Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Mol Plant Microbe Interact ; 37(4): 396-406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148303

RESUMO

We used serial block-face scanning electron microscopy (SBF-SEM) to study the host-pathogen interface between Arabidopsis cotyledons and the hemibiotrophic fungus Colletotrichum higginsianum. By combining high-pressure freezing and freeze-substitution with SBF-SEM, followed by segmentation and reconstruction of the imaging volume using the freely accessible software IMOD, we created 3D models of the series of cytological events that occur during the Colletotrichum-Arabidopsis susceptible interaction. We found that the host cell membranes underwent massive expansion to accommodate the rapidly growing intracellular hypha. As the fungal infection proceeded from the biotrophic to the necrotrophic stage, the host cell membranes went through increasing levels of disintegration culminating in host cell death. Intriguingly, we documented autophagosomes in proximity to biotrophic hyphae using transmission electron microscopy (TEM) and a concurrent increase in autophagic flux between early to mid/late biotrophic phase of the infection process. Occasionally, we observed osmiophilic bodies in the vicinity of biotrophic hyphae using TEM only and near necrotrophic hyphae under both TEM and SBF-SEM. Overall, we established a method for obtaining serial SBF-SEM images, each with a lateral (x-y) pixel resolution of 10 nm and an axial (z) resolution of 40 nm, that can be reconstructed into interactive 3D models using the IMOD. Application of this method to the Colletotrichum-Arabidopsis pathosystem allowed us to more fully understand the spatial arrangement and morphological architecture of the fungal hyphae after they penetrate epidermal cells of Arabidopsis cotyledons and the cytological changes the host cell undergoes as the infection progresses toward necrotrophy. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Arabidopsis , Colletotrichum , Cotilédone , Microscopia Eletrônica de Varredura , Doenças das Plantas , Colletotrichum/fisiologia , Colletotrichum/ultraestrutura , Colletotrichum/patogenicidade , Arabidopsis/microbiologia , Arabidopsis/ultraestrutura , Cotilédone/microbiologia , Cotilédone/ultraestrutura , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno , Hifas/ultraestrutura , Imageamento Tridimensional , Microscopia Eletrônica de Transmissão
2.
Plant Physiol ; 182(2): 1114-1129, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31748417

RESUMO

Exposure of dark-grown (etiolated) seedlings to light induces the heterotrophic-to-photoautotrophic transition (de-etiolation) processes, including the formation of photosynthetic machinery in the chloroplast and cotyledon expansion. Phytochrome is a red (R)/far-red (FR) light photoreceptor that is involved in the various aspects of de-etiolation. However, how phytochrome regulates metabolic dynamics in response to light stimulus has remained largely unknown. In this study, to elucidate the involvement of phytochrome in the metabolic response during de-etiolation, we performed widely targeted metabolomics in Arabidopsis (Arabidopsis thaliana) wild-type and phytochrome A and B double mutant seedlings de-etiolated under R or FR light. The results revealed that phytochrome had strong impacts on the primary and secondary metabolism during the first 24 h of de-etiolation. Among those metabolites, sugar levels decreased during de-etiolation in a phytochrome-dependent manner. At the same time, phytochrome upregulated processes requiring sugars. Triacylglycerols are stored in the oil bodies as a source of sugars in Arabidopsis seedlings. Sugars are provided from triacylglycerols through fatty acid ß-oxidation and the glyoxylate cycle in glyoxysomes. We examined if and how phytochrome regulates sugar production from oil bodies. Irradiation of the etiolated seedlings with R and FR light dramatically accelerated oil body mobilization in a phytochrome-dependent manner. Glyoxylate cycle-deficient mutants not only failed to mobilize oil bodies but also failed to develop thylakoid membranes and expand cotyledon cells upon exposure to light. Hence, phytochrome plays a key role in the regulation of metabolism during de-etiolation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estiolamento/genética , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Plântula/metabolismo , Açúcares/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Cromatografia Líquida de Alta Pressão , Cotilédone/metabolismo , Cotilédone/efeitos da radiação , Cotilédone/ultraestrutura , Estiolamento/efeitos da radiação , Glioxilatos/metabolismo , Glioxissomos/metabolismo , Glioxissomos/efeitos da radiação , Luz , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/efeitos da radiação , Metaboloma/efeitos da radiação , Metabolômica , Microscopia Eletrônica de Transmissão , Mutação , Fitocromo A/genética , Fitocromo B/genética , Plântula/efeitos da radiação , Tilacoides/metabolismo , Tilacoides/ultraestrutura , Triglicerídeos/metabolismo
3.
Int J Mol Sci ; 21(13)2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635665

RESUMO

High growth temperatures negatively affect soybean (Glycine max (L.) Merr) yields and seed quality. Soybean plants, heat stressed during seed development, produce seed that exhibit wrinkling, discoloration, poor seed germination, and have an increased potential for incidence of pathogen infection and an overall decrease in economic value. Soybean breeders have identified a heat stress tolerant exotic landrace genotype, which has been used in traditional hybridization to generate experimental genotypes, with improved seed yield and heat tolerance. Here, we have investigated the seed protein composition and ultrastructure of cotyledonary parenchyma cells of soybean genotypes that are either susceptible or tolerant to high growth temperatures. Biochemical analyses of seed proteins isolated from heat-tolerant and heat-sensitive genotypes produced under 28/22 °C (control), 36/24 °C (moderate), and 42/26 °C (extreme) day/night temperatures revealed that the accumulation in soybean seeds of lipoxygenase, the ß-subunit of ß-conglycinin, sucrose binding protein and Bowman-Birk protease inhibitor were negatively impacted by extreme heat stress in both genotypes, but these effects were less pronounced in the heat-tolerant genotype. Western blot analysis showed elevated accumulation of heat shock proteins (HSP70 and HSP17.6) in both lines in response to elevated temperatures during seed fill. Transmission electron microscopy showed that heat stress caused dramatic structural changes in the storage parenchyma cells. Extreme heat stress disrupted the structure and the membrane integrity of protein storage vacuoles, organelles that accumulate seed storage proteins. The detachment of the plasma membrane from the cell wall (plasmolysis) was commonly observed in the cells of the sensitive line. In contrast, these structural changes were less pronounced in the tolerant genotype, even under extreme heat stress, cells, for the most part, retained their structural integrity. The results of our study demonstrate the contrasting effects of heat stress on the seed protein composition and ultrastructural alterations that contribute to the tolerant genotype's ability to tolerate high temperatures during seed development.


Assuntos
Cotilédone/química , Glycine max/fisiologia , Proteínas de Armazenamento de Sementes/metabolismo , Termotolerância , Cotilédone/ultraestrutura , Glycine max/química , Glycine max/ultraestrutura
4.
Planta ; 249(6): 1731-1746, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30684036

RESUMO

MAIN CONCLUSION: While plant irrigation usually increases yield, irrigation also affects seed characteristics with respect to endoreplication level, chemical composition, number of carbonyl bands, and cuticular wax profiles. Seeds of sweet varieties of the narrow-leaved lupin have good nutritional properties; however, these plants are sensitive to water deficit. Irrigation improves lupin yield, but can affect seed characteristics. The purpose of the study was to evaluate irrigation influence on lupin seed features and their chemical composition. Morphological analyses showed worse quality of seeds from the irrigated plants, with regard to their size and weight. This was confirmed by cytophotometric analyses which revealed a lower DNA content in the nuclei of cells from the apical and basal regions of the irrigated seeds. The lower degree of polyploidy of the nuclei entails lower cell sizes and limited space for storage components. Fourier transform infrared spectroscopic analysis demonstrated that protein and cuticular wax profiles of the irrigated seeds were different from the control. The electrophoretic analyses indicated differences in protein profiles including changes in the proportion of lupin storage proteins. Among the various studied elements, only the nitrogen content decreased in the embryo axis of irrigated plants. Although germination dynamics of the irrigated seeds was higher, the seedlings' development rate was slightly lower than in the control. The hydrogen peroxide level in root meristem cells was higher during germination in the control suggesting its regulatory role in seed metabolism/signaling. Our study indicated that irrigation of lupin plant affected seed features and composition.


Assuntos
Irrigação Agrícola , Peróxido de Hidrogênio/metabolismo , Lupinus/fisiologia , Sementes/fisiologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/fisiologia , Cotilédone/ultraestrutura , Endorreduplicação , Germinação , Lupinus/genética , Lupinus/crescimento & desenvolvimento , Lupinus/ultraestrutura , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/fisiologia , Meristema/ultraestrutura , Microscopia Eletrônica de Varredura , Mitose , Proteínas de Armazenamento de Sementes , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/ultraestrutura , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696013

RESUMO

Seed priming is a pre-sowing method successfully used to improve seed germination. Since water plays a crucial role in germination, the aim of this study was to investigate the relationship between better germination performances of osmoprimed Brassica napus seeds and seed water status during germination. To achieve this goal, a combination of different kinds of approaches was used, including nuclear magnetic resonance (NMR) spectroscopy, TEM, and SEM as well as semi-quantitative PCR (semi-qPCR). The results of this study showed that osmopriming enhanced the kinetics of water uptake and the total amount of absorbed water during both the early imbibition stage and in the later phases of seed germination. The spin⁻spin relaxation time (T2) measurement suggests that osmopriming causes faster water penetration into the seed and more efficient tissue hydration. Moreover, factors potentially affecting water relations in germinating primed seeds were also identified. It was shown that osmopriming (i) changes the microstructural features of the seed coat, e.g., leads to the formation of microcracks, (ii) alters the internal structure of the seed by the induction of additional void spaces in the seed, (iii) increases cotyledons cells vacuolization, and (iv) modifies the expression pattern of aquaporin genes.


Assuntos
Brassica napus/crescimento & desenvolvimento , Germinação , Sementes/crescimento & desenvolvimento , Água/fisiologia , Aquaporinas/genética , Aquaporinas/metabolismo , Brassica napus/ultraestrutura , Cotilédone/citologia , Cotilédone/ultraestrutura , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Cinética , Sementes/ultraestrutura , Vacúolos/metabolismo
6.
BMC Plant Biol ; 18(1): 354, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545296

RESUMO

BACKGROUND: Soybean is a globally important oil seed crop. Both the high protein and oil content of soybean seeds make this crop a lucrative commodity. As in higher eukaryotic species with available genomes, the functional annotation of most of soybean's genes still remains to be investigated. A major hurdle in the functional genomics of soybean is a rapid method to test gene constructs before embarking on stable transformation experiments. RESULTS: In this paper we describe the morphology and composition of the persistent single-cell aleurone layer that derives from the endosperm of developing soybean seeds. Its composition compared to cotyledonary tissue indicates the aleurone layer plays a role in both abiotic and biotic stress. The potential utility as the aleurone layer as a transient expression system in soybean was shown. As a near transparent single-cell layer it can be used as a transient expression system to study transgene expression and inter- and intra-cellular targeting as it is amenable to microscopic techniques. CONCLUSION: The transparent single cell aleurone layer was shown to be compositionally comparable to cotyledonary tissue in soybean with an enrichment in oxidative response proteins and shown to be a potential transient expression platform.


Assuntos
Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Cotilédone/metabolismo , Cotilédone/fisiologia , Cotilédone/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Endosperma/metabolismo , Endosperma/fisiologia , Endosperma/ultraestrutura , Regulação da Expressão Gênica de Plantas , Focalização Isoelétrica , Metaboloma , Microscopia Eletrônica de Transmissão , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/fisiologia , Glycine max/fisiologia , Glycine max/ultraestrutura , Estresse Fisiológico
7.
Am J Bot ; 105(5): 822-835, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29791720

RESUMO

PREMISE OF THE STUDY: Tetraena simplex is an independently evolved C4 species in the Zygophylloideae (Zygophyllaceae) and a characteristic forb of saline flats in hot and sandy desert habitats. During early ontogeny, the species had a morphological shift from planar cotyledons (dorsiventral symmetry) to terete, succulent leaves (radial symmetry). We tested whether this shift had a corresponding change in internal Kranz anatomy and tissue patterning. METHODS: For a comprehensive characterization of C4 photosynthesis across early ontogeny in T. simplex, structural and ultrastructural anatomical properties and localization patterns, activities, and immunoblotting of key C4 photosynthetic enzymes were compared in mesophyll and bundle sheath tissues in cotyledons and leaves. KEY RESULTS: Cotyledons and leaves possessed different types of Kranz anatomy (atriplicoid type and a "Tetraena" variant of the kochioid type, respectively), reflecting the change in leaf morphology. In bundle sheath cells, key differences in ultrastructural features included increased organelle numbers and chloroplast thylakoid stacking. C4 enzymes had strict tissue-specific localization patterns within bundle sheath and mesophyll cells in both cotyledons and leaves. The decarboxylase NAD-ME maintained the highest activity, increasing from cotyledons to leaves. This classified T. simplex as fully C4 across ontogeny and a strictly NAD-ME biochemical subtype. CONCLUSIONS: Tetraena simplex cotyledons and leaves showed differences in Kranz type, with associated progression in ultrastructural features, and differing activities/expression levels of C4 enzymes. Furthermore, leaves characterized a new "Tetraena" variation of the kochioid Kranz anatomy.


Assuntos
Ciclo do Carbono , Carbono/química , Fotossíntese , Zygophyllaceae/anatomia & histologia , Zygophyllaceae/metabolismo , Carbono/metabolismo , Cotilédone/anatomia & histologia , Cotilédone/enzimologia , Cotilédone/metabolismo , Cotilédone/ultraestrutura , Folhas de Planta/anatomia & histologia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Zygophyllaceae/enzimologia , Zygophyllaceae/ultraestrutura
8.
Plant Physiol ; 171(4): 2331-42, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27288363

RESUMO

Dicot leaves are composed of a heterogeneous mosaic of jigsaw puzzle piece-shaped pavement cells that vary greatly in size and the complexity of their shape. Given the importance of the epidermis and this particular cell type for leaf expansion, there is a strong need to understand how pavement cells morph from a simple polyhedral shape into highly lobed and interdigitated cells. At present, it is still unclear how and when the patterns of lobing are initiated in pavement cells, and one major technological bottleneck to addressing the problem is the lack of a robust and objective methodology to identify and track lobing events during the transition from simple cell geometry to lobed cells. We developed a convex hull-based algorithm termed LobeFinder to identify lobes, quantify geometric properties, and create a useful graphical output of cell coordinates for further analysis. The algorithm was validated against manually curated images of pavement cells of widely varying sizes and shapes. The ability to objectively count and detect new lobe initiation events provides an improved quantitative framework to analyze mutant phenotypes, detect symmetry-breaking events in time-lapse image data, and quantify the time-dependent correlation between cell shape change and intracellular factors that may play a role in the morphogenesis process.


Assuntos
Algoritmos , Células Vegetais/ultraestrutura , Plantas/ultraestrutura , Forma Celular , Cotilédone/genética , Cotilédone/ultraestrutura , Mutação , Fenótipo , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Plantas/genética
9.
Plant Physiol ; 170(4): 2278-94, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26829981

RESUMO

The transition from etiolated to green seedlings involves the conversion of etioplasts into mature chloroplasts via a multifaceted, light-driven process comprising multiple, tightly coordinated signaling networks. Here, we demonstrate that light-induced greening and chloroplast differentiation in tomato (Solanum lycopersicum) seedlings are mediated by an intricate cross talk among phytochromes, nitric oxide (NO), ethylene, and auxins. Genetic and pharmacological evidence indicated that either endogenously produced or exogenously applied NO promotes seedling greening by repressing ethylene biosynthesis and inducing auxin accumulation in tomato cotyledons. Analysis performed in hormonal tomato mutants also demonstrated that NO production itself is negatively and positively regulated by ethylene and auxins, respectively. Representing a major biosynthetic source of NO in tomato cotyledons, nitrate reductase was shown to be under strict control of both phytochrome and hormonal signals. A close NO-phytochrome interaction was revealed by the almost complete recovery of the etiolated phenotype of red light-grown seedlings of the tomato phytochrome-deficient aurea mutant upon NO fumigation. In this mutant, NO supplementation induced cotyledon greening, chloroplast differentiation, and hormonal and gene expression alterations similar to those detected in light-exposed wild-type seedlings. NO negatively impacted the transcript accumulation of genes encoding phytochromes, photomorphogenesis-repressor factors, and plastid division proteins, revealing that this free radical can mimic transcriptional changes typically triggered by phytochrome-dependent light perception. Therefore, our data indicate that negative and positive regulatory feedback loops orchestrate ethylene-NO and auxin-NO interactions, respectively, during the conversion of colorless etiolated seedlings into green, photosynthetically competent young plants.


Assuntos
Etilenos/metabolismo , Estiolamento , Ácidos Indolacéticos/metabolismo , Óxido Nítrico/metabolismo , Plastídeos/metabolismo , Plântula/metabolismo , Solanum lycopersicum/fisiologia , Biliverdina/análogos & derivados , Biliverdina/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Clorofila/metabolismo , Cotilédone/metabolismo , Cotilédone/efeitos da radiação , Cotilédone/ultraestrutura , Regulação para Baixo/genética , Regulação para Baixo/efeitos da radiação , Fumigação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Luz , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos da radiação , Morfogênese/efeitos da radiação , Mutação/genética , Nitrato Redutase/metabolismo , Plastídeos/efeitos da radiação , Plastídeos/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos da radiação
10.
Plant Cell ; 26(7): 3090-100, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25052714

RESUMO

Purine nucleotides can be fully catabolized by plants to recycle nutrients. We have isolated a urate oxidase (uox) mutant of Arabidopsis thaliana that accumulates uric acid in all tissues, especially in the developing embryo. The mutant displays a reduced germination rate and is unable to establish autotrophic growth due to severe inhibition of cotyledon development and nutrient mobilization from the lipid reserves in the cotyledons. The uox mutant phenotype is suppressed in a xanthine dehydrogenase (xdh) uox double mutant, demonstrating that the underlying cause is not the defective purine base catabolism, or the lack of UOX per se, but the elevated uric acid concentration in the embryo. Remarkably, xanthine accumulates to similar levels in the xdh mutant without toxicity. This is paralleled in humans, where hyperuricemia is associated with many diseases whereas xanthinuria is asymptomatic. Searching for the molecular cause of uric acid toxicity, we discovered a local defect of peroxisomes (glyoxysomes) mostly confined to the cotyledons of the mature embryos, which resulted in the accumulation of free fatty acids in dry seeds. The peroxisomal defect explains the developmental phenotypes of the uox mutant, drawing a novel link between uric acid and peroxisome function, which may be relevant beyond plants.


Assuntos
Arabidopsis/enzimologia , Peroxissomos/metabolismo , Urato Oxidase/metabolismo , Ácido Úrico/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotilédone/embriologia , Cotilédone/enzimologia , Cotilédone/genética , Cotilédone/ultraestrutura , Ácidos Graxos/metabolismo , Germinação , Mutação , Fenótipo , Componentes Aéreos da Planta/embriologia , Componentes Aéreos da Planta/enzimologia , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/ultraestrutura , Regiões Promotoras Genéticas/genética , Nucleotídeos de Purina/metabolismo , Plântula/embriologia , Plântula/enzimologia , Plântula/genética , Plântula/ultraestrutura , Sementes/embriologia , Sementes/enzimologia , Sementes/genética , Sementes/ultraestrutura , Urato Oxidase/genética , Ácido Úrico/química , Xantina/química , Xantina/metabolismo , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo
11.
Plant Cell ; 24(11): 4717-30, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23192225

RESUMO

In plants, the trans-Golgi network and early endosomes (TGN/EE) function as the central junction for major endomembrane trafficking events, including endocytosis and secretion. Here, we demonstrate that the KEEP ON GOING (KEG) protein of Arabidopsis thaliana localizes to the TGN/EE and plays an essential role in multiple intracellular trafficking processes. Loss-of-function keg mutants exhibited severe defects in cell expansion, which correlated with defects in vacuole morphology. Confocal microscopy revealed that KEG is required for targeting of plasma membrane proteins to the vacuole. This targeting process appeared to be blocked at the step of multivesicular body (MVB) fusion with the vacuolar membrane as the MVB-associated small GTPase ARA6 was also blocked in vacuolar delivery. In addition, loss of KEG function blocked secretion of apoplastic defense proteins, indicating that KEG plays a role in plant immunity. Significantly, KEG was degraded specifically in cells infected by the fungus Golovinomyces cichoracearum, suggesting that this pathogen may target KEG to manipulate the host secretory system as a virulence strategy. Taking these results together, we conclude that KEG is a key component of TGN/EE that regulates multiple post-Golgi trafficking events in plants, including vacuole biogenesis, targeting of membrane-associated proteins to the vacuole, and secretion of apoplastic proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Doenças das Plantas/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Ascomicetos/fisiologia , Cotilédone/imunologia , Cotilédone/metabolismo , Cotilédone/microbiologia , Cotilédone/ultraestrutura , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Hipocótilo/imunologia , Hipocótilo/metabolismo , Hipocótilo/microbiologia , Hipocótilo/ultraestrutura , Modelos Biológicos , Corpos Multivesiculares/metabolismo , Mutagênese Insercional , Fenótipo , Doenças das Plantas/microbiologia , Epiderme Vegetal/imunologia , Epiderme Vegetal/metabolismo , Epiderme Vegetal/microbiologia , Epiderme Vegetal/ultraestrutura , Imunidade Vegetal , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Transporte Proteico , Plântula/imunologia , Plântula/metabolismo , Plântula/microbiologia , Plântula/ultraestrutura , Nicotiana/genética , Nicotiana/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/isolamento & purificação , Vacúolos/metabolismo
12.
Arch Latinoam Nutr ; 65(2): 110-8, 2015 Jun.
Artigo em Espanhol | MEDLINE | ID: mdl-26817383

RESUMO

(Phaseolus vulgaris). The hardening of Phaseolus vulgaris beans stored at high temperature and high relative humidity is one of the main constraints for consumption. The objective of this research was to evaluate by scanning electron microscopy, structural changes in cotyledons and testa of the hardened beans. The freshly harvested grains were stored for twelve months under two conditions: 5 ° C-34% RH and 37 ° C-75% RH, in order to promote hardening. The stored raw and cooked grains were lyophilized and fractured. The sections of testa and cotyledons were observed in an electron microscope JSM-6390. After twelve months, grains stored at 37 ° C-75% RH increased their hardness by 503%, whereas there were no significant changes in grains stored at 5 ° C-34% RH. At the microstructural level, the cotyledons of the raw grains show clear differences in appearance of the cell wall, into the intercellular space size and texture matrix protein. There were also differences in compaction of palisade and sub-epidermal layer in the testa of raw grains. After cooking, cotyledon cells of the soft grains were well separated while these ofhard grains were seldom separated. In conclusion, the found differences in hard and soft grains showed a significant participation of both structures, cotyledons and testa, in the grains hardening.


Assuntos
Phaseolus/ultraestrutura , Cotilédone/química , Cotilédone/ultraestrutura , Manipulação de Alimentos , Dureza , Temperatura Alta , Humanos , Umidade , Microscopia Eletrônica de Varredura , Phaseolus/química
13.
Plant J ; 73(5): 720-32, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23227895

RESUMO

The plastid has its own translation system, and its ribosomes are assembled through a complex process in which rRNA precursors are processed and ribosomal proteins are inserted into the rRNA backbone. DEAD-box proteins have been shown to play roles in multiple steps in ribosome biogenesis. To investigate the cellular and physiological roles of an Arabidopsis DEAD-box protein, RH3, we examined its expression and localization and the phenotypes of rh3-4, a T-DNA insertion mutant allele of RH3. The promoter activity of RH3 is strongest in the greening tissues of 3-day and 1-week-old seedlings but reduced afterwards. Cotyledons were pale and seedling growth was retarded in the mutant. The most obvious abnormality in the mutant chloroplasts was their lack of normal ribosomes. Electron tomography analysis indicated that ribosome density in the 3-day-old mutant chloroplasts is only 20% that of wild-type chloroplasts, and the ribosomes in the mutant are smaller. These chloroplast defects in rh3-4 were alleviated in 2-week-old cotyledons and true leaves. Interestingly, rh3-4 seedlings have lower amounts of abscisic acid prior to recovery of their chloroplasts, and were more sensitive to abiotic stresses. Transcriptomic analysis indicated that nuclear genes for chloroplast proteins are down-regulated, and proteins mediating chloroplast-localized steps of abscisic acid biosynthesis are expressed to a lower extent in 1-week-old rh3-4 seedlings. Taken together, these results suggest that conversion of eoplasts into chloroplasts in young seedlings is critical for the seedlings to start carbon fixation as well as for maintenance of abscisic acid levels for responding to environmental challenges.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cloroplastos/fisiologia , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/química , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Morte Celular , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Cloroplastos/ultraestrutura , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/fisiologia , Cotilédone/ultraestrutura , RNA Helicases DEAD-box/metabolismo , Tomografia com Microscopia Eletrônica , Perfilação da Expressão Gênica , Biblioteca Gênica , Teste de Complementação Genética , Germinação , Mutagênese Insercional , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA de Plantas/genética , Ribossomos/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/ultraestrutura , Análise de Sequência de RNA
14.
Plant Physiol ; 161(1): 278-90, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23144185

RESUMO

Circadian clocks are biochemical timers regulating many physiological and molecular processes according to the day/night cycle. The small GTPase LIGHT INSENSITIVE PERIOD1 (LIP1) is a circadian clock-associated protein that regulates light input to the clock. In the absence of LIP1, the effect of light on free-running period length is much reduced. Here, we show that in addition to suppressing red and blue light-mediated photomorphogenesis, LIP1 is also required for light-controlled inhibition of endoreplication and tolerance to salt stress in Arabidopsis (Arabidopsis thaliana). We demonstrate that in the processes of endoreplication and photomorphogenesis, LIP1 acts downstream of the red and blue light photoreceptors phytochrome B and cryptochromes. Manipulation of the subcellular distribution of LIP1 revealed that the circadian function of LIP1 requires nuclear localization of the protein. Our data collectively suggest that LIP1 influences several signaling cascades and that its role in the entrainment of the circadian clock is independent from the other pleiotropic effects. Since these functions of LIP1 are important for the early stages of development or under conditions normally experienced by germinating seedlings, we suggest that LIP1 is a regulator of seedling establishment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Relógios Circadianos , Endorreduplicação , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Estresse Fisiológico , Transporte Ativo do Núcleo Celular , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Núcleo Celular/enzimologia , Núcleo Celular/genética , Forma Celular , Cotilédone/metabolismo , Cotilédone/efeitos da radiação , Cotilédone/ultraestrutura , Criptocromos/genética , Criptocromos/metabolismo , Teste de Complementação Genética , Pleiotropia Genética , Germinação , Microscopia Eletrônica de Varredura , Proteínas Monoméricas de Ligação ao GTP/genética , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Ploidias , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/efeitos da radiação , Cloreto de Sódio/farmacologia
15.
Plant Cell ; 23(10): 3727-44, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21984697

RESUMO

Here, a large fraction of plant mitochondrial actin was found to be resistant to protease and high-salt treatments, suggesting it was protected by mitochondrial membranes. A portion of this actin became sensitive to protease or high-salt treatment after removal of the mitochondrial outer membrane, indicating that some actin is located inside the mitochondrial outer membrane. The import of an actin-green fluorescent protein (GFP) fusion protein into the mitochondria in a transgenic plant, actin:GFP, was visualized in living cells and demonstrated by flow cytometry and immunoblot analyses. Polymerized actin was found in mitochondria of actin:GFP plants and in mung bean (Vigna radiata). Notably, actin associated with mitochondria purified from early-developing cotyledons during seed germination was sensitive to high-salt and protease treatments. With cotyledon ageing, mitochondrial actin became more resistant to both treatments. The progressive import of actin into cotyledon mitochondria appeared to occur in concert with the conversion of quiescent mitochondria into active forms during seed germination. The binding of actin to mitochondrial DNA (mtDNA) was demonstrated by liquid chromatography-tandem mass spectrometry analysis. Porin and ADP/ATP carrier proteins were also found in mtDNA-protein complexes. Treatment with an actin depolymerization reagent reduced the mitochondrial membrane potential and triggered the release of cytochrome C. The potential function of mitochondrial actin and a possible actin import pathway are discussed.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Mitocôndrias/metabolismo , Phaseolus/metabolismo , Sequência de Aminoácidos , Cotilédone/genética , Cotilédone/metabolismo , Cotilédone/ultraestrutura , Citocromos c/metabolismo , DNA Mitocondrial/genética , Germinação/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Nucleoproteínas/metabolismo , Peptídeo Hidrolases/farmacologia , Phaseolus/efeitos dos fármacos , Phaseolus/genética , Phaseolus/ultraestrutura , Plantas Geneticamente Modificadas , Porinas/metabolismo , Cloreto de Potássio/farmacologia , Transporte Proteico , Proteínas Recombinantes de Fusão , Plântula/genética , Plântula/metabolismo , Plântula/ultraestrutura , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/metabolismo , Sementes/ultraestrutura
16.
Plant Physiol ; 160(1): 261-73, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22751379

RESUMO

Although seeds are a sink organ, chlorophyll synthesis and degradation occurs during embryogenesis and in a manner similar to that observed in photosynthetic leaves. Some mutants retain chlorophyll after seed maturation, and they are disturbed in seed storability. To elucidate the effects of chlorophyll retention on the seed storability of Arabidopsis (Arabidopsis thaliana), we examined the non-yellow coloring1 (nyc1)/nyc1-like (nol) mutants that do not degrade chlorophyll properly. Approximately 10 times more chlorophyll was retained in the dry seeds of the nyc1/nol mutant than in the wild-type seeds. The germination rates rapidly decreased during storage, with most of the mutant seeds failing to germinate after storage for 23 months, whereas 75% of the wild-type seeds germinated after 42 months. These results indicate that chlorophyll retention in the seeds affects seed longevity. Electron microscopic studies indicated that many small oil bodies appeared in the embryonic cotyledons of the nyc1/nol mutant; this finding indicates that the retention of chlorophyll affects the development of organelles in embryonic cells. A sequence analysis of the NYC1 promoter identified a potential abscisic acid (ABA)-responsive element. An electrophoretic mobility shift assay confirmed the binding of an ABA-responsive transcriptional factor to the NYC1 promoter DNA fragment, thus suggesting that NYC1 expression is regulated by ABA. Furthermore, NYC1 expression was repressed in the ABA-insensitive mutants during embryogenesis. These data indicate that chlorophyll degradation is induced by ABA during seed maturation to produce storable seeds.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Sementes/enzimologia , Ácido Abscísico , Oxirredutases do Álcool/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cotilédone/metabolismo , Cotilédone/ultraestrutura , DNA de Plantas/genética , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica de Plantas , Germinação , Óleos de Plantas/metabolismo , Regiões Promotoras Genéticas , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Fatores de Tempo
17.
Physiol Plant ; 149(2): 286-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23517134

RESUMO

In willow seeds, photooxidative damage is mainly restricted to the outer cotyledonary tissues, significantly reducing normal germination. Here we analyzed the damage generated in cotyledonary tissues and investigated whether the increase in reactive oxygen species (ROS) generation in seedlings from photooxidized seeds can affect the morphogenetic capacity of the shoot apical meristem. Seeds were photooxidized under different light intensities and the evolution of the damage during seedling growth was studied by light and transmission electron microscopies. The level of lipid peroxidation and changes in antioxidant capacity were measured following the time course of superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase enzyme activities, and the effect of photooxidative stress on the genesis of new leaf primordia and lateral roots was examined. Early and active endocytosis and autophagy, changes in chloroplast morphology, as well as the accumulation and diffusion of ROS all play important roles in the early cell death observed in cotyledonary tissues. Following germination, seedlings from photooxidized seeds anticipated the emergence of first leaves, which complemented the altered functionality of the damaged cotyledons.


Assuntos
Cotilédone/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Salix/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Análise de Variância , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Cloroplastos/metabolismo , Cotilédone/metabolismo , Cotilédone/ultraestrutura , Germinação , Luz , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Microscopia Eletrônica de Transmissão , Oxirredução/efeitos da radiação , Peroxidase/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salix/metabolismo , Plântula/metabolismo , Plântula/ultraestrutura , Sementes/metabolismo , Sementes/efeitos da radiação , Estresse Fisiológico/efeitos da radiação , Superóxido Dismutase/metabolismo , Fatores de Tempo
18.
J Plant Res ; 126(6): 823-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23887833

RESUMO

The Orange (Or) gene is a gene mutation that can increase carotenoid content in plant tissues normally devoid of pigments. It affects plastid division and is involved in the differentiation of proplastids or non-colored plastids into chromoplasts. In this study, the de-etiolation process of the wild type (WT) cauliflower (Brassica oleracea L. var. botrytis) and Or mutant seedlings was investigated. We analyzed pigment content, plastid development, transcript abundance and protein levels of genes involved in the de-etiolation process. The results showed that Or can increase the carotenoid content in green tissues, although not as effectively as in non-green tissues, and this effect might be caused by the changes in biosynthetic pathway genes at both transcriptional and post-transcriptional levels. There was no significant difference in the plastid development process between the two lines. However, the increased content of antheraxanthin and anthocyanin, and higher expression levels of violaxanthin de-epoxidase gene (VDE) suggested a stress situation leading to photoinhibition and enhanced photoprotection in the Or mutant. The up-regulated expression levels of the reactive oxygen species (ROS)-induced genes, ZAT10 for salt tolerance zinc finger protein and ASCORBATE PEROXIDASE2 (APX2), suggested the existence of photo-oxidative stress in the Or mutant. In summary, abovementioned findings provide additional insight into the functions of the Or gene in different tissues and at different developmental stages.


Assuntos
Brassica/fisiologia , Regulação da Expressão Gênica de Plantas , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Antocianinas/metabolismo , Brassica/genética , Brassica/efeitos da radiação , Brassica/ultraestrutura , Carotenoides/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Cotilédone/genética , Cotilédone/fisiologia , Cotilédone/efeitos da radiação , Cotilédone/ultraestrutura , Estiolamento , Luz , Mutação , Especificidade de Órgãos , Estresse Oxidativo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Plastídeos/ultraestrutura , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Plântula/ultraestrutura , Regulação para Cima
19.
New Phytol ; 193(2): 327-38, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21988647

RESUMO

• The cell and developmental biology of zygotic embryogenesis in the model legume Medicago truncatula has received little attention. We studied M. truncatula embryogenesis from embryo sac until cotyledon maturation, including oil and protein body biogenesis. • We characterized embryo development using light and electron microscopy, measurement of protein and lipid fatty acid accumulation and by profiling the expression of key seed storage genes. • Embryo sac development in M. truncatula is of the Polygonum type. A distinctive multicellular hypophysis and suspensor develops before the globular stage and by the early cotyledon stage, the procambium connects the developing apical meristems. In the storage parenchyma of cotyledons, ovoid oil bodies surround protein bodies and the plasma membrane. Four major lipid fatty acids accumulate as cotyledons develop, paralleling the expression of OLEOSIN and the storage protein genes, VICILIN and LEGUMIN. • Zygotic embryogenesis in M. truncatula features the development of a distinctive multicellular hypophysis and an endopolyploid suspensor with basal transfer cell. A clear procambial connection between the apical meristems is evident and there is a characteristic arrangement of oil bodies in the cotyledons and radicle. Our data help link embryogenesis to the genetic regulation of oil and protein body biogenesis in legume seed.


Assuntos
Medicago truncatula/embriologia , Modelos Biológicos , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Cotilédone/citologia , Cotilédone/ultraestrutura , Ácidos Graxos/biossíntese , Fertilização , Flores/citologia , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas , Medicago truncatula/citologia , Medicago truncatula/genética , Medicago truncatula/ultraestrutura , Microscopia de Fluorescência , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/citologia , Sementes/ultraestrutura , Zigoto/citologia , Zigoto/ultraestrutura
20.
Plant Cell Rep ; 31(11): 2031-45, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22821363

RESUMO

Using immunocytochemical methods, at both the light and electron microscopic level, we have investigated the spatial and temporal distribution of lipid transfer protein 1 (LTP1) epitopes during the induction of somatic embryogenesis in explants of Arabidopsis thaliana. Immunofluorescence labelling demonstrated the presence of high levels of LTP1 epitopes within the proximal regions of the cotyledons (embryogenic regions) associated with particular morphogenetic events, including intense cell division activity, cotyledon swelling, cell loosening and callus formation. Precise analysis of the signal localization in protodermal and subprotodermal cells indicated that cells exhibiting features typical of embryogenic cells were strongly labelled, both in walls and the cytoplasm, while in the majority of meristematic-like cells no signal was observed. Staining with lipophilic dyes revealed a correlation between the distribution of LTP1 epitopes and lipid substances within the cell wall. Differences in label abundance and distribution between embryogenic and non-embryogenic regions of explants were studied in detail with the use of immunogold electron microscopy. The labelling was strongest in both the outer periclinal and anticlinal walls of the adaxial, protodermal cells of the proximal region of the cotyledon. The putative role(s) of lipid transfer proteins in the formation of lipid lamellae and in cell differentiation are discussed. Key message Occurrence of lipid transfer protein 1 epitopes in Arabidopsis explant cells accompanies changes in cell fate and may be correlated with the deposition of lipid substances in the cell walls.


Assuntos
Antígenos de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Epitopos/metabolismo , Proteínas de Plantas/metabolismo , Antígenos de Plantas/imunologia , Arabidopsis/embriologia , Arabidopsis/imunologia , Arabidopsis/ultraestrutura , Proteínas de Transporte/imunologia , Diferenciação Celular , Divisão Celular , Parede Celular/imunologia , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Cotilédone/imunologia , Cotilédone/metabolismo , Cotilédone/ultraestrutura , Citoplasma/imunologia , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Epitopos/análise , Imuno-Histoquímica , Metabolismo dos Lipídeos , Lipídeos , Meristema/imunologia , Meristema/metabolismo , Meristema/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Especificidade de Órgãos , Proteínas de Plantas/imunologia , Técnicas de Embriogênese Somática de Plantas , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa