RESUMO
Homing pigeons (Columba livia) navigate by solar and magnetic compass, and fly home in idiosyncratic but stable routes when repeatedly released from the same location. However, when experienced pigeons fly alongside naive counterparts, their path is altered. Over several generations of turnover (pairs in which the most experienced individual is replaced with a naive one), pigeons show cumulative improvements in efficiency. Here, I show that such cumulative route improvements can occur in a much simpler system by using agent-based simulation. Artificial agents are in silico entities that navigate with a minimal cognitive architecture of goal-direction (they know roughly where the goal is), social proximity (they seek proximity to others and align headings), route memory (they recall landmarks with increasing precision), and continuity (they avoid erratic turns). Agents' behaviour qualitatively matched that of pigeons, and quantitatively fitted to pigeon data. My results indicate that naive agents benefitted from being paired with experienced agents by following their previously established route. Importantly, experienced agents also benefitted from being paired with naive agents due to regression to the goal: naive agents were more likely to err towards the goal from the perspective of experienced agents' memorised paths. This subtly biased pairs in the goal direction, resulting in intergenerational improvements of route efficiency. No cumulative improvements were evident in control studies in which agents' goal-direction, social proximity, or memory were lesioned. These 3 factors are thus necessary and sufficient for cumulative route improvements to emerge, even in the absence of sophisticated communication or thought.
Assuntos
Columbidae , Animais , Columbidae/fisiologia , Navegação Espacial/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Simulação por Computador , Memória/fisiologiaRESUMO
Many animal species rely on the Earth's magnetic field during navigation, but where in the brain magnetic information is processed is still unknown. To unravel this, we manipulated the natural magnetic field at the nest entrance of Cataglyphis desert ants and investigated how this affects relevant brain regions during early compass calibration. We found that manipulating the Earth's magnetic field has profound effects on neuronal plasticity in two sensory integration centers. Magnetic field manipulations interfere with a typical look-back behavior during learning walks of naive ants. Most importantly, structural analyses in the ants' neuronal compass (central complex) and memory centers (mushroom bodies) demonstrate that magnetic information affects neuronal plasticity during early visual learning. This suggests that magnetic information does not only serve as a compass cue for navigation but also as a global reference system crucial for spatial memory formation. We propose a neural circuit for integration of magnetic information into visual guidance networks in the ant brain. Taken together, our results provide an insight into the neural substrate for magnetic navigation in insects.
Assuntos
Formigas , Animais , Formigas/fisiologia , Aprendizagem/fisiologia , Encéfalo , Plasticidade Neuronal/fisiologia , Fenômenos Magnéticos , Comportamento de Retorno ao Território Vital/fisiologia , Sinais (Psicologia) , Clima DesérticoRESUMO
The way goal-oriented birds adjust their travel direction and route in response to wind significantly affects their travel costs. This is expected to be particularly pronounced in pelagic seabirds, which utilize a wind-dependent flight style called dynamic soaring. Dynamic soaring seabirds in situations without a definite goal, e.g. searching for prey, are known to preferentially fly with crosswinds or quartering-tailwinds to increase the speed and search area, and reduce travel costs. However, little is known about their reaction to wind when heading to a definite goal, such as homing. Homing tracks of wandering albatrosses (Diomedea exulans) vary from beelines to zigzags, which are similar to those of sailboats. Here, given that both albatrosses and sailboats travel slower in headwinds and tailwinds, we tested whether the time-minimizing strategies used by yacht racers can be compared to the locomotion patterns of wandering albatrosses. We predicted that when the goal is located upwind or downwind, albatrosses should deviate their travel directions from the goal on the mesoscale and increase the number of turns on the macroscale. Both hypotheses were supported by track data from albatrosses and racing yachts in the Southern Ocean confirming that albatrosses qualitatively employ the same strategy as yacht racers. Nevertheless, albatrosses did not strictly minimize their travel time, likely making their flight robust against wind fluctuations to reduce flight costs. Our study provides empirical evidence of tacking in albatrosses and demonstrates that man-made movement strategies provide a new perspective on the laws underlying wildlife movement.
Assuntos
Aves , Voo Animal , Vento , Animais , Voo Animal/fisiologia , Aves/fisiologia , Orientação/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Orientação Espacial/fisiologia , Migração Animal/fisiologiaRESUMO
Solitarily foraging ant species differ in their reliance on their two primary navigational systems- path integration and visual learning. Despite many species of Australian bull ants spending most of their foraging time on their foraging tree, little is known about the use of these systems while climbing. "Rewinding" displacements are commonly used to understand navigational system usage, and work by introducing a mismatch between these navigational systems, by displacing foragers after they have run-down their path integration vector. We used rewinding to test the role of path integration on the arboreal and terrestrial navigation of M. midas. We rewound foragers along either the vertical portion, the ground surface portion, or across both portions of their homing trip. Since rewinding involves repeatedly capturing and releasing foragers, we included a nondisplacement, capture-and-release control, in which the path integration vector is unchanged. We found that rewound foragers do not seem to accumulate path integration vector, although a limited effect of vertical rewinding was found, suggesting a potential higher sensitivity while descending the foraging tree. However, the decrease in navigational efficiency due to capture was larger than the vertical rewinding effect, which along with the negative impact of the vertical surface, and an interaction between capture and rewinding, may suggest aversion rather than path integration caused the vertical rewinding response. Together these results add to the evidence that M. midas makes minimal use of path integration while foraging, and the growing evidence that they are capable of quickly learning from aversive stimulus.
Assuntos
Formigas , Sinais (Psicologia) , Animais , Austrália , Formigas/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Aprendizagem EspacialRESUMO
Most animals live in spatially-constrained home ranges. The prevalence of this space-use pattern in nature suggests that general biological mechanisms are likely to be responsible for their occurrence. Individual-based models of animal movement in both theoretical and empirical settings have demonstrated that the revisitation of familiar areas through memory can lead to the formation of stable home ranges. Here, we formulate a deterministic, mechanistic home range model that includes the interplay between a bi-component memory and resource preference, and evaluate resulting patterns of space-use. We show that a bi-component memory process can lead to the formation of stable home ranges and control its size, with greater spatial memory capabilities being associated with larger home range size. The interplay between memory and resource preferences gives rise to a continuum of space-use patterns-from spatially-restricted movements into a home range that is influenced by local resource heterogeneity, to diffusive-like movements dependent on larger-scale resource distributions, such as in nomadism. Future work could take advantage of this model formulation to evaluate the role of memory in shaping individual performance in response to varying spatio-temporal resource patterns.
Assuntos
Ecossistema , Comportamento de Retorno ao Território Vital , Animais , Comportamento de Retorno ao Território Vital/fisiologia , Memória , MovimentoRESUMO
At the start of a journey home or to a foraging site, ants often stop, interrupting their forward movement, turn on the spot a number of times, and fixate in different directions. These scanning bouts are thought to provide visual information for choosing a path to travel. The temporal organization of such scanning bouts has implications about the neural organisation of navigational behaviour. We examined (1) the temporal distribution of the start of such scanning bouts and (2) the dynamics of saccadic body turns and fixations that compose a scanning bout in Australian desert ants, Melophorus bagoti, as they came out of a walled channel onto open field at the start of their homeward journey. Ants were caught when they neared their nest and displaced to different locations to start their journey home again. The observed parameters were mostly similar across familiar and unfamiliar locations. The turning angles of saccadic body turning to the right or left showed some stereotypy, with a peak just under 45°. The direction of such saccades appears to be determined by a slow oscillatory process as described in other insect species. In timing, however, both the distribution of inter-scanning-bout intervals and individual fixation durations showed exponential characteristics, the signature for a random-rate or Poisson process. Neurobiologically, therefore, there must be some process that switches behaviour (starting a scanning bout or ending a fixation) with equal probability at every moment in time. We discuss how chance events in the ant brain that occasionally reach a threshold for triggering such behaviours can generate the results.
Assuntos
Formigas , Animais , Formigas/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Austrália , Movimento , Sinais (Psicologia)RESUMO
Wood ants are excellent navigators, using a combination of innate and learnt navigational strategies to travel between their nest and feeding sites. Visual navigation in ants has been studied extensively, however, we have little direct evidence for the underlying neural mechanisms. Here, we perform lateralized mechanical lesions in the central complex (CX) of wood ants, a midline structure known to allow an insect to keep track of the direction of sensory cues relative to its own orientation and to control movement. We lesioned two groups of ants and observed their behaviour in an arena with a large visual landmark present. The first group of ants were naïve and when intact such ants show a clear innate attraction to the conspicuous landmark. The second group of ants were trained to aim to a food location to the side of the landmark. The general heading of naïve ants towards a visual cue was not altered by the lesions, but the heading of ants trained to a landmark adjacent food position was affected. Thus, CX lesions had a specific impact on learnt visual guidance. We also observed that lateralised lesions altered the fine details of turning with lesioned ants spending less time turning to the side ipsilateral of the lesion. The results confirm the role of the CX in turn control and highlight its important role in the implementation of learnt behaviours that rely on information from other brain regions.
Assuntos
Formigas , Animais , Formigas/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Aprendizagem/fisiologia , Sinais (Psicologia)RESUMO
Efficient spatial orientation in the natural environment is crucial for the survival of most animal species. Cataglyphis desert ants possess excellent navigational skills. After far-ranging foraging excursions, the ants return to their inconspicuous nest entrance using celestial and panoramic cues. This review focuses on the question about how naïve ants acquire the necessary spatial information and adjust their visual compass systems. Naïve ants perform structured learning walks during their transition from the dark nest interior to foraging under bright sunlight. During initial learning walks, the ants perform rotational movements with nest-directed views using the earth's magnetic field as an earthbound compass reference. Experimental manipulations demonstrate that specific sky compass cues trigger structural neuronal plasticity in visual circuits to integration centers in the central complex and mushroom bodies. During learning walks, rotation of the sky-polarization pattern is required for an increase in volume and synaptic complexes in both integration centers. In contrast, passive light exposure triggers light-spectrum (especially UV light) dependent changes in synaptic complexes upstream of the central complex. We discuss a multisensory circuit model in the ant brain for pathways mediating structural neuroplasticity at different levels following passive light exposure and multisensory experience during the performance of learning walks.
Assuntos
Formigas , Animais , Formigas/fisiologia , Aprendizagem/fisiologia , Encéfalo , Sinais (Psicologia) , Caminhada , Comportamento de Retorno ao Território Vital/fisiologia , Clima DesérticoRESUMO
From both comparative biology and translational research perspectives, there is escalating interest in understanding how animals navigate their environments. Considerable work is being directed towards understanding the sensory transduction and neural processing of environmental stimuli that guide animals to, for example, food and shelter. While much has been learned about the spatial orientation behavior, sensory cues, and neurophysiology of champion navigators such as bees and ants, many other, often overlooked animal species possess extraordinary sensory and spatial capabilities that can broaden our understanding of the behavioral and neural mechanisms of animal navigation. For example, arachnids are predators that often return to retreats after hunting excursions. Many of these arachnid central-place foragers are large and highly conducive to scientific investigation. In this review we highlight research on three orders within the Class Arachnida: Amblypygi (whip spiders), Araneae (spiders), and Scorpiones (scorpions). For each, we describe (I) their natural history and spatial navigation, (II) how they sense the world, (III) what information they use to navigate, and (IV) how they process information for navigation. We discuss similarities and differences among the groups and highlight potential avenues for future research.
Assuntos
Aracnídeos , Navegação Espacial , Aranhas , Animais , Abelhas , Aracnídeos/fisiologia , Escorpiões , Biologia , Comportamento de Retorno ao Território Vital/fisiologiaRESUMO
Hymenopterans, such as bees and wasps, have long fascinated researchers with their sinuous movements at novel locations. These movements, such as loops, arcs, or zigzags, serve to help insects learn their surroundings at important locations. They also allow the insects to explore and orient themselves in their environment. After they gained experience with their environment, the insects fly along optimized paths guided by several guidance strategies, such as path integration, local homing, and route-following, forming a navigational toolkit. Whereas the experienced insects combine these strategies efficiently, the naive insects need to learn about their surroundings and tune the navigational toolkit. We will see that the structure of the movements performed during the learning flights leverages the robustness of certain strategies within a given scale to tune other strategies which are more efficient at a larger scale. Thus, an insect can explore its environment incrementally without risking not finding back essential locations.
Assuntos
Comportamento de Retorno ao Território Vital , Vespas , Abelhas , Animais , Comportamento de Retorno ao Território Vital/fisiologia , Voo Animal/fisiologia , Aprendizagem , Insetos , Vespas/fisiologiaRESUMO
Colonization of urban areas by synanthropic wildlife introduces novel and complex alterations to established ecological processes, including the emergence and spread of infectious diseases. Aggregation at urban resources can increase disease transfer, with wide-ranging species potentially infecting outlying populations. The garrison at the National Training Center, Fort Irwin, California, USA, was recently colonized by mange-infected coyotes (Canis latrans) that also use the surrounding Mojave Desert. This situation provided an ideal opportunity to examine the effects of urban resources on disease dynamics. We evaluated seasonal space use and determined the influence of anthropogenic subsidies, water sources, and prey density on urban resource selection. We found no difference in home range size between healthy and infected individuals, but infected residents had considerably more spatial overlap with one another than healthy residents. All coyotes selected for anthropogenic subsidies during all seasons, while infected coyotes seasonally selected for urban water sources, and healthy coyotes seasonally selected for urban areas with greater densities of natural prey. These results suggest that while all coyotes were selecting for anthropogenic subsidies, infected resident coyotes demonstrated a greater tolerance for other conspecifics, which could be facilitating the horizontal transfer of sarcoptic mange to non-resident coyotes. Conversely, healthy coyotes also selected for natural prey and healthy residents exhibited a lack of spatial overlap with other coyotes suggesting they were not reliant on anthropogenic subsidies and were maintaining territories. Understanding the association between urban wildlife, zoonotic diseases, and urban resources can be critical in determining effective responses for mitigating future epizootics.
Assuntos
Coiotes , Infestações por Ácaros , Humanos , Animais , Coiotes/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Estações do Ano , ÁguaRESUMO
Certain long-distance migratory animals, such as salmon and sea turtles, are thought to imprint on the magnetic field of their natal area and to use this information to help them return as adults. Despite a growing body of indirect support for such imprinting, direct experimental evidence thereof remains elusive. Here, using the fruit fly as a magnetoreceptive model organism, we demonstrate that exposure to a specific geographic magnetic field during a critical period of early development affected responses to a matching magnetic field gradient later in life. Specifically, hungry flies that had imprinted on a specific magnetic field from 1 of 3 widely separated geographic locations responded to the imprinted field, but not other magnetic fields, by moving downward, a geotactic behavior associated with foraging. This same behavior occurred spontaneously in the progeny of the next generation: female progeny moved downward in response to the field on which their parents had imprinted, whereas male progeny did so only in the presence of these females. These results represent experimental evidence that organisms can learn and remember a magnetic field to which they were exposed during a critical period of development. Although the function of the behavior is not known, one possibility is that imprinting on the magnetic field of a natal area assists flies and their offspring in recognizing locations likely to be favorable for foraging and reproduction.
Assuntos
Migração Animal/fisiologia , Drosophila/fisiologia , Campos Magnéticos , Animais , Feminino , Comportamento de Retorno ao Território Vital/fisiologia , Fixação Psicológica Instintiva/fisiologia , Masculino , ReproduçãoRESUMO
Many animals use celestial cues for impressive navigational performances in challenging habitats. Since the position of the sun and associated skylight cues change throughout the day and season, it is crucial to correct for these changes. Cataglyphis desert ants possess a time-compensated skylight compass allowing them to navigate back to their nest using the shortest way possible. The ants have to learn the sun's daily course (solar ephemeris) during initial learning walks (LW) before foraging. This learning phase is associated with substantial structural changes in visual neuronal circuits of the ant's brain. Here, we test whether the rotation of skylight polarization during LWs is the necessary cue to induce learning-dependent rewiring in synaptic circuits in high-order integration centres of the ant brain. Our results show that structural neuronal changes in the central complex and mushroom bodies are triggered only when LWs were performed under a rotating skylight polarization pattern. By contrast, when naive ants did not perform LWs, but were exposed to skylight cues, plasticity was restricted to light spectrum-dependent changes in synaptic complexes of the lateral complex. The results identify sky-compass cues triggering learning-dependent versus -independent neuronal plasticity during the behavioural transition from interior workers to outdoor foragers.
Assuntos
Formigas , Animais , Formigas/fisiologia , Sinais (Psicologia) , Comportamento de Retorno ao Território Vital/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , RotaçãoRESUMO
Many insects orient by comparing current panoramic views of their environment to memorised views. We tested the navigational abilities of night-active Myrmecia midas foragers while we blocked segments of their visual panorama. Foragers failed to orient homewards when the front view, lower elevations, entire terrestrial surround, or the full panorama was blocked. Initial scanning increased whenever the visual panorama was blocked but scanning only increased along the rest of the route when the front, back, higher, or lower elevations were blocked. Ants meandered more when the front, the back, or the higher elevations were obscured. When everything except the canopy was blocked, the ants were quick and direct, but moved in random directions, as if to escape. We conclude that a clear front view, or a clear lower panorama is necessary for initial homeward headings. Furthermore, the canopy is neither necessary nor sufficient for homeward initial heading, and the back and upper segments of views, while not necessary, do make finding home easier. Discrepancies between image analysis and ant behaviour when the upper and lower views were blocked suggests that ants are selective in what portions of the scene they attend to or learn.
Assuntos
Formigas , Animais , Formigas/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Sinais (Psicologia) , Austrália , AprendizagemRESUMO
At the beginning of their foraging careers, Cataglyphis desert ants calibrate their compass systems and learn the visual panorama surrounding the nest entrance. For that, they perform well-structured initial learning walks. During rotational body movements (pirouettes), naïve ants (novices) gaze back to the nest entrance to memorize their way back to the nest. To align their gaze directions, they rely on the geomagnetic field as a compass cue. In contrast, experienced ants (foragers) use celestial compass cues for path integration during food search. If the panorama at the nest entrance is changed, foragers perform re-learning walks prior to heading out on new foraging excursions. Here, we show that initial learning walks and re-learning walks are structurally different. During re-learning walks, foragers circle around the nest entrance before leaving the nest area to search for food. During pirouettes, they do not gaze back to the nest entrance. In addition, foragers do not use the magnetic field as a compass cue to align their gaze directions during re-learning walk pirouettes. Nevertheless, magnetic alterations during re-learning walks under manipulated panoramic conditions induce changes in nest-directed views indicating that foragers are still magnetosensitive in a cue conflict situation.
Assuntos
Formigas , Animais , Formigas/fisiologia , Sinais (Psicologia) , Clima Desértico , Comportamento de Retorno ao Território Vital/fisiologia , Aprendizagem/fisiologia , CaminhadaRESUMO
The existence of avian magnetic orientation has been proved by many experimental studies, however, evidence for the use of magnetic cues by homing pigeons remains controversial. To investigate magnetic orientation by homing pigeons, we analyzed the results of pigeon races relative to weak fluctuations in the geomagnetic field, assuming that such disturbances could impact navigational efficiency if based on magnetoreception. Whereas most of the previous studies recorded and analyzed vanishing bearing of individually released pigeons, we evaluated relative duration of the homeward flight (homing speed, as a proxy of navigational efficiency) and its dependence on specific geomagnetic indices in racing pigeons released collectively. Our analysis of orientation efficiency of about 289 pigeon races over 15 years suggested slight negative correlations between geomagnetic fluctuations and homing time. Although the interpretation of this finding is manifold and not clear, it suggests that natural magnetic variations or disturbances can affect the homing orientation performance of pigeons. We suggest that studying pigeon races may have a heuristic potential and since these races are regularly and frequently organized in many countries all over the globe, examining homing performance relative to a suite of environmental variables may be useful for exploring hypotheses about pigeon navigation.
Assuntos
Columbidae , Comportamento de Retorno ao Território Vital , Animais , Columbidae/fisiologia , Sinais (Psicologia) , Voo Animal/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Orientação/fisiologiaRESUMO
While displacement experiments have been powerful for determining the sensory basis of homing navigation in birds, they have left unresolved important cognitive aspects of navigation such as what birds know about their location relative to home and the anticipated route. Here, we analyze the free-ranging Global Positioning System (GPS) tracks of a large sample (n = 707) of Manx shearwater, Puffinus puffinus, foraging trips to investigate, from a cognitive perspective, what a wild, pelagic seabird knows as it begins to home naturally. By exploiting a kind of natural experimental contrast (journeys with or without intervening obstacles) we first show that, at the start of homing, sometimes hundreds of kilometers from the colony, shearwaters are well oriented in the homeward direction, but often fail to encode intervening barriers over which they will not fly (islands or peninsulas), constrained to flying farther as a result. Second, shearwaters time their homing journeys, leaving earlier in the day when they have farther to go, and this ability to judge distance home also apparently ignores intervening obstacles. Thus, at the start of homing, shearwaters appear to be making navigational decisions using both geographic direction and distance to the goal. Since we find no decrease in orientation accuracy with trip length, duration, or tortuosity, path integration mechanisms cannot account for these findings. Instead, our results imply that a navigational mechanism used to direct natural large-scale movements in wild pelagic seabirds has map-like properties and is probably based on large-scale gradients.
Assuntos
Comportamento de Retorno ao Território Vital/fisiologia , Orientação Espacial/fisiologia , Navegação Espacial/fisiologia , Animais , Aves , Sistemas de Informação GeográficaRESUMO
The homing pigeon was selectively bred from the domestic pigeon for a homing ability over long distances, a very fascinating but complex behavioral trait. Here, we generate a total of 95 whole genomes from diverse pigeon breeds. Comparing the genomes from the homing pigeon population with those from other breeds identifies candidate positively selected genes, including many genes involved in the central nervous system, particularly spatial learning and memory such as LRP8. Expression profiling reveals many neuronal genes displaying differential expression in the hippocampus, which is the key organ for memory and navigation and exhibits significantly larger size in the homing pigeon. In addition, we uncover a candidate gene GSR (encoding glutathione-disulfide reductase) experiencing positive selection in the homing pigeon. Expression profiling finds that GSR is highly expressed in the wattle and visual pigment cell layer, and displays increased expression levels in the homing pigeon. In vitro, a magnetic field stimulates increases in calcium ion concentration in cells expressing pigeon GSR. These findings support the importance of the hippocampus (functioning in spatial memory and navigation) for homing ability, and the potential involvement of GSR in pigeon magnetoreception.
Assuntos
Columbidae/genética , Comportamento de Retorno ao Território Vital/fisiologia , Seleção Genética , Animais , Glutationa Redutase/genética , Hipocampo/fisiologia , Memória EspacialRESUMO
The Mygalomorphae includes tarantulas, trapdoor, funnel-web, purse-web and sheet-web spiders, species known for poor dispersal abilities. Here, we attempted to compile all the information available on their long-distance dispersal mechanisms from observations that are often spread throughout the taxonomic literature. Mygalomorphs can disperse terrestrially, and in some tarantulas, for example, spiderlings walk together in single files away from their maternal burrow, a mechanism limited in distance covered. Conversely, at least eight species disperse aerially, via dropping on drag lines from elevated positions and being passively blown off ('suspended ballooning'). The first record of this behaviour is 135 years old, but we still know very little about it. Phylogeographic studies suggest several occurrences of transcontinental dispersal in the evolutionary history of mygalomorphs, but these might result from contingent rafting events, rather than regular dispersal mechanisms. We use occurrence data to show that suspended ballooning increases the species ranges in Australian mygalomorph families where this behaviour has been recorded. We also identified Anamidae, Idiopidae, and especially Atracidae, as families that might employ suspended ballooning or another efficient but undiscovered dispersal mechanism. Finally, we suggest that molecular studies with mitochondrial genes will help disentangle behavioural limitations of dispersal from ecological or physical ones.
Assuntos
Ecossistema , Comportamento de Retorno ao Território Vital/fisiologia , Aranhas/fisiologia , Animais , Filogenia , Especificidade da EspécieRESUMO
Amblypygids, or whip spiders, are nocturnally active arachnids which live in structurally complex environments. Whip spiders are excellent navigators that can re-locate a home refuge without relying on visual input. Therefore, an open question is whether visual input can control any aspect of whip spider spatial behavior. In the current study, Phrynus marginemaculatus were trained to locate an escape refuge by discriminating between differently oriented black and white stripes placed either on the walls of a testing arena (frontal discrimination) or on the ceiling of the same testing arena (overhead discrimination). Regardless of the placement of the visual stimuli, the whip spiders were successful in learning the location of the escape refuge. In a follow-up study of the overhead discrimination, occluding the median eyes was found to disrupt the ability of the whip spiders to locate the shelter. The data support the conclusion that whip spiders can rely on vision to learn and recognize an escape shelter. We suggest that visual inputs to the brain's mushroom bodies enable this ability.