeneration. Serum C1q concentration is increased with aging, and Wnt signaling activity is augmented during aging in the serum and in multiple tissues of wild-type mice, but not in those of C1qa-deficient mice. C1q activates canonical Wnt signaling by binding to Frizzled receptors and subsequently inducing C1s-dependent cleavage of the ectodomain of Wnt coreceptor low-density lipoprotein receptor-related protein 6. Skeletal muscle regeneration in young mice is inhibited by exogenous C1q treatment, whereas aging-associated impairment of muscle regeneration is restored by C1s inhibition or C1qa gene disruption. Our findings therefore suggest the unexpected role of complement C1q in Wnt signal transduction and modulation of mammalian aging.


Assuntos
Envelhecimento/metabolismo , Complemento C1q/metabolismo , Via de Sinalização Wnt , Animais , Complemento C1s/metabolismo , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Soro/metabolismo
2.
J Immunol ; 213(5): 718-729, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38995166

RESUMO

The ancient arm of innate immunity known as the complement system is a blood proteolytic cascade involving dozens of membrane-bound and solution-phase components. Although many of these components serve as regulatory molecules to facilitate controlled activation of the cascade, C1 esterase inhibitor (C1-INH) is the sole canonical complement regulator belonging to a superfamily of covalent inhibitors known as serine protease inhibitors (SERPINs). In addition to its namesake role in complement regulation, C1-INH also regulates proteases of the coagulation, fibrinolysis, and contact pathways. Despite this, the structural basis for C1-INH recognition of its target proteases has remained elusive. In this study, we present the crystal structure of the Michaelis-Menten (M-M) complex of the catalytic domain of complement component C1s and the SERPIN domain of C1-INH at a limiting resolution of 3.94 Å. Analysis of the structure revealed that nearly half of the protein/protein interface is formed by residues outside of the C1-INH reactive center loop. The contribution of these residues to the affinity of the M-M complex was validated by site-directed mutagenesis using surface plasmon resonance. Parallel analysis confirmed that C1-INH-interfacing residues on C1s surface loops distal from the active site also drive affinity of the M-M complex. Detailed structural comparisons revealed differences in substrate recognition by C1s compared with C1-INH recognition and highlight the importance of exosite interactions across broader SERPIN/protease systems. Collectively, this study improves our understanding of how C1-INH regulates the classical pathway of complement, and it sheds new light on how SERPINs recognize their cognate protease targets.


Assuntos
Proteína Inibidora do Complemento C1 , Complemento C1s , Proteína Inibidora do Complemento C1/metabolismo , Complemento C1s/metabolismo , Complemento C1s/química , Humanos , Cristalografia por Raios X , Domínio Catalítico , Ligação Proteica , Modelos Moleculares , Conformação Proteica
3.
J Immunol ; 212(4): 689-701, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149922

RESUMO

The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 µM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 µM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.


Assuntos
Complemento C1s , Via Clássica do Complemento , Animais , Ovinos , Peptídeo Hidrolases , Complemento C1/metabolismo , Endopeptidases , Piridinas/farmacologia
4.
J Immunol ; 212(7): 1172-1177, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372634

RESUMO

The activation of the CP/LP C3 proconvertase complex is a key event in complement activation and involves cleavage of C4 and C2 by the C1s protease (classical pathway) or the mannose-binding lectin-associated serine protease (MASP)-2 (lectin pathway). Efficient cleavage of C4 by C1s and MASP-2 involves exosites on the complement control protein and serine protease (SP) domains of the proteases. The complement control protein domain exosite is not involved in cleavage of C2 by the proteases, but the role of an anion-binding exosite (ABE) on the SP domains of the proteases has (to our knowledge) never been investigated. In this study, we have shown that the ABE on the SP of both C1s and MASP-2 is crucial for efficient cleavage of C2, with mutant forms of the proteases greatly impaired in their rate of cleavage of C2. We have additionally shown that the site of binding for the ABE of the proteases is very likely to be located on the von Willebrand factor domain of C2, with the precise area differing between the enzymes: whereas C1s requires two anionic clusters on the von Willebrand factor domain to enact efficient cleavage of C2, MASP-2 apparently only requires one. These data provide (to our knowledge) new information about the molecular determinants for efficient activation of C2 by C1s and MASP-2. The enhanced view of the molecular events underlying the early stages of complement activation provides further possible intervention points for control of this activation that is involved in a number of inflammatory diseases.


Assuntos
Ativação do Complemento , Lectina de Ligação a Manose , Serina Proteases Associadas a Proteína de Ligação a Manose , Complemento C1s , Complemento C4/metabolismo , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Domínios Proteicos , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Fator de von Willebrand , Humanos , Células HEK293
5.
J Biol Chem ; 300(5): 107236, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552741

RESUMO

The complement system serves as the first line of defense against invading pathogens by promoting opsonophagocytosis and bacteriolysis. Antibody-dependent activation of complement occurs through the classical pathway and relies on the activity of initiating complement proteases of the C1 complex, C1r and C1s. The causative agent of Lyme disease, Borrelia burgdorferi, expresses two paralogous outer surface lipoproteins of the OspEF-related protein family, ElpB and ElpQ, that act as specific inhibitors of classical pathway activation. We have previously shown that ElpB and ElpQ bind directly to C1r and C1s with high affinity and specifically inhibit C2 and C4 cleavage by C1s. To further understand how these novel protease inhibitors function, we carried out a series of hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments using ElpQ and full-length activated C1s as a model of Elp-protease interaction. Comparison of HDX-MS profiles between unbound ElpQ and the ElpQ/C1s complex revealed a putative C1s-binding site on ElpQ. HDX-MS-guided, site-directed ElpQ mutants were generated and tested for direct binding to C1r and C1s using surface plasmon resonance. Several residues within the C-terminal region of ElpQ were identified as important for protease binding, including a single conserved tyrosine residue that was required for ElpQ- and ElpB-mediated complement inhibition. Collectively, our study identifies key molecular determinants for classical pathway protease recognition by Elp proteins. This investigation improves our understanding of the unique complement inhibitory mechanism employed by Elp proteins which serve as part of a sophisticated complement evasion system present in Lyme disease spirochetes.


Assuntos
Proteínas da Membrana Bacteriana Externa , Borrelia burgdorferi , Via Clássica do Complemento , Humanos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/imunologia , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/genética , Complemento C1r/metabolismo , Complemento C1r/genética , Complemento C1s/metabolismo , Complemento C1s/genética , Complemento C1s/química , Via Clássica do Complemento/imunologia , Lipoproteínas/metabolismo , Lipoproteínas/genética , Lipoproteínas/química , Lipoproteínas/imunologia , Doença de Lyme/genética , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Ligação Proteica
6.
N Engl J Med ; 384(14): 1323-1334, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33826820

RESUMO

BACKGROUND: Cold agglutinin disease is a rare autoimmune hemolytic anemia characterized by hemolysis that is caused by activation of the classic complement pathway. Sutimlimab, a humanized monoclonal antibody, selectively targets the C1s protein, a C1 complex serine protease responsible for activating this pathway. METHODS: We conducted a 26-week multicenter, open-label, single-group study to assess the efficacy and safety of intravenous sutimlimab in patients with cold agglutinin disease and a recent history of transfusion. The composite primary end point was a normalization of the hemoglobin level to 12 g or more per deciliter or an increase in the hemoglobin level of 2 g or more per deciliter from baseline, without red-cell transfusion or medications prohibited by the protocol. RESULTS: A total of 24 patients were enrolled and received at least one dose of sutimlimab; 13 patients (54%) met the criteria for the composite primary end point. The least-squares mean increase in hemoglobin level was 2.6 g per deciliter at the time of treatment assessment (weeks 23, 25, and 26). A mean hemoglobin level of more than 11 g per deciliter was maintained in patients from week 3 through the end of the study period. The mean bilirubin levels normalized by week 3. A total of 17 patients (71%) did not receive a transfusion from week 5 through week 26. Clinically meaningful reductions in fatigue were observed by week 1 and were maintained throughout the study. Activity in the classic complement pathway was rapidly inhibited, as assessed by a functional assay. Increased hemoglobin levels, reduced bilirubin levels, and reduced fatigue coincided with inhibition of the classic complement pathway. At least one adverse event occurred during the treatment period in 22 patients (92%). Seven patients (29%) had at least one serious adverse event, none of which were determined by the investigators to be related to sutimlimab. No meningococcal infections occurred. CONCLUSIONS: In patients with cold agglutinin disease who received sutimlimab, selective upstream inhibition of activity in the classic complement pathway rapidly halted hemolysis, increased hemoglobin levels, and reduced fatigue. (Funded by Sanofi; CARDINAL ClinicalTrials.gov number, NCT03347396.).


Assuntos
Anemia Hemolítica Autoimune/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Complemento C1s/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Anemia Hemolítica Autoimune/sangue , Anemia Hemolítica Autoimune/complicações , Anemia Hemolítica Autoimune/terapia , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacologia , Transfusão de Sangue , Fadiga/tratamento farmacológico , Fadiga/etiologia , Feminino , Hemoglobinas/análise , Hemólise/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida
7.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155115

RESUMO

Complement is an important effector mechanism for antibody-mediated clearance of infections and tumor cells. Upon binding to target cells, the antibody's constant (Fc) domain recruits complement component C1 to initiate a proteolytic cascade that generates lytic pores and stimulates phagocytosis. The C1 complex (C1qr2s2) consists of the large recognition protein C1q and a heterotetramer of proteases C1r and C1s (C1r2s2). While interactions between C1 and IgG-Fc are believed to be mediated by the globular heads of C1q, we here find that C1r2s2 proteases affect the capacity of C1q to form an avid complex with surface-bound IgG molecules (on various 2,4-dinitrophenol [DNP]-coated surfaces and pathogenic Staphylococcus aureus). The extent to which C1r2s2 contributes to C1q-IgG stability strongly differs between human IgG subclasses. Using antibody engineering of monoclonal IgG, we reveal that hexamer-enhancing mutations improve C1q-IgG stability, both in the absence and presence of C1r2s2 In addition, hexamer-enhanced IgGs targeting S. aureus mediate improved complement-dependent phagocytosis by human neutrophils. Altogether, these molecular insights into complement binding to surface-bound IgGs could be important for optimal design of antibody therapies.


Assuntos
Membrana Celular/metabolismo , Complemento C1q/metabolismo , Complemento C1r/metabolismo , Complemento C1s/metabolismo , Imunoglobulina G/metabolismo , Ativação do Complemento , Humanos , Microscopia de Força Atômica , Mutação/genética , Fagocitose , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Staphylococcus aureus/imunologia
8.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125697

RESUMO

The mammalian complement system constitutes a highly sophisticated body defense machinery. The evolutionary origin of the complement system can be traced to Coelenterata as the presence of the central component C3 and two activation proteases BF and MASP. In the present study, the main complement components were screened and analyzed from the genomes of different species in metazoan subphyla/phyla. C1q with classical domains can be traced to Annelida, and ficolin and MBL to Urochordata. C1r and C1s are only found in Chondrichthyes and even higher species, and MASP is traced to Coelenterata. In the evolutionary tree, C1r from Vertebrates is close to MASP1/2/3 from Deuterostomia and Coelenterata, and C1s from Vertebrates is close to MASP-like protease (MASPL) from Arthropoda, Mollusca, and Annelida. C2, BF, and DF can be traced to Mollusca, Coelenterata, and Porifera, respectively. There are no clear C2 and BF branches in the evolutionary tree. C3 can be traced to Coelenterata, and C4 and C5 are only in Chondrichthyes and even higher species. There are three clear C3, C4, and C5 branches in the evolutionary tree. C6-like (C6L) and C8 can be traced to Urochordata, and C7-like (C7L) can be traced to Cephalochordara. C6L, C7L, and C8 from Urochordata and Cephalochordara provide the structural conditions for the formation of Vertebrate MAC components. The findings unveil the evolutionary principles of the complement system and provide insight into its sophistication.


Assuntos
Proteínas do Sistema Complemento , Evolução Molecular , Duplicação Gênica , Filogenia , Animais , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Humanos , Complemento C3/genética , Complemento C3/metabolismo , Complemento C1s/metabolismo , Complemento C1s/genética , Complemento C1s/química
9.
J Biol Chem ; 298(11): 102557, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183830

RESUMO

Proteolytic cascades comprise several important physiological systems, including a primary arm of innate immunity called the complement cascade. To safeguard against complement-mediated attack, the etiologic agent of Lyme disease, Borreliella burgdorferi, produces numerous outer surface-localized lipoproteins that contribute to successful complement evasion. Recently, we discovered a pair of B. burgdorferi surface lipoproteins of the OspEF-related protein family-termed ElpB and ElpQ-that inhibit antibody-mediated complement activation. In this study, we investigate the molecular mechanism of ElpB and ElpQ complement inhibition using an array of biochemical and biophysical approaches. In vitro assays of complement activation show that an independently folded homologous C-terminal domain of each Elp protein maintains full complement inhibitory activity and selectively inhibits the classical pathway. Using binding assays and complement component C1s enzyme assays, we show that binding of Elp proteins to activated C1s blocks complement component C4 cleavage by competing with C1s-C4 binding without occluding the active site. C1s-mediated C4 cleavage is dependent on activation-induced binding sites, termed exosites. To test whether these exosites are involved in Elp-C1s binding, we performed site-directed mutagenesis, which showed that ElpB and ElpQ binding require C1s residues in the anion-binding exosite located on the serine protease domain of C1s. Based on these results, we propose a model whereby ElpB and ElpQ exploit activation-induced conformational changes that are normally important for C1s-mediated C4 cleavage. Our study expands the known complement evasion mechanisms of microbial pathogens and reveals a novel molecular mechanism for selective C1s inhibition by Lyme disease spirochetes.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Humanos , Complemento C1s/química , Complemento C1s/metabolismo , Borrelia burgdorferi/genética , Complemento C4/química , Proteínas do Sistema Complemento/metabolismo , Serina Proteases , Lipoproteínas/genética
10.
Clin Immunol ; 251: 109629, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149117

RESUMO

The objective of this study was to characterize the complement-inhibiting activity of SAR445088, a novel monoclonal antibody specific for the active form of C1s. Wieslab® and hemolytic assays were used to demonstrate that SAR445088 is a potent, selective inhibitor of the classical pathway of complement. Specificity for the active form of C1s was confirmed in a ligand binding assay. Finally, TNT010 (a precursor to SAR445088) was assessed in vitro for its ability to inhibit complement activation associated with cold agglutinin disease (CAD). TNT010 inhibited C3b/iC3b deposition on human red blood cells incubated with CAD patient serum and decreased their subsequent phagocytosis by THP-1 cells. In summary, this study identifies SAR445088 as a potential therapeutic for the treatment of classical pathway-driven diseases and supports its continued assessment in clinical trials.


Assuntos
Anemia Hemolítica Autoimune , Complemento C1s , Humanos , Complemento C1s/metabolismo , Ativação do Complemento , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Inativadores do Complemento/uso terapêutico , Via Clássica do Complemento
11.
Clin Immunol ; 252: 109646, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209807

RESUMO

BACKGROUND: Kikuchi-Fujimoto disease (KFD) is a self-limited inflammatory disease of unknown pathogenesis. Familial cases have been described and defects in classical complement components C1q and C4 have been identified in some patients. MATERIAL AND METHODS: We describe genetic and immune investigations of a 16 years old Omani male, a product of consanguineous marriage, who presented with typical clinical and histological features of KFD. RESULTS: We identified a novel homozygous single base deletion in C1S (c.330del; p. Phe110LeufsTer23) resulting in a defect in the classical complement pathway. The patient was negative for all serological markers of SLE. In contrast, two female siblings (also homozygous for the C1S mutation), one has autoimmune thyroid disease (Hashimoto thyroiditis) and a positive ANA and the other sibling has serology consistent with SLE. CONCLUSION: We report the first association between C1s deficiency and KFD.


Assuntos
Linfadenite Histiocítica Necrosante , Adolescente , Humanos , Masculino , Complemento C1s/genética , Linfadenite Histiocítica Necrosante/genética , Linfadenite Histiocítica Necrosante/complicações , Linfadenite Histiocítica Necrosante/patologia , Mutação com Perda de Função
12.
Am J Hematol ; 98(8): 1246-1253, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246953

RESUMO

Cold agglutinin disease (CAD) is a rare, autoimmune, classical complement pathway (CP)-mediated hemolytic anemia. Sutimlimab selectively inhibits C1s of the C1 complex, preventing CP activation while leaving the alternative and lectin pathways intact. In Part A (26 weeks) of the open-label, single-arm, Phase 3 CARDINAL study in patients with CAD and a recent history of transfusion, sutimlimab demonstrated rapid effects on hemolysis and anemia. Results of the CARDINAL study Part B (2-year extension) study, described herein, demonstrated that sutimlimab sustains improvements in hemolysis, anemia, and quality of life over a median of 144 weeks of treatment. Mean last-available on-treatment values in Part B were improved from baseline for hemoglobin (12.2 g/dL on-treatment versus 8.6 g/dL at baseline), bilirubin (16.5 µmol/L on-treatment versus 52.1 µmol/L at baseline), and FACIT-Fatigue scores (40.5 on-treatment versus 32.4 at baseline). In the 9-week follow-up period after sutimlimab cessation, CP inhibition was reversed, and hemolytic markers and fatigue scores approached pre-sutimlimab values. Overall, sutimlimab was generally well tolerated in Part B. All 22 patients experienced ≥1 treatment-emergent adverse event (TEAE); 12 (54.5%) patients experienced ≥1 serious TEAE, including seven (31.8%) with ≥1 serious infection. Three patients discontinued due to a TEAE. No patients developed systemic lupus erythematosus or meningococcal infections. After cessation of sutimlimab, most patients reported adverse events consistent with recurrence of CAD. In conclusion, the CARDINAL 2-year results provide evidence of sustained sutimlimab effects for CAD management, but that disease activity reoccurs after treatment cessation. NCT03347396. Registered November 20, 2017.


Assuntos
Anemia Hemolítica Autoimune , Humanos , Anemia Hemolítica Autoimune/tratamento farmacológico , Complemento C1s , Hemólise , Qualidade de Vida , Ensaios Clínicos Fase III como Assunto
13.
Ann Pharmacother ; 57(8): 970-977, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36476151

RESUMO

OBJECTIVE: To review the pharmacology, pharmacokinetics, efficacy, safety, dosing and administration, and place in therapy of sutimlimab for the management of cold agglutinin disease (CAD)-associated hemolysis. DATA SOURCES: A literature search of PubMed (1966-October 2022) was conducted using the keywords sutimlimab, BIVV009, and cold agglutinin. Data were also obtained from prescribing information, meeting abstracts, and clinicaltrials.gov. STUDY SELECTION AND DATA EXTRACTION: All published prospective clinical trials, prescribing information, and meeting abstracts on sutimlimab for the treatment of CAD were reviewed. DATA SYNTHESIS: Sutimlimab is a first-in-class complement C1s inhibitor indicated for the treatment of CAD-associated hemolysis. This approval was based on the phase III CARDINAL trial, which evaluated sutimlimab in patients with CAD-associated hemolysis. The primary endpoint of achieving a hemoglobin of ≥12 g/dL or increase of ≥2 above baseline was achieved by 54% of patients with sutimlimab in the 26-week trial. The phase III CADENZA trial was a placebo-controlled trial in which sutimlimab has demonstrated a significant improvement in the composite endpoint of hemoglobin increase of ≥1.5 g/dL, avoidance of transfusion, and avoidance of additional CAD therapies (73% sutimlimab vs 15% placebo). RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE IN COMPARISON WITH EXISTING DRUGS: Sutimlimab rapidly halts hemolysis, improves hemoglobin, and improves quality-of-life in patients with CAD. Safety issues with sutimlimab include infusion-related reactions and risk of serious infections with encapsulated bacteria. CONCLUSIONS: Sutimlimab provides an additional therapeutic option in the treatment of CAD-associated hemolysis that can lead to rapid improvement in hemoglobin and anemia-related symptoms.


Assuntos
Anemia Hemolítica Autoimune , Humanos , Anemia Hemolítica Autoimune/tratamento farmacológico , Anemia Hemolítica Autoimune/diagnóstico , Hemólise , Complemento C1s , Inativadores do Complemento/efeitos adversos , Estudos Prospectivos
14.
J Peripher Nerv Syst ; 28(2): 276-285, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119056

RESUMO

BACKGROUND AND AIMS: Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare immune-mediated disease of the peripheral nerves, with significant unmet treatment needs. Clinical trials in CIDP are challenging; thus, new trial designs are needed. We present design of an open-label phase 2 study (NCT04658472) evaluating efficacy and safety of SAR445088, a monoclonal antibody targeting complement C1s, in CIDP. METHODS: This phase 2, proof-of-concept, multicenter, open-label trial will evaluate the efficacy, and safety of SAR445088 in 90 patients with CIDP across three groups: (1) currently treated with standard-of-care (SOC) therapies, including immunoglobulin or corticosteroids (SOC-Treated); (2) refractory to SOC (SOC-Refractory); and (3) naïve to SOC (SOC-Naïve). Enrolled participants undergo a 24-week treatment period (part A), followed by an optional treatment extension for up to an additional 52 weeks (part B). In part A, the primary endpoint for the SOC-Treated group is the percentage of participants with a relapse after switching from SOC to SAR445088. The primary endpoint for the SOC-Refractory and SOC-Naïve groups is the percentage of participants with a response, compared to baseline. Secondary endpoints include safety, tolerability, immunogenicity, and efficacy of SAR445088 during 12-week overlapping period (SOC-Treated). Part B evaluates long-term safety and durability of efficacy. Data analysis will be performed using Bayesian statistics (predefined efficacy thresholds) and historical data-based placebo assumptions to support program decision-making. INTERPRETATION: This innovative trial design based on patient groups and Bayesian statistics provides an efficient paradigm to evaluate new treatment candidates across the CIDP spectrum and can help accelerate development of new therapies.


Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Humanos , Corticosteroides/uso terapêutico , Anticorpos Monoclonais , Teorema de Bayes , Complemento C1s , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/tratamento farmacológico , Resultado do Tratamento , Estudo de Prova de Conceito
15.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012546

RESUMO

Autoantibodies against the complement component C1q (anti-C1q) are among the main biomarkers in lupus nephritis (LN) known to contribute to renal injury. C1q, the recognition subcomponent of the complement classical pathway, forms a heterotetrameric complex with C1r and C1s, and can also associate a central complement regulator and C1 Inhibitor (C1-Inh). However, the frequency and the pathogenic relevance of anti-C1r, anti-C1s and anti-C1-Inh autoantibodies remain poorly studied in LN. In this paper, we screened for anti-C1q, anti-C1r, anti-C1s and anti-C1-Inh autoantibodies and evaluated their association with disease activity and severity in 74 LN patients followed up for 5 years with a total of 266 plasma samples collected. The presence of anti-C1q, anti-C1r, anti-C1s and anti-C1-Inh was assessed by ELISA. IgG was purified by Protein G from antigen-positive plasma and their binding to purified C1q, C1r and C1s was examined by surface plasmon resonance (SPR). The abilities of anti-C1q, anti-C1r and anti-C1s binding IgG on C1 complex formation were analyzed by ELISA. The screening of LN patients' plasma revealed 14.9% anti-C1q positivity; only 4.2%, 6.9% and 0% were found to be positive for anti-C1r, anti-C1s and anti-C1-Inh, respectively. Significant correlations were found between anti-C1q and anti-dsDNA, and anti-nuclear antibodies, C3 and C4, respectively. High levels of anti-C1q antibodies were significantly associated with renal histologic lesions and correlated with histological activity index. Patients with the most severe disease (A class according to BILAG Renal score) had higher levels of anti-C1q antibodies. Anti-C1r and anti-C1s antibodies did not correlate with the clinical characteristics of the LN patients, did not interfere with the C1 complex formation, and were not measurable via SPR. In conclusion, the presence of anti-C1q, but not anti-C1s or anti-C1r, autoantibodies contribute to the autoimmune pathology and the severity of LN.


Assuntos
Complemento C1r , Nefrite Lúpica , Autoanticorpos , Ativação do Complemento , Complemento C1q/metabolismo , Complemento C1r/genética , Complemento C1s/metabolismo , Humanos , Imunoglobulina G
16.
Am J Transplant ; 21(11): 3519-3523, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34058061

RESUMO

In 1963, Lepow and colleagues resolved C1, the first component of the classical pathway, into three components, which they named C1q, C1r, and C1s. All three of these components were demonstrated to be involved in causing hemolysis in vitro. For over 30 years after that seminal discovery, the primary function attributed to C1q was as part of the C1 complex that initiated the classical pathway of the complement cascade. Then, a series of papers reported that isolated C1q could bind to apoptotic cells and facilitate their clearance by macrophages. Since then, rheumatologists have recognized that C1q is an important pattern recognition receptor (PRR) that diverts autoantigen containing extracellular vesicles from immune recognition. This critical function of C1q as a regulator of immune recognition has been largely overlooked in transplantation. Now that extracellular vesicles released from transplants have been identified as a major agent of immune recognition, it is logical to consider the potential impact of C1q on modulating the delivery of allogeneic extracellular vesicles to antigen presenting cells. This concept has clinical implications in the possible use of C1q or a derivative as a biological therapeutic to down-modulate immune responses to transplants.


Assuntos
Complemento C1r , Complemento C1s , Ativação do Complemento , Complemento C1q
17.
Clin Genet ; 100(2): 206-212, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33890303

RESUMO

Periodontal Ehlers-Danlos syndrome (pEDS) is a rare condition caused by pathogenic variants in the C1R and C1S genes, encoding subunits C1r and C1s of the first component of the classical complement pathway. It is characterized by early-onset periodontitis with premature tooth loss, pretibial hyperpigmentation and skin fragility. Rare arterial complications have been reported, but venous insufficiency is rarely described. Here we report 13 novel patients carrying heterozygous pathogenic variants in C1R and C1S including three novel C1S variants (c.962G > C, c.961 T > G and c.961 T > A). In addition to the pEDS phenotype, three patients and one relative displayed widespread venous insufficiency leading to persistent varicose leg ulcers. One patient suffered an intracranial aneurysm with familial vascular complications including thoracic and abdominal aortic aneurysm and dissection and intracranial aneurysm rupture. This work confirms that vascular complications can occur, although they are not frequent, which leads us to propose to carry out a first complete non-invasive vascular evaluation at the time of the diagnosis in pEDS patients. However, larger case series are needed to improve our understanding of the link between complement pathway activation and connective tissue alterations observed in these patients, and to better assess the frequency, type and consequences of the vascular complications.


Assuntos
Síndrome de Ehlers-Danlos/etiologia , Mutação , Adolescente , Adulto , Idoso , Aneurisma da Aorta Abdominal/genética , Pré-Escolar , Complemento C1r/genética , Complemento C1s/genética , Síndrome de Ehlers-Danlos/genética , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Úlcera Varicosa/etiologia , Úlcera Varicosa/genética , Adulto Jovem
18.
Blood ; 133(9): 893-901, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30559259

RESUMO

Cold agglutinin disease is a difficult-to-treat autoimmune hemolytic anemia in which immunoglobulin M antibodies bind to erythrocytes and fix complement, resulting in predominantly extravascular hemolysis. This trial tested the hypothesis that the anti-C1s antibody sutimlimab would ameliorate hemolytic anemia. Ten patients with cold agglutinin disease participated in the phase 1b component of a first-in-human trial. Patients received a test dose of 10-mg/kg sutimlimab followed by a full dose of 60 mg/kg 1 to 4 days later and 3 additional weekly doses of 60 mg/kg. All infusions were well tolerated without premedication. No drug-related serious adverse events were observed. Seven of 10 patients with cold agglutinin disease responded with a hemoglobin increase >2 g/dL. Sutimlimab rapidly increased hemoglobin levels by a median of 1.6 g/dL within the first week, and by a median of 3.9 g/dL (interquartile range, 1.3-4.5 g/dL; 95% confidence interval, 2.1-4.5) within 6 weeks (P = .005). Sutimlimab rapidly abrogated extravascular hemolysis, normalizing bilirubin levels within 24 hours in most patients and normalizing haptoglobin levels in 4 patients within 1 week. Hemolytic anemia recurred when drug levels were cleared from the circulation 3 to 4 weeks after the last dose of sutimlimab. Reexposure to sutimlimab in a named patient program recapitulated the control of hemolytic anemia. All 6 previously transfused patients became transfusion-free during treatment. Sutimlimab was safe, well tolerated, and rapidly stopped C1s complement-mediated hemolysis in patients with cold agglutinin disease, significantly increasing hemoglobin levels and precluding the need for transfusions. This trial was registered at www.clinicaltrials.gov as #NCT02502903.


Assuntos
Anemia Hemolítica Autoimune/tratamento farmacológico , Anemia Hemolítica/prevenção & controle , Anticorpos Monoclonais Humanizados/uso terapêutico , Complemento C1s/antagonistas & inibidores , Hemólise/efeitos dos fármacos , Índice de Gravidade de Doença , Idoso , Anemia Hemolítica/etiologia , Anemia Hemolítica Autoimune/complicações , Complemento C1s/imunologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos
19.
J Immunol ; 202(4): 1200-1209, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635392

RESUMO

The classical pathway of complement (CP) can mediate C3 opsonization of Ags responsible for the costimulation and activation of cognate B lymphocytes. In this manner, the complement system acts as a bridge between the innate and adaptive immune systems critical for establishing a humoral response. However, aberrant complement activation is often observed in autoimmune diseases in which C3 deposition on self-antigens may serve to activate self-reactive B cell clones. In this study, we use BIVV009 (Sutimlimab), a clinical stage, humanized mAb that specifically inhibits the CP-specific serine protease C1s to evaluate the impact of upstream CP antagonism on activation and proliferation of normal and autoimmune human B cells. We report that BIVV009 significantly inhibited complement-mediated activation and proliferation of primary human B cells. Strikingly, CP antagonism suppressed human Ig-induced activation of B cells derived from patients with rheumatoid arthritis. These results suggest that clinical use of CP inhibitors in autoimmune patients may not only block complement-mediated tissue damage, but may also prevent the long-term activation of autoimmune B cells and the production of autoantibodies that contribute to the underlying pathologic condition of these diseases.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Artrite Reumatoide/tratamento farmacológico , Linfócitos B/efeitos dos fármacos , Complemento C1s/antagonistas & inibidores , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Linfócitos B/imunologia , Linfócitos B/patologia , Proliferação de Células/efeitos dos fármacos , Ativação do Complemento/efeitos dos fármacos , Complemento C1s/imunologia , Humanos
20.
Proc Natl Acad Sci U S A ; 115(4): 768-773, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311313

RESUMO

The multiprotein complex C1 initiates the classical pathway of complement activation on binding to antibody-antigen complexes, pathogen surfaces, apoptotic cells, and polyanionic structures. It is formed from the recognition subcomponent C1q and a tetramer of proteases C1r2C1s2 as a Ca2+-dependent complex. Here we have determined the structure of a complex between the CUB1-EGF-CUB2 fragments of C1r and C1s to reveal the C1r-C1s interaction that forms the core of C1. Both fragments are L-shaped and interlock to form a compact antiparallel heterodimer with a Ca2+ from each subcomponent at the interface. Contacts, involving all three domains of each protease, are more extensive than those of C1r or C1s homodimers, explaining why heterocomplexes form preferentially. The available structural and biophysical data support a model of C1r2C1s2 in which two C1r-C1s dimers are linked via the catalytic domains of C1r. They are incompatible with a recent model in which the N-terminal domains of C1r and C1s form a fixed tetramer. On binding to C1q, the proteases become more compact, with the C1r-C1s dimers at the center and the six collagenous stems of C1q arranged around the perimeter. Activation is likely driven by separation of the C1r-C1s dimer pairs when C1q binds to a surface. Considerable flexibility in C1s likely facilitates C1 complex formation, activation of C1s by C1r, and binding and activation of downstream substrates C4 and C4b-bound C2 to initiate the reaction cascade.


Assuntos
Complemento C1r/metabolismo , Complemento C1s/metabolismo , Animais , Células CHO , Cricetulus , Dimerização , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa