Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 532
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Entomol ; 69: 439-453, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270983

RESUMO

In Africa, humans evolved as honey hunters of honey bee subspecies adapted to diverse geographical regions. Beekeeping today is practiced much as it was when Africans moved from honey hunting to beekeeping nearly 5,000 years ago, with beekeepers relying on seasonally available wild bees. Research suggests that populations are resilient, able to resist diseases and novel parasites. Distinct biomes, as well as environmental pressures, shaped the behavior and biology of these bees and in turn influenced how indigenous beekeeping developed. It appears that passive beekeeping practices that enabled free-living populations contributed to the overall resilience and health of the bee. There is clearly a need for research aimed at a deeper understanding of bee biology and the ecosystems from which they benefit and on which humans depend, as well as a growing realization that the management of these bees requires an indigenous approach that reflects a broader knowledge base and the economics of local communities and markets.


Assuntos
Ecossistema , Mel , Abelhas , Humanos , Animais , Criação de Abelhas , África , Ecologia
2.
Glob Chang Biol ; 30(3): e17219, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450832

RESUMO

The Western honey bee Apis mellifera is a managed species that provides diverse hive products and contributing to wild plant pollination, as well as being a critical component of crop pollination systems worldwide. High mortality rates have been reported in different continents attributed to different factors, including pesticides, pests, diseases, and lack of floral resources. Furthermore, climate change has been identified as a potential driver negatively impacting pollinators, but it is still unclear how it could affect honey bee populations. In this context, we carried out a systematic review to synthesize the effects of climate change on honey bees and beekeeping activities. A total of 90 articles were identified, providing insight into potential impacts (negative, neutral, and positive) on honey bees and beekeeping. Interest in climate change's impact on honey bees has increased in the last decade, with studies mainly focusing on honey bee individuals, using empirical and experimental approaches, and performed at short-spatial (<10 km) and temporal (<5 years) scales. Moreover, environmental analyses were mainly based on short-term data (weather) and concentrated on only a few countries. Environmental variables such as temperature, precipitation, and wind were widely studied and had generalized negative effects on different biological and ecological aspects of honey bees. Food reserves, plant-pollinator networks, mortality, gene expression, and metabolism were negatively impacted. Knowledge gaps included a lack of studies at the apiary and beekeeper level, a limited number of predictive and perception studies, poor representation of large-spatial and mid-term scales, a lack of climate analysis, and a poor understanding of the potential impacts of pests and diseases. Finally, climate change's impacts on global beekeeping are still an emergent issue. This is mainly due to their diverse effects on honey bees and the potential necessity of implementing adaptation measures to sustain this activity under complex environmental scenarios.


La abeja occidental Apis mellifera es una especie manejada que proporciona diversos productos de la colmena y servicios de polinización, los cuales son cruciales para plantas silvestres y cultivos en todo el mundo. En distintos continentes se han registrado altas tasas de mortalidad, las cuales son atribuidas a diversos factores, como el uso de pesticidas, plagas, enfermedades y falta de recursos florales. Además, el cambio climático ha sido identificado como un potencial factor que afecta negativamente a los polinizadores, pero aún no está claro cómo podría afectar a las poblaciones de abejas melíferas. En este contexto, realizamos una revisión sistemática de la literatura disponible para sintetizar los efectos del cambio climático en las abejas melíferas y las actividades apícolas. En total, se identificaron 90 artículos que proporcionaron información sobre los posibles efectos (negativos, neutros y positivos) en las abejas melíferas y la apicultura. El interés por el impacto del cambio climático en las abejas melíferas ha aumentado en la última década, con estudios centrados principalmente en individuos de abejas melíferas, utilizando enfoques empíricos y experimentales y realizados a escalas espaciales (<10 km) y temporales (<5 años) cortas. Además, los análisis ambientales fueron basaron principalmente en datos a corto plazo (meteorológicos) y se concentraron sólo en algunos países. Variables ambientales como la temperatura, las precipitaciones y el viento fueron ampliamente estudiadas y tuvieron efectos negativos generalizados sobre distintos aspectos biológicos y ecológicos de las abejas melíferas. Además, las reservas alimenticias, las interacciones planta-polinizador, la mortalidad, la expresión génica y el metabolismo se vieron afectados negativamente. Entre los vacios de conocimiento cabe mencionar la falta de estudios a nivel de colmenar y apicultor, la escasez de estudios de predicción y percepción, la escasa representación de las grandes escalas espaciales y a mediano plazo, el déficit de análisis climáticos y la escasa comprensión de los impactos potenciales de plagas y enfermedades. Por último, las repercusiones del cambio climático en la apicultura mundial siguen siendo un tema emergente, que debe estudiarse en los distintos países. Esto se debe principalmente a sus diversos efectos sobre las abejas melíferas y a la necesidad potencial de aplicar medidas de adaptación para mantener esta actividad crucial en escenarios medioambientales complejos.


Assuntos
Criação de Abelhas , Praguicidas , Animais , Abelhas , Mudança Climática , Alimentos , Polinização
3.
Arch Microbiol ; 206(5): 205, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573383

RESUMO

Honeybees are vital for global crop pollination, making indispensable contributions to agricultural productivity. However, these vital insects are currently facing escalating colony losses on a global scale, primarily attributed to parasitic and pathogenic attacks. The prevalent response to combat these infections may involve the use of antibiotics. Nevertheless, the application of antibiotics raises concerns regarding potential adverse effects such as antibiotic resistance and imbalances in the gut microbiota of bees. In response to these challenges, this study reviews the utilization of a probiotic-supplemented pollen substitute diet to promote honeybee gut health, enhance immunity, and overall well-being. We systematically explore various probiotic strains and their impacts on critical parameters, including survival rate, colony strength, honey and royal jelly production, and the immune response of bees. By doing so, we emphasize the significance of maintaining a balanced gut microbial community in honeybees. The review also scrutinizes the factors influencing the gut microbial communities of bees, elucidates the consequences of dysbiosis, and evaluates the potential of probiotics to mitigate these challenges. Additionally, it delineates different delivery mechanisms for probiotic supplementation and elucidates their positive effects on diverse health parameters of honeybees. Given the alarming decline in honeybee populations and the consequential threat to global food security, this study provides valuable insights into sustainable practices aimed at supporting honeybee populations and enhancing agricultural productivity.


Assuntos
Criação de Abelhas , Probióticos , Abelhas , Animais , Agricultura , Antibacterianos , Disbiose
4.
J Invertebr Pathol ; 203: 108074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350524

RESUMO

Most honey bee pathogens, such as Vairimorpha (Nosema), cannot be rapidly and definitively diagnosed in a natural setting, consequently there is typically the spread of these diseases through shared and re-use of beekeeping equipment. Furthermore, there are no viable treatment options available for Nosema spores to aid in managing the spread of this bee disease. We therefore aimed to develop a new method using novel Zinc Phthalocyanine (ZnPc) as a photosensitizer for the photodynamic inactivation of Nosema spores that could be used for the decontamination of beekeeping equipment. Nosema spores were propagated for in vitro testing using four caged Apis mellifera honey bees. The ZnPc treatment was characterized, encapsulated with a liposome, and then used as either a 10 or 100 µM treatment for the freshly harvested Nosema spores, for either a 30 and or 60-minute time period, under either light or dark conditions, in-vitro, in 96-well plates. In the dark treatment, after 30-min, the ZnPc 100 µM treatment, caused a 30 % Nosema mortality, while this increased to 80 % at the same concentration after the light treatment. The high rate of anti-spore effects, in a short period of time, supports the notion that this could be an effective treatment for managing honey bee Nosema infections in the future. Our results also suggest that the photo activation of the treatment could be applied in the field setting and this would increase the sterilization of beekeeping equipment against Nosema.


Assuntos
Isoindóis , Nosema , Compostos Organometálicos , Compostos de Zinco , Abelhas , Animais , Nosema/fisiologia , Criação de Abelhas
5.
Bull Entomol Res ; 114(1): 77-87, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38178794

RESUMO

Bees play a significant role in the health of terrestrial ecosystems. The decline of bee populations due to colony collapse disorder around the world constitutes a severe ecological danger. Maintaining high yield of honey and understanding of bee behaviour necessitate constant attention to the hives. Research initiatives have been taken to establish monitoring programs to study the behaviour of bees in accessing their habitat. Monitoring the sanitation and development of bee brood allows for preventative measures to be taken against mite infections and an overall improvement in the brood's health. This study proposed a precision beekeeping method that aims to reduce bee colony mortality and improve conventional apiculture through the use of technological tools to gather, analyse, and understand bee colony characteristics. This research presents the application of advanced digital image processing with computer vision techniques for the visual identification and analysis of bee brood at various developing stages. The beehive images are first preprocessed to enhance the important features of object. Further, object is segmented and classified using computer vision techniques. The research is carried out with the images containing variety of immature brood stages. The suggested method and existing methods are tested and compared to evaluate efficiency of proposed methodology.


Assuntos
Criação de Abelhas , Ácaros , Abelhas , Animais , Criação de Abelhas/métodos , Ecossistema
6.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417131

RESUMO

Apis cerana cerana exhibits a prominent biological trait known as comb gnawing. In this study, gnawed combs from colonies during different seasons were collected, investigating the comb age and locations of gnawing. Patterns of comb gnawing were recorded, and the effects of 2 factors, namely, comb type and season, on the mass of wax residues and the gnawed surface area were measured. The results revealed that A. c. cerana predominantly gnaws combs that have been used for over 6 months, with gnawing concentrated in the brood-rearing area. In the first 3 seasons, significantly higher masses of wax residues and larger gnawed surface areas were found in greater wax moth larvae (GWML)-infested combs compared to newly built and old combs. Also, there were significantly higher masses and areas gnawed by A. c. cerana in old combs compared to newly built combs in all 4 seasons. Compared to other seasons, it exhibited significantly higher masses and areas resulting from comb-gnawing in newly built or old combs in winter. However, there were no significant differences in the masses of wax residues and surface areas gnawed in GWML-infested combs across the first 3 seasons. In conclusion, this study documented the impact of comb type and season on the comb-gnawing behavior of A. c. cerana, contributing to beekeeping management practices and the current understanding of bee biology.


Assuntos
Himenópteros , Abelhas , Animais , Larva , Ceras , Criação de Abelhas , Estações do Ano
7.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805646

RESUMO

Honey bees are the most important managed insect pollinators in the US and Canadian crop systems. However, the annual mortality of colonies in the past 15 years has been consistently higher than historical records. Because they are eusocial generalist pollinators and amenable to management, honey bees provide a unique opportunity to investigate a wide range of questions at molecular, organismal, and ecological scales. Here, the American Association of Professional Apiculturists (AAPA) and the Canadian Association of Professional Apiculturists (CAPA) created 2 collections of articles featuring investigations on micro and macro aspects of honey bee health, sociobiology, and management showcasing new applied research from diverse groups studying honey bees (Apis mellifera) in the United States and Canada. Research presented in this special issue includes examinations of abiotic and biotic stressors of honey bees, and evaluations and introductions of various stress mitigation measures that may be valuable to both scientists and the beekeeping community. These investigations from throughout the United States and Canada showcase the wide breadth of current work done and point out areas that need further research.


Assuntos
Criação de Abelhas , Abelhas/fisiologia , Animais , Canadá , Estados Unidos , Estresse Fisiológico , Polinização
8.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805657

RESUMO

Despite the use of various integrated pest management strategies to control the honey bee mite, Varroa destructor, varroosis remains the most important threat to honey bee colony health in many countries. In Canada, ineffective varroa control is linked to high winter colony losses and new treatment options, such as a summer treatment, are greatly needed. In this study, a total of 135 colonies located in 6 apiaries were submitted to one of these 3 varroa treatment strategies: (i) an Apivar® fall treatment followed by an oxalic acid (OA) treatment by dripping method; (ii) same as in (i) with a summer treatment consisting of formic acid (Formic Pro™); and (iii) same as in (i) with a summer treatment consisting of slow-release OA/glycerin pads (total of 27 g of OA/colony). Treatment efficacy and their effects on colony performance, mortality, varroa population, and the abundance of 6 viruses (acute bee paralysis virus [ABPV], black queen cell virus [BQCV], deformed wing virus variant A [DWV-A], deformed wing virus variant B [DWV-B], Israeli acute paralysis virus [IAPV], and Kashmir bee virus [KBV]) were assessed. We show that a strategy with a Formic Pro summer treatment tended to reduce the varroa infestation rate to below the economic fall threshold of 15 daily varroa drop, which reduced colony mortality significantly but did not reduce the prevalence or viral load of the 6 tested viruses at the colony level. A strategy with glycerin/OA pads reduced hive weight gain and the varroa infestation rate, but not below the fall threshold. A high prevalence of DWV-B was measured in all groups, which could be related to colony mortality.


Assuntos
Criação de Abelhas , Estações do Ano , Varroidae , Carga Viral , Animais , Varroidae/fisiologia , Abelhas/parasitologia , Abelhas/virologia , Criação de Abelhas/métodos , Acaricidas , Formiatos/farmacologia , Canadá
9.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805654

RESUMO

Managed honey bee (Apis mellifera L.) colonies in North America and Europe have experienced high losses in recent years, which have been linked to weather conditions, lack of quality forage, and high parasite loads, particularly the obligate brood parasite, Varroa destructor. These factors may interact at various scales to have compounding effects on honey bee health, but few studies have been able to simultaneously investigate the effects of weather conditions, landscape factors, and management of parasites. We analyzed a dataset of 3,210 survey responses from beekeepers in Pennsylvania from 2017 to 2022 and combined these with remotely sensed weather variables and novel datasets about seasonal forage availability into a Random Forest model to investigate drivers of winter loss. We found that beekeepers who used treatment against Varroa had higher colony survival than those who did not treat. Moreover, beekeepers who used multiple types of Varroa treatment had higher colony survival rates than those who used 1 type of treatment. Our models found weather conditions are strongly associated with survival, but multiple-treatment type colonies had higher survival across a broader range of climate conditions. These findings suggest that the integrated pest management approach of combining treatment types can potentially buffer managed honey bee colonies from adverse weather conditions.


Assuntos
Criação de Abelhas , Estações do Ano , Varroidae , Tempo (Meteorologia) , Animais , Abelhas/parasitologia , Varroidae/fisiologia , Criação de Abelhas/métodos , Pennsylvania , Controle de Pragas/métodos , Colapso da Colônia
10.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805651

RESUMO

Honey bees are important organisms for research in many fields, including physiology, behavior, and ecology. Honey bee colonies are relatively easy and affordable to procure, manage, and replace. However, some difficulties still exist in honey bee research, specifically that honey bee colonies have a distinct seasonality, especially in temperate regions. Honey bee colonies transition from a large society in which workers have a strict temporal division of labor in the summer, to a group of behaviorally flexible workers who manage the colony over winter. Furthermore, opening colonies or collecting bees when they are outside has the potential to harm the colony because of the disruption in thermoregulation. Here, we present a simple and affordable indoor management method utilizing a mylar tent and controlled environmental conditions that allows bees to freely fly without access to outdoor space. This technique permits research labs to successfully keep several colonies persistently active during winter at higher latitudes. Having an extended research period is particularly important for training students, allowing preliminary experiments to be performed, and developing methods. However, we find distinct behavioral differences in honey bees managed in this situation. Specifically learning and thermoregulatory behaviors were diminished in the bees managed in the tent. Therefore, we recommend caution in utilizing these winter bees for full experiments until more is known. Overall, this method expands the research potential on honey bees, and calls attention to the additional research that is needed to understand how indoor management might affect honey bees.


Assuntos
Estações do Ano , Abelhas/fisiologia , Animais , Criação de Abelhas/métodos , Comportamento Animal , Regulação da Temperatura Corporal , Abrigo para Animais
11.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805650

RESUMO

Honey bee parasites remain a critical challenge to management and conservation. Because managed honey bees are maintained in colonies kept in apiaries across landscapes, the study of honey bee parasites allows the investigation of spatial principles in parasite ecology and evolution. We used a controlled field experiment to study the relationship between population growth rate and virulence (colony survival) of the parasite Varroa destructor (Anderson and Trueman). We used a nested design of 10 patches (apiaries) of 14 colonies to examine the spatial scale at which Varroa population growth matters for colony survival. We tracked Varroa population size and colony survival across a full year and found that Varroa populations that grow faster in their host colonies during the spring and summer led to larger Varroa populations across the whole apiary (patch) and higher rates of neighboring colony loss. Crucially, this increased colony loss risk manifested at the patch scale, with mortality risk being related to spatial adjacency to colonies with fast-growing Varroa strains rather than with Varroa growth rate in the colony itself. Thus, within-colony population growth predicts whole-apiary virulence, demonstrating the need to consider multiple scales when investigating parasite growth-virulence relationships.


Assuntos
Interações Hospedeiro-Parasita , Dinâmica Populacional , Varroidae , Animais , Abelhas/parasitologia , Varroidae/fisiologia , Virulência , Criação de Abelhas
12.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805649

RESUMO

Varroa destructor Oud (Acari: Varroidae) is a harmful ectoparasite of Apis mellifera L. honey bees causing widespread colony losses in Europe and North America. To control populations of these mites, beekeepers have an arsenal of different treatments, including both chemical and nonchemical options. However, nonchemical treatments can be labor intensive, and Varroa has gained resistance to some conventional pesticides, and the use of other chemical treatments is restricted temporally (e.g., cannot be applied during periods of honey production). Thus, beekeepers require additional treatment options for controlling mite populations. The compound 1-allyloxy-4-propoxybenzene (3c{3,6}) is a diether previously shown to be a strong feeding deterrent against Lepidopteran larvae and a repellent against mosquitoes and showed promise as a novel acaricide from laboratory and early field trials. Here we test the effect of the compound, applied at 8 g/brood box on wooden release devices, on honey bees and Varroa in field honey bee colonies located in Maryland, USA, and using a thymol-based commercial product as a positive control. 3c{3,6} had minimal effect on honey bee colonies, but more tests are needed to determine whether it affected egg production by queens. Against Varroa3c{3,6} had an estimated efficacy of 78.5%, while the positive control thymol product showed an efficacy of 91.3%. 3c{3,6} is still in the development stage, and the dose or application method needs to be revisited.


Assuntos
Acaricidas , Varroidae , Animais , Abelhas/parasitologia , Varroidae/efeitos dos fármacos , Maryland , Criação de Abelhas/métodos
13.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805652

RESUMO

The purpose of this research was to determine how common chemical treatments influence Varroa destructor (Anderson and Trueman) population resurgence rates (defined as time posttreatment for mite populations to reach 3 mites/100 adult bees) in managed honey bee (Apis mellifera L.) colonies seasonally. We conducted 2 experiments that followed the same basic protocol to address this purpose. We established 6 treatment groups in Experiment 1 in the fall of 2014: untreated control, Apivar, Apistan, CheckMite+, ApiLifeVar, and Mite Away II applied to 10 colonies per treatment. In Experiment 2, we applied 8 chemical treatments to each of 4 seasonal (spring, summer, fall, and winter) cohorts of honey bee colonies to determine how mite populations are influenced by the treatments. The treatments/formulations tested were Apivar, Apistan, Apiguard, MAQS, CheckMite+, oxalic acid (dribble), oxalic acid (shop towels), and amitraz (shop towels soaked in Bovitraz). In Experiment 1, Apivar and Mite Away II were able to delay V. destructor resurgence for 2 and 6 months, respectively. In Experiment 2, Apiguard, MAQS, oxalic acid (dribble), and Bovitraz treatments were effective at delaying V. destructor resurgence for at least 2 months during winter and spring. Only the Bovitraz and MAQS treatments were effective at controlling V. destructor in the summer and fall. Of the 2 amitraz-based treatments, the off-label Bovitraz treatment was the only treatment to reduce V. destructor populations in every season. The data gathered through this study allow for the refinement of treatment recommendations for V. destructor, especially regarding the seasonal efficacy of each miticide and the temporal efficacy posttreatment.


Assuntos
Acaricidas , Estações do Ano , Varroidae , Animais , Varroidae/efeitos dos fármacos , Abelhas/parasitologia , Criação de Abelhas
14.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805656

RESUMO

The negative effects of Varroa and pesticides on colony health and survival are among the most important concerns to beekeepers. To compare the relative contribution of Varroa, pesticides, and interactions between them on honey bee colony performance and survival, a 2-year longitudinal study was performed in corn and soybean growing areas of Iowa. Varroa infestation and pesticide content in stored pollen were measured from 3 apiaries across a gradient of corn and soybean production areas and compared to measurements of colony health and survival. Colonies were not treated for Varroa the first year, but were treated the second year, leading to reduced Varroa infestation that was associated with larger honey bee populations, increased honey production, and higher colony survival. Pesticide detections were highest in areas with high-intensity corn and soybean production treated with conventional methods. Pesticide detections were positively associated with honey bee population size in May 2015 in the intermediate conventional (IC) and intermediate organic (IO) apiaries. Varroa populations across all apiaries in October 2015 were negatively correlated with miticide and chlorpyrifos detections. Miticide detections across all apiaries and neonicotinoid detections in the IC apiary in May 2015 were higher in colonies that survived. In July 2015, colony survival was positively associated with total pesticide detections in all apiaries and chlorpyrifos exposure in the IC and high conventional (HC) apiaries. This research suggests that Varroa are a major cause of reduced colony performance and increased colony losses, and honey bees are resilient upon low to moderate pesticide detections.


Assuntos
Glycine max , Varroidae , Zea mays , Animais , Abelhas/parasitologia , Abelhas/efeitos dos fármacos , Iowa , Varroidae/fisiologia , Criação de Abelhas , Praguicidas/toxicidade , Estudos Longitudinais , Pólen
15.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805647

RESUMO

The parasitic mite Varroa destructor (Anderson and Trueman) is one of the greatest stressors of Apis mellifera (L.) honey bee colonies. When Varroa infestations reach damaging levels during fall, rapid control is necessary to minimize damage to colonies. We performed a field trial in the US Southeast to determine if a combination of registered treatments (Apivar, amitraz-based; and Apiguard, thymol-based) could provide rapid and effective control of Varroa. We compared colonies that received this combination treatment against colonies that received amitraz-based positive control treatments: (i) Apivar alone; or (ii) amitraz emulsifiable concentrate ("amitraz EC"). While not registered, amitraz EC is used by beekeepers in the United States in part because it is thought to control Varroa more rapidly and effectively than registered products. Based on measurements of Varroa infestation rates of colonies after 21 days of treatment, we found that the combination treatment controlled Varroa nearly as rapidly as the amitraz EC treatment: this or other combinations could be useful for Varroa management. At the end of the 42-day trial, colonies in the amitraz EC group had higher bee populations than those in the Apivar group, which suggests that rapid control helps reduce Varroa damage. Colonies in the combination group had lower bee populations than those in the amitraz EC group, which indicates that the combination treatment needs to be optimized to avoid damage to colonies.


Assuntos
Acaricidas , Timol , Toluidinas , Varroidae , Animais , Toluidinas/farmacologia , Abelhas/parasitologia , Varroidae/efeitos dos fármacos , Varroidae/fisiologia , Timol/farmacologia , Criação de Abelhas/métodos
16.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931612

RESUMO

Varroa mites, scientifically identified as Varroa destructor, pose a significant threat to beekeeping and cause one of the most destructive diseases affecting honey bee populations. These parasites attach to bees, feeding on their fat tissue, weakening their immune systems, reducing their lifespans, and even causing colony collapse. They also feed during the pre-imaginal stages of the honey bee in brood cells. Given the critical role of honey bees in pollination and the global food supply, controlling Varroa mites is imperative. One of the most common methods used to evaluate the level of Varroa mite infestation in a bee colony is to count all the mites that fall onto sticky boards placed at the bottom of a colony. However, this is usually a manual process that takes a considerable amount of time. This work proposes a deep learning approach for locating and counting Varroa mites using images of the sticky boards taken by smartphone cameras. To this end, a new realistic dataset has been built: it includes images containing numerous artifacts and blurred parts, which makes the task challenging. After testing various architectures (mainly based on two-stage detectors with feature pyramid networks), combination of hyperparameters and some image enhancement techniques, we have obtained a system that achieves a mean average precision (mAP) metric of 0.9073 on the validation set.


Assuntos
Aprendizado Profundo , Software , Varroidae , Animais , Varroidae/patogenicidade , Varroidae/fisiologia , Abelhas/parasitologia , Abelhas/fisiologia , Infestações por Ácaros/parasitologia , Criação de Abelhas/métodos , Processamento de Imagem Assistida por Computador/métodos
17.
Exp Appl Acarol ; 92(3): 369-384, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485887

RESUMO

Management, brood nest structure and factors associated with varroa mite infestation were studied in 60 apiaries of Africanized honey bees in the northwest region of the Central Valley of Costa Rica. Apiaries were monitored two times. The first monitoring was taken forward during the rainy season between May and November 2019. The second monitoring during the dry season between February and March 2020. Information about the beekeepers, apiaries and management was collected through a survey. Amount of open and capped brood, honey and pollen were measured in the field. The infestation rate of varroa (IRV) was quantified using standard laboratory methods. A determination of multi-residue pesticides in bee bread was made through GC-MS/MS and LC-MS/MS techniques. According to the results, most of the beekeepers produce honey (96.7%), participate in training activities (82.2%), and change the bee queens annually (70%). The first monitoring was characterized by a lower amount of capped brood and honey reserves compared to the second one. IRV was significantly higher in the first monitoring (6.0 ± 0.4) in comparison with the second one (3.0 ± 0.3) (U Mann-Whitney p < 0.001). The maximum value for the first monitoring exceeds 40%, while this value was close to 25% in the second monitoring. Mite infestation exposed significant differences in relation to the variables associated to the beekeeper's management, i.e., change of bee queen (p = 0.002) or when beekeepers monitor varroa mites (p = 0.004). Additionally, the IRV had inverse correlations (p < 0.01) with the number of comb sides with capped brood (Spearman's rho coefficient = - 0.190), and honey reserves (Spearman's rho coefficient = - 0.168). Furthermore, 23 of 60 bee bread samples presented one to five pesticide residues, being the most frequent antifungal agrochemicals.


Assuntos
Criação de Abelhas , Infestações por Ácaros , Varroidae , Animais , Abelhas/parasitologia , Abelhas/fisiologia , Varroidae/fisiologia , Costa Rica , Infestações por Ácaros/veterinária , Infestações por Ácaros/parasitologia , Mel/análise , Comportamento de Nidação
18.
Exp Appl Acarol ; 92(4): 795-808, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478141

RESUMO

Varroa destructor is a significant mite pest of western honey bees (Apis mellifera). Developing a method to rear and maintain populations of V. destructor in vitro would provide year-round access to the mites, allowing scientists to study their biology, behavior, and control more rapidly. In this study, we determined the impact of various rearing parameters on V. destructor survival and reproduction in vitro. This was done by collecting V. destructor from colonies, placing them in gelatin capsules containing honey bee larvae, and manipulating the following conditions experimentally: rearing temperature, colony source of honey bee larva, behavioral/developmental stages of V. destructor and honey bee larva, and mite:bee larva ratio. Varroa destructor survival was significantly impacted by temperature, colony source of larvae and mite behavioral stage. In addition, V. destructor reproduction was significantly impacted by mite: larva ratio, larval developmental stage, colony source of larva, and temperature. The following conditions optimized mite survival and reproduction in vitro: using a 4:1 mite:larva ratio, beginning the study with late stage uncapped larvae, using mites collected from adult bees, maintaining the rearing temperature at 34.5° C, and screening larval colony source. Ultimately, this research can be used to improve V. destructor in vitro rearing programs.


Assuntos
Larva , Varroidae , Animais , Varroidae/fisiologia , Abelhas/parasitologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Criação de Abelhas/métodos , Reprodução , Temperatura
19.
Ann Sci ; 81(3): 285-308, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38561352

RESUMO

During the English Civil War and subsequent Restoration, beekeeping provided a ready set of moral examples for those seeking answers about the 'natural' structure of society. The practice itself also underwent a number of substantial changes, moving from a traditional craft practice to a more knowledge-focused, technologically complex one. The advent of glass-windowed hives in the latter half of the sixteenth century allowed intellectuals from across the political spectrum to directly observe bees as a way of gathering knowledge about how to understand the divine plan and, with that understanding, improve human society.


Assuntos
Criação de Abelhas , Abelhas , História do Século XVII , Inglaterra , Criação de Abelhas/história , Animais , Humanos , Coragem
20.
Microb Ecol ; 86(4): 2655-2665, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37480517

RESUMO

Trypanosomatids form a group of high prevalence protozoa that parasitise honey bees, with Lotmaria passim as the predominant species worldwide. However, the knowledge about the ecology of trypanosomatids in isolated areas is limited. The Portuguese archipelagos of Madeira and Azores provide an interesting setting to investigate these parasites because of their geographic isolation, and because they harbour honey bee populations devoid of two major enemies: Varroa destructor and Nosema ceranae. Hence, a total of 661 honey bee colonies from Madeira and the Azores were analysed using different molecular techniques, through which we found a high prevalence of trypanosomatids despite the isolation of these islands. L. passim was the predominant species and, in most colonies, was the only one found, even on islands free of V. destructor and/or N. ceranae with severe restrictions on colony movements to prevent the spread of them. However, islands with V. destructor had a significantly higher prevalence of L. passim and, conversely, islands with N. ceranae did not shown any significant correlation with the trypanosomatid. Crithidia bombi was detected in Madeira and on three islands of the Azores, almost always coincident with L. passim. By contrast, Crithidia mellificae was not detected in any sample. A high-throughput sequencing analysis distinguished two main haplotypes of L. passim, which accounted for 98% of the total sequence reads. This work suggests that L. passim and C. bombi are parasites that have been associated with honey bees predating the spread of V. destructor and N. ceranae.


Assuntos
Criação de Abelhas , Trypanosomatina , Animais , Abelhas , Trypanosomatina/genética , Trypanosomatina/parasitologia , Crithidia/genética , Crithidia/parasitologia , Simbiose , Açores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa