Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.794
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 397-419, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31990620

RESUMO

T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Linfopoese , Linfócitos T/imunologia , Linfócitos T/metabolismo , Acetilação , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Histonas , Humanos , Linfopoese/genética , Linfopoese/imunologia , Metilação , Processamento de Proteína Pós-Traducional , Linfócitos T/citologia , Linfócitos T/enzimologia , Ubiquitinação
2.
Cell ; 187(14): 3541-3562.e51, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996487

RESUMO

Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.


Assuntos
Genoma , Mamutes , Pele , Animais , Mamutes/genética , Genoma/genética , Feminino , Elefantes/genética , Cromatina/genética , Fósseis , DNA Antigo/análise , Camundongos , Humanos , Cromossomo X/genética
3.
Cell ; 187(10): 2411-2427.e25, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38608704

RESUMO

We set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing, a precise genome engineering tool. Using a highly sensitive method for mapping the genomic locations of randomly integrated reporters, we discover massive position effects, exemplified by editing efficiencies ranging from ∼0% to 94% for an identical target site and edit. Position effects on prime editing efficiency are well predicted by chromatin marks, e.g., positively by H3K79me2 and negatively by H3K9me3. Next, we developed a multiplex perturbational framework to assess the interaction of trans-acting factors with the cis-chromatin environment on editing outcomes. Applying this framework to DNA repair factors, we identify HLTF as a context-dependent repressor of prime editing. Finally, several lines of evidence suggest that active transcriptional elongation enhances prime editing. Consistent with this, we show we can robustly decrease or increase the efficiency of prime editing by preceding it with CRISPR-mediated silencing or activation, respectively.


Assuntos
Sistemas CRISPR-Cas , Cromatina , Epigênese Genética , Edição de Genes , Humanos , Cromatina/metabolismo , Cromatina/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Código das Histonas
4.
Cell ; 187(8): 1955-1970.e23, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503282

RESUMO

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.


Assuntos
Envelhecimento , Encéfalo , Neurônios , Oligodendroglia , Humanos , Envelhecimento/genética , Envelhecimento/patologia , Cromatina/genética , Cromatina/metabolismo , Mutação , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Análise da Expressão Gênica de Célula Única , Sequenciamento Completo do Genoma , Encéfalo/metabolismo , Encéfalo/patologia , Polimorfismo de Nucleotídeo Único , Mutação INDEL , Bancos de Espécimes Biológicos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia
5.
Cell ; 186(18): 3826-3844.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37536338

RESUMO

Previous studies have identified topologically associating domains (TADs) as basic units of genome organization. We present evidence of a previously unreported level of genome folding, where distant TAD pairs, megabases apart, interact to form meta-domains. Within meta-domains, gene promoters and structural intergenic elements present in distant TADs are specifically paired. The associated genes encode neuronal determinants, including those engaged in axonal guidance and adhesion. These long-range associations occur in a large fraction of neurons but support transcription in only a subset of neurons. Meta-domains are formed by diverse transcription factors that are able to pair over long and flexible distances. We present evidence that two such factors, GAF and CTCF, play direct roles in this process. The relative simplicity of higher-order meta-domain interactions in Drosophila, compared with those previously described in mammals, allowed the demonstration that genomes can fold into highly specialized cell-type-specific scaffolds that enable megabase-scale regulatory associations.


Assuntos
Cromossomos de Insetos , Drosophila , Animais , Cromatina/genética , Empacotamento do DNA , Drosophila/genética , Mamíferos/genética , Neurogênese , Neurônios , Fatores de Transcrição , Proteínas de Drosophila , Genoma de Inseto , Regulação da Expressão Gênica
6.
Annu Rev Biochem ; 91: 183-195, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35303789

RESUMO

Gene regulation arises out of dynamic competition between nucleosomes, transcription factors, and other chromatin proteins for the opportunity to bind genomic DNA. The timescales of nucleosome assembly and binding of factors to DNA determine the outcomes of this competition at any given locus. Here, we review how these properties of chromatin proteins and the interplay between the dynamics of different factors are critical for gene regulation. We discuss how molecular structures of large chromatin-associated complexes, kinetic measurements, and high resolution mapping of protein-DNA complexes in vivo set the boundary conditions for chromatin dynamics, leading to models of how the steady state behaviors of regulatory elements arise.


Assuntos
Cromatina , Nucleossomos , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA/genética , DNA/metabolismo , Nucleossomos/genética , Fatores de Transcrição/genética
7.
Cell ; 185(26): 4937-4953.e23, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563664

RESUMO

To define the multi-cellular epigenomic and transcriptional landscape of cardiac cellular development, we generated single-cell chromatin accessibility maps of human fetal heart tissues. We identified eight major differentiation trajectories involving primary cardiac cell types, each associated with dynamic transcription factor (TF) activity signatures. We contrasted regulatory landscapes of iPSC-derived cardiac cell types and their in vivo counterparts, which enabled optimization of in vitro differentiation of epicardial cells. Further, we interpreted sequence based deep learning models of cell-type-resolved chromatin accessibility profiles to decipher underlying TF motif lexicons. De novo mutations predicted to affect chromatin accessibility in arterial endothelium were enriched in congenital heart disease (CHD) cases vs. controls. In vitro studies in iPSCs validated the functional impact of identified variation on the predicted developmental cell types. This work thus defines the cell-type-resolved cis-regulatory sequence determinants of heart development and identifies disruption of cell type-specific regulatory elements in CHD.


Assuntos
Cromatina , Cardiopatias Congênitas , Humanos , Cromatina/genética , Cardiopatias Congênitas/genética , Coração , Mutação , Análise de Célula Única
8.
Annu Rev Cell Dev Biol ; 39: 277-305, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37540844

RESUMO

Cells must tightly regulate their gene expression programs and yet rapidly respond to acute biochemical and biophysical cues within their environment. This information is transmitted to the nucleus through various signaling cascades, culminating in the activation or repression of target genes. Transcription factors (TFs) are key mediators of these signals, binding to specific regulatory elements within chromatin. While live-cell imaging has conclusively proven that TF-chromatin interactions are highly dynamic, how such transient interactions can have long-term impacts on developmental trajectories and disease progression is still largely unclear. In this review, we summarize our current understanding of the dynamic nature of TF functions, starting with a historical overview of early live-cell experiments. We highlight key factors that govern TF dynamics and how TF dynamics, in turn, affect downstream transcriptional bursting. Finally, we conclude with open challenges and emerging technologies that will further our understanding of transcriptional regulation.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico
9.
Annu Rev Biochem ; 90: 245-285, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33848425

RESUMO

Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.


Assuntos
Lisina/metabolismo , Mamíferos/metabolismo , Sirtuínas/química , Sirtuínas/metabolismo , Acetilação , Acilação , Animais , Cromatina/genética , Cromatina/metabolismo , Histona Acetiltransferases/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
10.
Nat Immunol ; 25(1): 129-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985858

RESUMO

Lymphocyte development consists of sequential and mutually exclusive cell states of proliferative selection and antigen receptor gene recombination. Transitions between each state require large, coordinated changes in epigenetic landscapes and transcriptional programs. How this occurs remains unclear. Here we demonstrate that in small pre-B cells, the lineage and stage-specific epigenetic reader bromodomain and WD repeat-containing protein 1 (BRWD1) reorders three-dimensional chromatin topology to affect the transition between proliferative and gene recombination molecular programs. BRWD1 regulated the switch between poised and active enhancers interacting with promoters, and coordinated this switch with Igk locus contraction. BRWD1 did so by converting chromatin-bound static to dynamic cohesin competent to mediate long-range looping. ATP-depletion revealed cohesin conversion to be the main energetic mechanism dictating dynamic chromatin looping. Our findings provide a new mechanism of cohesin regulation and reveal how cohesin function can be dictated by lineage contextual mechanisms to facilitate specific cell fate transitions.


Assuntos
Cromatina , Coesinas , Cromatina/genética , Células Precursoras de Linfócitos B , Regulação da Expressão Gênica , Diferenciação Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
11.
Annu Rev Immunol ; 32: 489-511, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24555473

RESUMO

A fundamental property of cells of the innate immune system is their ability to elicit a transcriptional response to a microbial stimulus or danger signal with a high degree of cell type and stimulus specificity. The selective response activates effector pathways to control the insult and plays a central role in regulating adaptive immunity through the differential regulation of cytokine genes. Selectivity is dictated by signaling pathways and their transcription factor targets. However, a growing body of evidence supports models in which different subsets of genes exhibit distinct chromatin features that play active roles in shaping the response. Chromatin also participates in innate memory mechanisms that can promote tolerance to a stimulus or prime cells for a more robust response. These findings have generated interest in the capacity to modulate chromatin regulators with small-molecule compounds for the treatment of diseases associated with innate or adaptive immunity.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Imunidade Inata/fisiologia , Animais , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Memória Imunológica/genética , Memória Imunológica/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/terapia , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Transcrição Gênica
12.
Nat Rev Mol Cell Biol ; 25(7): 574-591, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38413840

RESUMO

The primary regulators of metazoan gene expression are enhancers, originally functionally defined as DNA sequences that can activate transcription at promoters in an orientation-independent and distance-independent manner. Despite being crucial for gene regulation in animals, what mechanisms underlie enhancer selectivity for promoters, and more fundamentally, how enhancers interact with promoters and activate transcription, remain poorly understood. In this Review, we first discuss current models of enhancer-promoter interactions in space and time and how enhancers affect transcription activation. Next, we discuss different mechanisms that mediate enhancer selectivity, including repression, biochemical compatibility and regulation of 3D genome structure. Through 3D polymer simulations, we illustrate how the ability of 3D genome folding mechanisms to mediate enhancer selectivity strongly varies for different enhancer-promoter interaction mechanisms. Finally, we discuss how recent technical advances may provide new insights into mechanisms of enhancer-promoter interactions and how technical biases in methods such as Hi-C and Micro-C and imaging techniques may affect their interpretation.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética , Animais , Humanos , Ativação Transcricional/genética , Regulação da Expressão Gênica/genética , Cromatina/metabolismo , Cromatina/genética
13.
Cell ; 184(14): 3599-3611, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34146479

RESUMO

Eukaryotic DNA-binding proteins operate in the context of chromatin, where nucleosomes are the elementary building blocks. Nucleosomal DNA is wrapped around a histone core, thereby rendering a large fraction of the DNA surface inaccessible to DNA-binding proteins. Nevertheless, first responders in DNA repair and sequence-specific transcription factors bind DNA target sites obstructed by chromatin. While early studies examined protein binding to histone-free DNA, it is only now beginning to emerge how DNA sequences are interrogated on nucleosomes. These readout strategies range from the release of nucleosomal DNA from histones, to rotational/translation register shifts of the DNA motif, and nucleosome-specific DNA binding modes that differ from those observed on naked DNA. Since DNA motif engagement on nucleosomes strongly depends on position and orientation, we argue that motif location and nucleosome positioning co-determine protein access to DNA in transcription and DNA repair.


Assuntos
Cromatina/genética , Genoma , Animais , Humanos , Modelos Biológicos , Nucleossomos/metabolismo , Motivos de Nucleotídeos/genética , Fatores de Transcrição/metabolismo
14.
Nat Immunol ; 24(2): 320-336, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36717722

RESUMO

Antigen receptor loci are organized into variable (V), diversity (D) and joining (J) gene segments that rearrange to generate antigen receptor repertoires. Here, we identified an enhancer (E34) in the murine immunoglobulin kappa (Igk) locus that instructed rearrangement of Vκ genes located in a sub-topologically associating domain, including a Vκ gene encoding for antibodies targeting bacterial phosphorylcholine. We show that E34 instructs the nuclear repositioning of the E34 sub-topologically associating domain from a recombination-repressive compartment to a recombination-permissive compartment that is marked by equivalent activating histone modifications. Finally, we found that E34-instructed Vκ-Jκ rearrangement was essential to combat Streptococcus pneumoniae but not methicillin-resistant Staphylococcus aureus or influenza infections. We propose that the merging of Vκ genes with Jκ elements is instructed by one-dimensional epigenetic information imposed by enhancers across Vκ and Jκ genomic regions. The data also reveal how enhancers generate distinct antibody repertoires that provide protection against lethal bacterial infection.


Assuntos
Cromatina , Staphylococcus aureus Resistente à Meticilina , Camundongos , Animais , Cromatina/genética , Região Variável de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/genética , Staphylococcus aureus Resistente à Meticilina/genética , Linfócitos B , Epigênese Genética
15.
Nat Immunol ; 24(6): 1036-1048, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37106040

RESUMO

Allergic diseases are a major global health issue. Interleukin (IL)-9-producing helper T (TH9) cells promote allergic inflammation, yet TH9 cell effector functions are incompletely understood because their lineage instability makes them challenging to study. Here we found that resting TH9 cells produced IL-9 independently of T cell receptor (TCR) restimulation, due to STAT5- and STAT6-dependent bystander activation. This mechanism was seen in circulating cells from allergic patients and was restricted to recently activated cells. STAT5-dependent Il9/IL9 regulatory elements underwent remodeling over time, inactivating the locus. A broader 'allergic TH9' transcriptomic and epigenomic program was also unstable. In vivo, TH9 cells induced airway inflammation via TCR-independent, STAT-dependent mechanisms. In allergic patients, TH9 cell expansion was associated with responsiveness to JAK inhibitors. These findings suggest that TH9 cell instability is a negative checkpoint on bystander activation that breaks down in allergy and that JAK inhibitors should be considered for allergic patients with TH9 cell expansion.


Assuntos
Hipersensibilidade , Inibidores de Janus Quinases , Humanos , Interleucina-9/genética , Linfócitos T Auxiliares-Indutores , Fator de Transcrição STAT5/genética , Cromatina/genética , Inflamação , Hipersensibilidade/genética , Diferenciação Celular , Fator de Transcrição STAT6
16.
Nat Rev Mol Cell Biol ; 24(6): 430-447, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36596869

RESUMO

Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Núcleo Celular/genética , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico , RNA Polimerase II/genética
17.
Nat Rev Mol Cell Biol ; 24(9): 633-650, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37231112

RESUMO

Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.


Assuntos
Cromatina , Cromossomos , Cromossomos/genética , Cromossomos/metabolismo , Cromatina/genética , DNA/genética , Replicação do DNA/genética , Mitose , Proteínas de Ciclo Celular/química
18.
Nat Rev Mol Cell Biol ; 24(1): 6-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36028557

RESUMO

Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.


Assuntos
Cromatina , Células-Tronco Embrionárias , Animais , Humanos , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Complexo Repressor Polycomb 2/genética , Código das Histonas , Mamíferos/genética , Mamíferos/metabolismo
19.
Cell ; 183(1): 28-45, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976797

RESUMO

Genomes have complex three-dimensional architectures. The recent convergence of genetic, biochemical, biophysical, and cell biological methods has uncovered several fundamental principles of genome organization. They highlight that genome function is a major driver of genome architecture and that structural features of chromatin act as modulators, rather than binary determinants, of genome activity. The interplay of these principles in the context of self-organization can account for the emergence of structural chromatin features, the diversity and single-cell heterogeneity of nuclear architecture in cell types and tissues, and explains evolutionarily conserved functional features of genomes, including plasticity and robustness.


Assuntos
Cromatina/genética , Genoma/genética , Genoma/fisiologia , Animais , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromossomos , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Relação Estrutura-Atividade
20.
Cell ; 180(5): 928-940.e14, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109413

RESUMO

Covalent modifications to histones are essential for development, establishing distinct and functional chromatin domains from a common genetic sequence. Whereas repressed chromatin is robustly inherited, no mechanism that facilitates inheritance of an activated domain has been described. Here, we report that the Set3C histone deacetylase scaffold Snt1 can act as a prion that drives the emergence and transgenerational inheritance of an activated chromatin state. This prion, which we term [ESI+] for expressed sub-telomeric information, is triggered by transient Snt1 phosphorylation upon cell cycle arrest. Once engaged, the prion reshapes the activity of Snt1 and the Set3C complex, recruiting RNA pol II and interfering with Rap1 binding to activate genes in otherwise repressed sub-telomeric domains. This transcriptional state confers broad resistance to environmental stress, including antifungal drugs. Altogether, our results establish a robust means by which a prion can facilitate inheritance of an activated chromatin state to provide adaptive benefit.


Assuntos
Cromatina/genética , Histona Desacetilases/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética , Pontos de Checagem do Ciclo Celular/genética , Código das Histonas/genética , Histonas/genética , Fosforilação/genética , Príons/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae , Complexo Shelterina , Telômero/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa