Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Emerg Infect Dis ; 30(6): 1240-1244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782018

RESUMO

A 2022 canine gastroenteritis outbreak in the United Kingdom was associated with circulation of a new canine enteric coronavirus closely related to a 2020 variant with an additional spike gene recombination. The variants are unrelated to canine enteric coronavirus-like viruses associated with human disease but represent a model for coronavirus population adaptation.


Assuntos
Infecções por Coronavirus , Surtos de Doenças , Doenças do Cão , Gastroenterite , Filogenia , Animais , Cães , Surtos de Doenças/veterinária , Doenças do Cão/virologia , Doenças do Cão/epidemiologia , Reino Unido/epidemiologia , Gastroenterite/virologia , Gastroenterite/epidemiologia , Gastroenterite/veterinária , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Coronavirus Canino/genética , Coronavirus Canino/classificação , Humanos , Glicoproteína da Espícula de Coronavírus/genética
2.
Virol J ; 21(1): 155, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982509

RESUMO

BACKGROUND: Canine enteric coronavirus (CECoV) is a prevalent infectious disease among dogs worldwide, yet its epidemiology in mainland China remains poorly understood. This systematic review and meta-analysis aimed to assess the prevalence of CECoV in mainland China and identify factors influencing its prevalence. METHODS: A comprehensive literature search was conducted across multiple databases for studies regarding CECoV epidemiology of China. PubMed, CNKI, Wanfang, and CQVIP were searched to obtain the studies. Eligible studies were selected based on predefined criteria, and data were extracted and synthesized. The quality the studies was assessed using the JBI assessment tool. Heterogeneity was checked using I2 test statistics followed by subgroup and sensitivity analysis. Subgroup analyses were performed to explore variations in CECoV prevalence by factors such as year, region, season, health status, social housing type, gender, age, and breed. Publication bias was assessed using a funnel plot and eggers test that was followed by trim and fill analysis. RESULTS: A total of 27 studies involving 21,034 samples were included in the meta-analysis. The overall pooled prevalence of CECoV in mainland China was estimated to be 0.30 (95% CI 0.24-0.37), indicating persistent circulation of the virus. Subgroup analyses revealed higher prevalence rates in younger dogs, multi-dog households, apparently healthy dogs, and certain regions such as southwest China. Seasonal variations were observed, with lower prevalence rates in summer. However, no significant differences in prevalence were found by gender. CONCLUSIONS: This study provides valuable insights into the epidemiology of CECoV in mainland China, highlighting the persistent circulation of the virus and identifying factors associated with higher prevalence rates. Continuous monitoring and surveillance efforts, along with research into accurate detection methods and preventive measures, are essential for the effective control of CECoV and mitigation of its potential impact on animal and human health.


Assuntos
Infecções por Coronavirus , Coronavirus Canino , Doenças do Cão , Animais , Cães , China/epidemiologia , Prevalência , Doenças do Cão/epidemiologia , Doenças do Cão/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Coronavirus Canino/genética , Coronavirus Canino/isolamento & purificação
3.
Virol J ; 21(1): 64, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468354

RESUMO

OBJECTIVE: Canine enteric coronavirus (CCV) and canine parvovirus type 2 (CPV-2) are the main pathogens responsible for acute gastroenteritis in dogs, and both single and mixed infections are common. This study aimed to establish a double-labeling time-resolved fluorescence immunoassay (TRFIA) to test and distinguish CCV and CPV-2 diseases. METHODS: A sandwich double-labeling TRFIA method was established and optimized using europium(III) (Eu3+)/samarium(III) (Sm3+) chelates. CCV/CPV-2 antigens were first captured by the immobilized antibodies. Then, combined with Eu3+/Sm3+-labeled paired antibodies, the Eu3+/Sm3+ fluorescence values were detected after dissociation to calculate the CCV/CPV-2 ratios. The performance, clinical performance and methodology used for laboratory (sensitivity, specificity, accuracy and stability) testing were evaluated. RESULTS: A double-label TRFIA for CCV and CPV-2 detection was optimized and established. The sensitivity of this TRFIA kit was 0.51 ng/mL for CCV and 0.80 ng/mL for CPV-2, with high specificity for CCV and CPV-2. All the accuracy data were less than 10%, and the recovery ranged from 101.21 to 110.28%. The kits can be temporarily stored for 20 days at 4 °C and can be stored for 12 months at temperatures less than - 20 °C. Based on a methodology comparison of 137 clinically suspected patients, there was no statistically significant difference between the TRFIA kit and the PCR method. Additionally, for CCV detection, the clinical sensitivity was 95.74%, and the clinical specificity was 93.33%. For CPV-2 detection, the clinical sensitivity was 92.86%, and the clinical specificity was 96.97%. CONCLUSION: In this study, a double-label TRFIA kit was prepared for CCV and CPV-2 detection with high laboratory sensitivity, specificity, accuracy, stability, clinical sensitivity and specificity. This kit provides a new option for screening/distinguishing between CCV and CPV-2 and may help improve strategies to prevent and control animal infectious diseases in the future.


Assuntos
Coronavirus Canino , Doenças do Cão , Infecções por Parvoviridae , Parvovirus Canino , Humanos , Animais , Cães , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/veterinária , Sensibilidade e Especificidade , Imunoensaio , Doenças do Cão/diagnóstico
4.
N Z Vet J ; 72(4): 191-200, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38650102

RESUMO

AIMS: To isolate canine respiratory coronavirus (CRCoV) and canine pneumovirus (CnPnV) in cell culture and to compare partial genomic sequences of CRCoV and CnPnV from New Zealand with those from other countries. METHODS: Oropharyngeal swab samples from dogs affected by canine infectious respiratory disease syndrome that were positive for CnPnV (n = 15) or CRCoV (n = 1) by virus-specific reverse transcriptase quantitative PCR (RT-qPCR) in a previous study comprised the starting material. Virus isolation was performed in HRT-18 cells for CRCoV and RAW 264.7 and Vero cells for CnPnV. The entire sequence of CnPnV G protein (1,266 nucleotides) and most (8,063/9,707 nucleotides) of the 3' region of CRCoV that codes for 10 structural and accessory proteins were amplified and sequenced. The sequences were analysed and compared with other sequences available in GenBank using standard molecular tools including phylogenetic analysis. RESULTS: Virus isolation was unsuccessful for both CRCoV and CnPnV. Pneumovirus G protein was amplified from 3/15 (20%) samples that were positive for CnPnV RNA by RT-qPCR. Two of these (NZ-048 and NZ-049) were 100% identical to each other, and 90.9% identical to the third one (NZ-007). Based on phylogenetic analysis of the G protein gene, CnPnV NZ-048 and NZ-049 clustered with sequences from the USA, Thailand and Italy in group A, and CnPnV NZ-007 clustered with sequences from the USA in group B. The characteristics of the predicted genes (length, position) and their putative protein products (size, predicted structure, presence of N- and O-glycosylation sites) of the New Zealand CRCoV sequence were consistent with those reported previously, except for the region located between open reading frame (ORF)3 (coding for S protein) and ORF6 (coding for E protein). The New Zealand virus was predicted to encode 5.9 kDa, 27 kDa and 12.7 kDa proteins, which differed from the putative coding capacity of this region reported for CRCoV from other countries. CONCLUSIONS: This report represents the first characterisation of partial genomic sequences of CRCoV and CnPnV from New Zealand. Our results suggest that the population of CnPnV circulating in New Zealand is not homogeneous, and that the viruses from two clades described overseas are also present here. Limited conclusions can be made based on only one CRCoV sequence, but the putative differences in the coding capacity of New Zealand CRCoV support the previously reported variability of this region. The reasons for such variability and its biological implications need to be further elucidated.


Assuntos
Coronavirus Canino , Doenças do Cão , Genoma Viral , Filogenia , Pneumovirus , Animais , Cães , Nova Zelândia/epidemiologia , Coronavirus Canino/genética , Coronavirus Canino/classificação , Coronavirus Canino/isolamento & purificação , Doenças do Cão/virologia , Doenças do Cão/epidemiologia , Pneumovirus/genética , Pneumovirus/classificação , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/epidemiologia , Células Vero , Chlorocebus aethiops
5.
Arch Virol ; 168(2): 36, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609588

RESUMO

Viral pathogens are the primary cause of canine gastroenteritis. However, few structured comprehensive studies on the viral etiology of canine gastroenteritis have been conducted. In this study, 475 rectal swabs collected over three years (2018-2021) from clinical canine gastroenteritis cases were screened for the presence of six major enteric viruses - canine parvovirus 2 (CPV-2), canine distemper virus (CDV), canine adenovirus 2 (CAdV-2), canine coronavirus (CCoV), canine astrovirus (CaAstV), and canine rotavirus (CRV) - by real-time PCR. The most frequently detected virus was CPV-2, which was present in 64.8% of the samples (subtype 2a, 21.1%; 2b, 77.4%; 2c, 1.5%), followed by CDV (8%), CaAstV (7.2%), CCoV (5.9%), and CAdV-2 (4.6%). Two to four of these viruses in different combinations were found in 16.8% of the samples, and CRV was not detected. The complete genome sequences of Indian isolates of CDV, CCoV, and CaAstV were determined for the first time, and phylogenetic analysis was performed. This study highlights the need for routine prophylactic vaccination with the appropriate vaccines. Notably, 70.3% of animals vaccinated with DHPPiL were found to be positive for at least one virus. Hence, regular molecular analysis of the prevalent viruses is crucial for addressing vaccination failures.


Assuntos
Coronavirus Canino , Vírus da Cinomose Canina , Cinomose , Doenças do Cão , Gastroenterite , Mamastrovirus , Infecções por Parvoviridae , Parvovirus Canino , Rotavirus , Animais , Cães , Filogenia , Doenças do Cão/epidemiologia , Gastroenterite/veterinária , Reação em Cadeia da Polimerase em Tempo Real , Rotavirus/genética , Coronavirus Canino/genética , Mamastrovirus/genética , Vírus da Cinomose Canina/genética
6.
Clin Infect Dis ; 74(3): 446-454, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34013321

RESUMO

BACKGROUND: During the validation of a highly sensitive panspecies coronavirus (CoV) seminested reverse-transcription polymerase chain reaction (RT-PCR) assay, we found canine CoV (CCoV) RNA in nasopharyngeal swab samples from 8 of 301 patients (2.5%) hospitalized with pneumonia during 2017-2018 in Sarawak, Malaysia. Most patients were children living in rural areas with frequent exposure to domesticated animals and wildlife. METHODS: Specimens were further studied with universal and species-specific CoV and CCoV 1-step RT-PCR assays, and viral isolation was performed in A72 canine cells. Complete genome sequencing was conducted using the Sanger method. RESULTS: Two of 8 specimens contained sufficient amounts of CCoVs as confirmed by less-sensitive single-step RT-PCR assays, and 1 specimen demonstrated cytopathic effects in A72 cells. Complete genome sequencing of the virus causing cytopathic effects identified it as a novel canine-feline recombinant alphacoronavirus (genotype II) that we named CCoV-human pneumonia (HuPn)-2018. Most of the CCoV-HuPn-2018 genome is more closely related to a CCoV TN-449, while its S gene shared significantly higher sequence identity with CCoV-UCD-1 (S1 domain) and a feline CoV WSU 79-1683 (S2 domain). CCoV-HuPn-2018 is unique for a 36-nucleotide (12-amino acid) deletion in the N protein and the presence of full-length and truncated 7b nonstructural protein, which may have clinical relevance. CONCLUSIONS: This is the first report of a novel canine-feline recombinant alphacoronavirus isolated from a human patient with pneumonia. If confirmed as a pathogen, it may represent the eighth unique coronavirus known to cause disease in humans. Our findings underscore the public health threat of animal CoVs and a need to conduct better surveillance for them.


Assuntos
Infecções por Coronavirus , Coronavirus Canino , Doenças do Cão , Pneumonia , Animais , Gatos , Infecções por Coronavirus/veterinária , Coronavirus Canino/genética , Cães , Humanos , Malásia , Filogenia
7.
Clin Infect Dis ; 75(1): e1184-e1187, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34718467

RESUMO

We isolated a novel coronavirus from a medical team member presenting with fever and malaise after travel to Haiti. The virus showed 99.4% similarity with a recombinant canine coronavirus recently identified in a pneumonia patient in Malaysia, suggesting that infection with this virus and/or recombinant variants occurs in multiple locations.


Assuntos
COVID-19 , Coronavirus Canino , Animais , Cães , Haiti , Humanos , SARS-CoV-2/genética , Viagem
8.
Microb Pathog ; 166: 105548, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35462014

RESUMO

Canine coronavirus (CCoV) is generally thought of as a mild, but highly contagious, enteritis of young dogs. This study was to investigate the molecular detection and characteristics of CCoV in Chengdu city, Southwest China. 218 canine fecal samples were collected from four animal hospitals and one animal shelter from 2020 to 2021. Fifty-nine CCoV-positive samples were detected by RT-PCR, including 40 CCoV-I, 25 CCoV-IIa, one CCoV-IIb and 10 untyped. To further analyze the genetic diversity of CCoV, we amplified ten complete spike (S) genes, including four CCoV-I and six CCoV-II strains. The amino acid sequence obtained in this study revealed 85.95% ± 12.55% homology with the reference strains. Moreover, in the N-terminal structural domain, there were two amino acid insertions (17QQ18) in two strains of CCoV-I and four amino acid insertions (95IGTN98) in CCoV-IIb strain. Interestingly, we identified that the S1/S2 cleavage site of the S protein of CCoV strains (SWU-SSX3 and SWU-SSX10) were consistent with feline coronavirus (FCoV). In the evolutionary tree, a strain of CCoV-I (SWU-SSX10) was found to be more closely related to FCoV, while SWU-SSX7 of CCoV-IIb was more closely related to coronavirus from the Chinese ferret badger. In addition, for the first time, recombination in a CCoV-IIb strain was found to occur between two subtypes occurring in the C domain of the S1 subunit, with a breakpoint starting at 2141 nt. The results enriched the epidemiological information of CCoV and provided an important reference for the prevention of CCoV in Chengdu city, Southwest China.


Assuntos
Coronavirus Canino , Doenças do Cão , Aminoácidos/genética , Animais , Coronavirus Canino/classificação , Coronavirus Canino/genética , Doenças do Cão/epidemiologia , Doenças do Cão/virologia , Cães , Filogenia
9.
Arch Virol ; 167(9): 1831-1840, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35716267

RESUMO

Viral enteritis is a significant threat to domestic dogs. The two primary pathogens that cause viral enteritis in dogs are canine coronavirus (CCoV) and canine parvovirus (CPV). In this study, we investigated the occurrence of CPV-2, CCoV, and canine circovirus coinfection by characterizing circulating subtypes of CPV-2 in faecal samples from symptomatic dogs admitted to veterinary clinics located in Ankara, Elazig, Kayseri, and Kocaeli provinces of Turkey, between 2019 and 2022. Virus detection by PCR and RT-PCR revealed that CPV-2 was present in 48 (77.4%) samples, and no other agents were detected. Based on the occurrence of the codon GAT at positions 1276 to 1278 (coding for aspartate at residue 426) of VP2, all CPV-2 isolates were confirmed to be of the CPV-2b subtype. The complete genome sequences of two CPV-2b isolates showed a high degree of similarity to and phylogenetic clustering with Australian and East Asian strains/isolates. The predominant CPV strain circulating in the three different regions of Turkey was found to be a CPV-2b strain containing the amino acid substitutions at Y324I and T440A, which commonly contribute to immune escape. This is the first report of complete genomic analysis of CPV-2 isolates circulating in symptomatic domestic dogs in Turkey. The evolution of CPV-2 has raised questions about the efficacy of current vaccination regimes and highlights the importance of monitoring the emergence and spread of new CPV-2 variants.


Assuntos
Coronavirus Canino , Doenças do Cão , Enterite , Infecções por Parvoviridae , Parvovirus Canino , Animais , Austrália , Doenças do Cão/epidemiologia , Cães , Genômica , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/veterinária , Filogenia , Turquia/epidemiologia
10.
Emerg Infect Dis ; 27(2): 517-528, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496240

RESUMO

The lack of population health surveillance for companion animal populations leaves them vulnerable to the effects of novel diseases without means of early detection. We present evidence on the effectiveness of a system that enabled early detection and rapid response a canine gastroenteritis outbreak in the United Kingdom. In January 2020, prolific vomiting among dogs was sporadically reported in the United Kingdom. Electronic health records from a nationwide sentinel network of veterinary practices confirmed a significant increase in dogs with signs of gastroenteric disease. Male dogs and dogs living with other vomiting dogs were more likely to be affected. Diet and vaccination status were not associated with the disease; however, a canine enteric coronavirus was significantly associated with illness. The system we describe potentially fills a gap in surveillance in neglected populations and could provide a blueprint for other countries.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus Canino , Surtos de Doenças , Doenças do Cão/epidemiologia , Vômito/veterinária , Animais , Doenças do Cão/virologia , Cães/virologia , Reino Unido/epidemiologia
11.
Arch Virol ; 166(1): 35-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33005986

RESUMO

Canine coronavirus (CCoV) generally causes an infection with high morbidity and low mortality in dogs. In recent years, studies on coronaviruses have gained a momentum due to coronavirus outbreaks. Mutations in coronaviruses can result in deadly diseases in new hosts (such as SARS-CoV-2) or cause changes in organ-tissue affinity, as occurred with feline infectious peritonitis virus, exacerbating their pathogenesis. In recent studies on different types of CCoV, the pantropic strains characterized by hypervirulent and multi-systemic infections are believed to be emerging, in contrast to classical enteric coronavirus infections. In this study, we investigated emerging hypervirulent and multi-systemic CCoV strains using molecular and bioinformatic analysis, and examined differences between enteric and pantropic CCoV strains at the phylogenetic level. RT-PCR was performed with specific primers to identify the coronavirus M (membrane) and S (spike) genes, and samples were then subjected to DNA sequencing. In phylogenetic analysis, four out of 26 samples were classified as CCoV-1. The remaining 22 samples were all classified as CCoV-2a. In the CCoV-2a group, six samples were in branches close to enteric strains, and 16 samples were in the branches close to pantropic strains. Enteric and pantropic strains were compared by molecular genotyping of CCoV in dogs. Phylogenetic analysis of hypervirulent pantropic strains was carried out at the amino acid and nucleotide sequence levels. CCoV was found to be divergent from the original strain. This implies that some CCoV strains have become pantropic strains that cause multisystemic infections, and they should not be ruled out as the cause of severe diarrhea and multisystemic infections.


Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/veterinária , Coronavirus Canino/genética , Doenças do Cão/patologia , Glicoproteína da Espícula de Coronavírus/genética , Proteínas da Matriz Viral/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Coronavirus Canino/patogenicidade , Diarreia/veterinária , Diarreia/virologia , Doenças do Cão/virologia , Cães , Fezes/virologia , Intestino Delgado/virologia , Mutação/genética , Análise de Sequência de DNA , Turquia
12.
Arch Virol ; 166(7): 1877-1883, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33884475

RESUMO

Here, we report the development of an indirect enzyme-linked immunosorbent assay (ELISA) method that involves using multiepitope recombinant S protein (rSP) as the coating antigen to detect antibodies against canine coronavirus (CCoV). rSP was designed by arranging its four S fragments (91-135 aa, S1 gene; 377-434 aa, S2 gene; 647-671 aa, S3 gene; 951-971 aa, S4 gene; 207-227 aa) and two T-cell epitopes in tandem: T-E1-E2-E3-E4-T. This multiepitope antigen, which has a molecular weight of approximately 25 kDa and contains a His-tag, was recognized by a CCoV-positive serum in a Western blot assay. The optimal concentration of rSP as a coating antigen in the ELISA was 2 µg/mL, and the optimal dilution of enzyme-labeled secondary antibody was 1:10,000. The cutoff OD450 value was established at 0.2395. No reactivity was observed with antisera against canine distemper virus, canine parvovirus, or feline calicivirus, indicating that this assay is highly specific. We also tested 64 clinical serum samples using our newly established method, and the positive rate was found to be 82.8%. In conclusion, our assay was found to be highly sensitive and specific for the detection of antibodies against CCoV, and it can therefore serve as a new, efficient diagnostic method.


Assuntos
Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19/métodos , Coronavirus Canino/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Vírus da Cinomose Canina/imunologia , Cães , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade
13.
BMC Vet Res ; 17(1): 364, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34838001

RESUMO

BACKGROUND: According to the differences of antigen and genetic composition, canine coronavirus (CCoV) consists of two genotypes, CCoV-I and CCoV-II. Since 2004, CCoVs with point mutations or deletions of NSPs are contributing to the changes in tropism and virulence in dogs. RESULTS: In this study, we isolated a CCoV, designated HLJ-071, from a dead 5-week-old female Welsh Corgi with severe diarrhea and vomit. Sequence analysis suggested that HLJ-071 bearing a complete ORF3abc compared with classic CCoV isolates (1-71, K378 and S378). In addition, a variable region was located between S gene and ORF 3a gene, in which a deletion with 104 nts for HLJ-071 when compared with classic CCoV strains 1-71, S378 and K378. Phylogenetic analysis based on the S gene and complete sequences showed that HLJ-071 was closely related to FCoV II. Recombination analysis suggested that HLJ-071 originated from the recombination of FCoV 79-1683, FCoV DF2 and CCoV A76. Finally, according to cell tropism experiments, it suggested that HLJ-071 could replicate in canine macrophages/monocytes cells. CONCLUSION: The present study involved the isolation and genetic characterization of a variant CCoV strain and spike protein and ORF3abc of CCoV might play a key role in viral tropism, which could affect the replication in monocyte/macrophage cells. It will provide essential information for further understanding the evolution in China.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus Canino/genética , Doenças do Cão/virologia , Glicoproteína da Espícula de Coronavírus/genética , Animais , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Coronavirus Canino/classificação , Coronavirus Canino/patogenicidade , Diarreia/veterinária , Diarreia/virologia , Doenças do Cão/epidemiologia , Cães , Feminino , Genoma Viral , Genótipo , Filogenia , Tropismo Viral/fisiologia , Vômito/veterinária , Vômito/virologia
14.
ScientificWorldJournal ; 2021: 9342748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712107

RESUMO

BACKGROUND: Recently, an outbreak of a novel human coronavirus SARS-CoV-2 has become a world health concern leading to severe respiratory tract infections in humans. Virus transmission occurs through person-to-person contact, respiratory droplets, and contaminated hands or surfaces. Accordingly, we aim at reviewing the literature on all information available about the persistence of coronaviruses, including human and animal coronaviruses, on inanimate surfaces and inactivation strategies with biocides employed for chemical and physical disinfection. METHOD: A comprehensive search was systematically conducted in main databases from 1998 to 2020 to identify various viral disinfectants associated with HCoV and methods for control and prevention of this newly emerged virus. RESULTS: The analysis of 62 studies shows that human coronaviruses such as severe acute respiratory syndrome (SARS) coronavirus, Middle East respiratory syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV), canine coronavirus (CCV), transmissible gastroenteritis virus (TGEV), and mouse hepatitis virus (MHV) can be efficiently inactivated by physical and chemical disinfectants at different concentrations (70, 80, 85, and 95%) of 2-propanol (70 and 80%) in less than or equal to 60 s and 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Additionally, glutaraldehyde (0.5-2%), formaldehyde (0.7-1%), and povidone-iodine (0.1-0.75%) could readily inactivate coronaviruses. Moreover, dry heat at 56°C, ultraviolet light dose of 0.2 to 140 J/cm2, and gamma irradiation could effectively inactivate coronavirus. The WHO recommends the use of 0.1% sodium hypochlorite solution or an ethanol-based disinfectant with an ethanol concentration between 62% and 71%. CONCLUSION: The results of the present study can help researchers, policymakers, health decision makers, and people perceive and take the correct measures to control and prevent further transmission of COVID-19. Prevention and decontamination will be the main ways to stop the ongoing outbreak of COVID-19.


Assuntos
COVID-19/prevenção & controle , Desinfetantes/farmacologia , Desinfecção/instrumentação , SARS-CoV-2 , Inativação de Vírus/efeitos dos fármacos , 2-Propanol/farmacologia , Animais , COVID-19/virologia , Coronavirus Canino/efeitos dos fármacos , Desinfecção/métodos , Etanol/farmacologia , Formaldeído/farmacologia , Raios gama , Glutaral/farmacologia , Temperatura Alta , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Vírus da Hepatite Murina/efeitos dos fármacos , Povidona-Iodo/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Hipoclorito de Sódio/farmacologia , Vírus da Gastroenterite Transmissível/efeitos dos fármacos , Raios Ultravioleta
15.
Microb Pathog ; 145: 104209, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32311431

RESUMO

As the outbreaks of COVID-19 in worldwide, coronavirus has once again caught the attention of people. Canine coronavirus is widespread among dog population, and sometimes causes even fatal cases. Here, to characterize the prevalence and evolution of current circulating canine coronavirus (CCoV) strains in China, we collected 213 fecal samples from diarrheic pet dogs between 2018 and 2019. Of the 213 samples, we found 51 (23.94%) were positive for CCoV. Co-infection with canine parvovirus (CPV), canine astrovirus (CaAstV), canine kobuvirus (CaKV), Torque teno canis virus (TTCaV) were ubiquitous existed. Mixed infection of different CCoV subtypes exists extensively. Considering the limited sequences data in recent years, we sequenced 7 nearly complete genomes and 10 complete spike gene. Phylogenetic analysis of spike gene revealed a new subtype CCoV-II Variant and CCoV-IIa was the most prevalent subtype currently circulating. Moreover, we identified strain B906_ZJ_2019 shared 93.24% nucleotide identifies with previous strain A76, and both of them clustered with CCoV-II Variant, which were not well clustered with the known subtypes. Recombination analysis of B906_ZJ_2019 indicated that strain B906_ZJ_2019 may a recombinant variant between CCoV-I and CCoV-II, which is consistent with strain A76. Furthermore, amino acid variations widely existed among current CCoV-IIa strains circulating in China and the classic CCoV-IIa strains, in spite of the unknown functions. In a word, we report a useful information as to the etiology and evolution of canine coronavirus in China based on the available sequences, which is urgent for the devise of future effective disease prevention and control strategies.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus Canino/classificação , Coronavirus Canino/genética , Doenças do Cão/epidemiologia , Genoma Viral/genética , Animais , Sequência de Bases , China/epidemiologia , Infecções por Coronavirus/epidemiologia , DNA Viral/genética , Doenças do Cão/virologia , Cães , Fezes/virologia , Filogenia , Análise de Sequência de DNA , Glicoproteína da Espícula de Coronavírus/genética
16.
Mol Cell Probes ; 53: 101618, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32534013

RESUMO

Viral canine diarrhea has high morbidity and mortality and is prevalent worldwide, resulting in severe economic and spiritual losses to pet owners. However, diarrhea pathogens have similar clinical symptoms and are difficult to diagnose clinically. Thus, fast and accurate diagnostic methods are of great significance for prevention and accurate treatment. In this study, we developed a one-step multiplex TaqMan probe-based real-time PCR for the differential diagnosis of four viruses causing canine diarrhea including, CPV (Canine Parvovirus), CCoV (Canine Coronavirus), CAstV (Canine Astrovirus), and CaKoV (Canine Kobuviruses). The limit of detection was up to 102 copies/µL and performed well with high sensitivity and specificity. This assay was optimized and used to identify possible antagonistic relationships between viruses. From this, artificial pre-experiments were performed for mixed infections, and a total of 82 canine diarrhea field samples were collected from different animal hospitals in Zhejiang, China to assess the method. The virus prevalence was significantly higher than what previously reported based on RT-PCR (Reverse Transcription-Polymerase Chain Reaction). Taken together, these results suggest that the method can be used as a preferred tool for monitoring laboratory epidemics, timely prevention, and effective monitoring of disease progression.


Assuntos
Sondas de DNA , Diarreia/veterinária , Doenças do Cão/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Animais , Avastrovirus , Coronavirus Canino , Diarreia/diagnóstico , Diarreia/virologia , Doenças do Cão/diagnóstico , Cães , Kobuvirus , Parvovirus Canino , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Arch Virol ; 165(10): 2317-2322, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32643035

RESUMO

Canine kobuviruses (CaKoV) have been found in healthy and diarrheic dogs as well as asymptomatic wild carnivores in various countries. In order to investigate the prevalence and evolution of CaKoV in Tangshan, China, 82 dog fecal samples from pet hospitals in Tangshan were subjected to RT-PCR targeting a segment of the 3D gene of CaKoV. Using this method, we identified CaKoV in 14 samples (17.07%, 14/82). Of the CaKoV-positive samples, 78.57% (11/14) and 50% (7/14) were positive for canine parvovirus and canine coronavirus, respectively. The nucleotide sequences of the 14 strains 96.6%-100% identical to each other and 77.6%-99.2% identical to representative sequences from the NCBI GenBank database. We also amplified the 14 VP1 gene sequences and found that they were 93.3%-99.6% identical to each other and 73.3%-97.8% identical to representative sequences from the NCBI GenBank database. Phylogenetic analysis revealed that the 14 CaKoV strains from Tangshan are closely related to those identified in China and Thailand and display less similarity to those found in Africa, the United States, and Europe. Our data suggest that CaKoV circulated in young pet dogs in Tangshan and displays a high co-infection rate with CCoV and CPV. However, the relationship between the three viruses and their roles in the host requires further investigation.


Assuntos
Doenças do Cão/epidemiologia , Kobuvirus/classificação , Kobuvirus/genética , Infecções por Picornaviridae/veterinária , Animais , China/epidemiologia , Coinfecção/epidemiologia , Coinfecção/veterinária , Coinfecção/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Coronavirus Canino/genética , Doenças do Cão/virologia , Cães/virologia , Feminino , Genes Virais , Masculino , Epidemiologia Molecular , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Parvovirus Canino/genética , Animais de Estimação/virologia , Filogenia , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/virologia , Prevalência , Proteínas Estruturais Virais/genética
18.
N Z Vet J ; 68(1): 54-59, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31513753

RESUMO

Aims: To determine the seroprevalence of canine respiratory coronavirus (CRCoV) in New Zealand dogs, and to explore associations with age, sex, breed, month, and geographical region of sampling and reported presence of clinical signs suggestive of respiratory disease.Methods: A total of 1,015 canine serum samples were randomly selected from submissions to a diagnostic laboratory between March and December 2014, and were analysed for CRCoV antibodies using a competitive ELISA. Logistic regression analysis was used to determine associations between seroprevalence of CRCoV and breed category, age, sex, sampling month, region, and reported health status of dogs.Results: Overall, 538/1,015 (53.0%) samples were seropositive for CRCoV, with 492/921 (53.4%) positive dogs in the North Island and 46/94 (49%) in the South Island. Age of dog, sampling month, region, and presence of abnormal respiratory signs were included in the initial logistic regression model. Seroprevalence was higher in dogs aged ≥3 compared with ≤2 years (p < 0.01). The lowest seroprevalence was observed in July (30/105; 28.5%) and August (32/100; 32%), and the highest in June (74/100; 74%). Seroprevalence in dogs from Auckland was higher than in dogs from the Hawkes Bay, Manawatu, Marlborough, and Waikato regions (p < 0.05). Abnormal respiratory signs (coughing, nasal discharge, or sneezing) were reported for 28/1,015 (2.8%) dogs sampled. Seroprevalence for CRCoV tended to be higher among dogs with respiratory signs (67.9 (95% CI = 47.6-83.4)%) than dogs with no reported respiratory signs (52.6 (95% CI = 49.5-55.7)%).Conclusions: Serological evidence of infection with CRCoV was present in more than half of the dogs tested from throughout New Zealand. Differences in CRCoV seroprevalence between regions and lack of seasonal pattern indicate that factors other than external temperatures may be important in the epidemiology of CRCoV in New Zealand.Clinical relevance: Our data suggest that CRCoV should be included in investigations of cases of infectious canine tracheobronchitis, particularly if these occur among dogs vaccinated with current vaccines, which do not include CRCoV antigens.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Coronavirus/veterinária , Coronavirus Canino/imunologia , Doenças do Cão/epidemiologia , Animais , Infecções por Coronavirus/sangue , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Coronavirus Canino/isolamento & purificação , Doenças do Cão/sangue , Doenças do Cão/virologia , Cães , Ensaio de Imunoadsorção Enzimática/veterinária , Modelos Logísticos , Nova Zelândia/epidemiologia , Estudos Soroepidemiológicos
19.
Arch Virol ; 164(8): 2159-2164, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31152250

RESUMO

Canine enteric coronaviruses (CCoVs) are important enteric pathogens of dogs. CCoVs with different variations are typically pantropic and pathogenic in dogs. In this study, we isolated a CCoV, designated HLJ-073, from a dead 6-week-old male Pekingese with gross lesions and diarrhea. Interestingly, sequence analysis suggested that HLJ-073 contained a 350-nt deletion in ORF3abc compared with reference CCoV isolates, resulting in the loss of portions of ORF3a and ORF3c and the complete loss of ORF3b. Phylogenetic analysis based on the S gene showed that HLJ-073 was more closely related to members of the FCoV II cluster than to members of the CCoV I or CCoV II cluster. Furthermore, recombination analysis suggested that HLJ-073 originated from the recombination of FCoV 79-1683 and CCoV A76, which were both isolated in the United States. Cell tropism experiments suggested that HLJ-073 could effectively replicate in canine macrophages/monocytes and human THP-1 cells. This is the first report of the isolation of strain HLJ-073 in China, and this virus has biological characteristics that are different from those of other reported CCoVs.


Assuntos
Coronavirus Canino/genética , Deleção de Sequência/genética , Animais , Células Cultivadas , China , Infecções por Coronavirus/virologia , Diarreia/virologia , Doenças do Cão/virologia , Cães , Humanos , Masculino , Filogenia , Análise de Sequência de DNA/métodos , Glicoproteína da Espícula de Coronavírus/genética , Células THP-1
20.
Virus Genes ; 55(2): 191-197, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30632017

RESUMO

Using viral metagenomics, we characterized the mammalian virome of nasal swabs from 57 dogs with unexplained signs of respiratory infection showing mostly negative results using the IDEXX Canine Respiratory Disease RealPCR™ Panel. We identified canine parainfluenza virus 5, canine respiratory coronavirus, carnivore bocaparvovirus 3, canine circovirus and canine papillomavirus 9. Novel canine taupapillomaviruses (CPV21-23) were also identified in 3 dogs and their complete genome sequenced showing L1 nucleotide identity ranging from 68.4 to 70.3% to their closest taupapillomavirus relative. Taupapillomavirus were the only mammalian viral nucleic acids detected in two affected dogs, while a third dog was coinfected with low levels of canine parainfluenza 5. A role for these taupapillomavirues in canine respiratory disease remains to be determined.


Assuntos
Coronavirus Canino/genética , Metagenômica , Infecções por Paramyxoviridae/virologia , Infecções Respiratórias/virologia , Animais , Coinfecção/genética , Coinfecção/veterinária , Coinfecção/virologia , Coronavirus Canino/isolamento & purificação , Coronavirus Canino/patogenicidade , Doenças do Cão/genética , Doenças do Cão/virologia , Cães , Infecções por Paramyxoviridae/genética , Infecções por Paramyxoviridae/veterinária , Infecções Respiratórias/genética , Infecções Respiratórias/veterinária
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa