Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.303
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 90: 107-135, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882259

RESUMO

DNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.


Assuntos
Dano ao DNA/genética , Reparo do DNA/fisiologia , Anemia de Fanconi/genética , Vertebrados/genética , Acetaldeído/metabolismo , Animais , DNA/química , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Replicação do DNA , Anemia de Fanconi/metabolismo , Humanos
2.
Cell ; 184(4): 1081-1097.e19, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606978

RESUMO

Mutations in DNA damage response (DDR) genes endanger genome integrity and predispose to cancer and genetic disorders. Here, using CRISPR-dependent cytosine base editing screens, we identify > 2,000 sgRNAs that generate nucleotide variants in 86 DDR genes, resulting in altered cellular fitness upon DNA damage. Among those variants, we discover loss- and gain-of-function mutants in the Tudor domain of the DDR regulator 53BP1 that define a non-canonical surface required for binding the deubiquitinase USP28. Moreover, we characterize variants of the TRAIP ubiquitin ligase that define a domain, whose loss renders cells resistant to topoisomerase I inhibition. Finally, we identify mutations in the ATM kinase with opposing genome stability phenotypes and loss-of-function mutations in the CHK2 kinase previously categorized as variants of uncertain significance for breast cancer. We anticipate that this resource will enable the discovery of additional DDR gene functions and expedite studies of DDR variants in human disease.


Assuntos
Dano ao DNA , Edição de Genes , Testes Genéticos , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Camptotecina/farmacologia , Linhagem Celular , Dano ao DNA/genética , Reparo do DNA/genética , Feminino , Humanos , Mutação/genética , Fenótipo , Ligação Proteica , Domínios Proteicos , RNA Guia de Cinetoplastídeos/genética , Inibidores da Topoisomerase/farmacologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/química , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Nat Rev Mol Cell Biol ; 24(7): 477-494, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36781955

RESUMO

All organisms possess molecular mechanisms that govern DNA repair and associated DNA damage response (DDR) processes. Owing to their relevance to human disease, most notably cancer, these mechanisms have been studied extensively, yet new DNA repair and/or DDR factors and functional interactions between them are still being uncovered. The emergence of CRISPR technologies and CRISPR-based genetic screens has enabled genome-scale analyses of gene-gene and gene-drug interactions, thereby providing new insights into cellular processes in distinct DDR-deficiency genetic backgrounds and conditions. In this Review, we discuss the mechanistic basis of CRISPR-Cas genetic screening approaches and describe how they have contributed to our understanding of DNA repair and DDR pathways. We discuss how DNA repair pathways are regulated, and identify and characterize crosstalk between them. We also highlight the impacts of CRISPR-based studies in identifying novel strategies for cancer therapy, and in understanding, overcoming and even exploiting cancer-drug resistance, for example in the contexts of PARP inhibition, homologous recombination deficiencies and/or replication stress. Lastly, we present the DDR CRISPR screen (DDRcs) portal , in which we have collected and reanalysed data from CRISPR screen studies and provide a tool for systematically exploring them.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Reparo do DNA/genética , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Genoma , Dano ao DNA/genética
4.
Cell ; 181(6): 1380-1394.e18, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32502392

RESUMO

Homologous recombination (HR) helps maintain genome integrity, and HR defects give rise to disease, especially cancer. During HR, damaged DNA must be aligned with an undamaged template through a process referred to as the homology search. Despite decades of study, key aspects of this search remain undefined. Here, we use single-molecule imaging to demonstrate that Rad54, a conserved Snf2-like protein found in all eukaryotes, switches the search from the diffusion-based pathways characteristic of the basal HR machinery to an active process in which DNA sequences are aligned via an ATP-dependent molecular motor-driven mechanism. We further demonstrate that Rad54 disrupts the donor template strands, enabling the search to take place within a migrating DNA bubble-like structure that is bound by replication protein A (RPA). Our results reveal that Rad54, working together with RPA, fundamentally alters how DNA sequences are aligned during HR.


Assuntos
Trifosfato de Adenosina/genética , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , DNA/genética , Recombinação Homóloga/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Hidrólise , Saccharomyces cerevisiae/genética , Alinhamento de Sequência/métodos
5.
Nat Rev Mol Cell Biol ; 23(6): 407-427, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35228717

RESUMO

Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA-protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer.


Assuntos
Instabilidade Genômica , Neoplasias , Dano ao DNA/genética , Replicação do DNA/genética , Humanos , Mitocôndrias/genética , Neoplasias/genética
6.
Nat Rev Mol Cell Biol ; 23(1): 74-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508254

RESUMO

Cancer is a group of diseases in which cells divide continuously and excessively. Cell division is tightly regulated by multiple evolutionarily conserved cell cycle control mechanisms, to ensure the production of two genetically identical cells. Cell cycle checkpoints operate as DNA surveillance mechanisms that prevent the accumulation and propagation of genetic errors during cell division. Checkpoints can delay cell cycle progression or, in response to irreparable DNA damage, induce cell cycle exit or cell death. Cancer-associated mutations that perturb cell cycle control allow continuous cell division chiefly by compromising the ability of cells to exit the cell cycle. Continuous rounds of division, however, create increased reliance on other cell cycle control mechanisms to prevent catastrophic levels of damage and maintain cell viability. New detailed insights into cell cycle control mechanisms and their role in cancer reveal how these dependencies can be best exploited in cancer treatment.


Assuntos
Pontos de Checagem do Ciclo Celular , Neoplasias/patologia , Animais , Dano ao DNA/genética , Replicação do DNA/genética , Humanos , Neoplasias/genética , Neoplasias/terapia , Oncogenes , Fuso Acromático/metabolismo
7.
Cell ; 177(4): 821-836.e16, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982602

RESUMO

Whole-genome-sequencing (WGS) of human tumors has revealed distinct mutation patterns that hint at the causative origins of cancer. We examined mutational signatures in 324 WGS human-induced pluripotent stem cells exposed to 79 known or suspected environmental carcinogens. Forty-one yielded characteristic substitution mutational signatures. Some were similar to signatures found in human tumors. Additionally, six agents produced double-substitution signatures and eight produced indel signatures. Investigating mutation asymmetries across genome topography revealed fully functional mismatch and transcription-coupled repair pathways. DNA damage induced by environmental mutagens can be resolved by disparate repair and/or replicative pathways, resulting in an assortment of signature outcomes even for a single agent. This compendium of experimentally induced mutational signatures permits further exploration of roles of environmental agents in cancer etiology and underscores how human stem cell DNA is directly vulnerable to environmental agents. VIDEO ABSTRACT.


Assuntos
Carcinógenos Ambientais/classificação , Neoplasias/genética , Carcinógenos Ambientais/efeitos adversos , Dano ao DNA/genética , Análise Mutacional de DNA/métodos , Reparo do DNA/genética , Replicação do DNA , Perfil Genético , Genoma Humano/genética , Humanos , Mutação INDEL/genética , Mutagênese , Mutação/genética , Células-Tronco Pluripotentes/metabolismo , Sequenciamento Completo do Genoma/métodos
8.
Cell ; 176(6): 1295-1309.e15, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773314

RESUMO

Cancers from sun-exposed skin accumulate "driver" mutations, causally implicated in oncogenesis. Because errors incorporated during translesion synthesis (TLS) opposite UV lesions would generate these mutations, TLS mechanisms are presumed to underlie cancer development. To address the role of TLS in skin cancer formation, we determined which DNA polymerase is responsible for generating UV mutations, analyzed the relative contributions of error-free TLS by Polη and error-prone TLS by Polθ to the replication of UV-damaged DNA and to genome stability, and examined the incidence of UV-induced skin cancers in Polθ-/-, Polη-/-, and Polθ-/- Polη-/- mice. Our findings that the incidence of skin cancers rises in Polθ-/- mice and is further exacerbated in Polθ-/- Polη-/- mice compared with Polη-/- mice support the conclusion that error-prone TLS by Polθ provides a safeguard against tumorigenesis and suggest that cancer formation can ensue in the absence of somatic point mutations.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Neoplasias Cutâneas/metabolismo , Animais , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/fisiologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Instabilidade Genômica/genética , Humanos , Camundongos , Camundongos Knockout , Mutação/genética , Pele/citologia , Pele/metabolismo , Neoplasias Cutâneas/genética , Raios Ultravioleta/efeitos adversos , DNA Polimerase teta
9.
Cell ; 176(1-2): 127-143.e24, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30633903

RESUMO

DNA damage provokes mutations and cancer and results from external carcinogens or endogenous cellular processes. However, the intrinsic instigators of endogenous DNA damage are poorly understood. Here, we identify proteins that promote endogenous DNA damage when overproduced: the DNA "damage-up" proteins (DDPs). We discover a large network of DDPs in Escherichia coli and deconvolute them into six function clusters, demonstrating DDP mechanisms in three: reactive oxygen increase by transmembrane transporters, chromosome loss by replisome binding, and replication stalling by transcription factors. Their 284 human homologs are over-represented among known cancer drivers, and their RNAs in tumors predict heavy mutagenesis and a poor prognosis. Half of the tested human homologs promote DNA damage and mutation when overproduced in human cells, with DNA damage-elevating mechanisms like those in E. coli. Our work identifies networks of DDPs that provoke endogenous DNA damage and may reveal DNA damage-associated functions of many human known and newly implicated cancer-promoting proteins.


Assuntos
Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Proteínas de Bactérias/metabolismo , Instabilidade Cromossômica/fisiologia , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Instabilidade Genômica , Humanos , Proteínas de Membrana Transportadoras/fisiologia , Mutagênese , Mutação , Fatores de Transcrição/metabolismo
10.
Cell ; 176(3): 505-519.e22, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30612738

RESUMO

Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.


Assuntos
Proteínas de Transporte/genética , Proteínas Nucleares/genética , Proteínas de Transporte/metabolismo , Cromatina/metabolismo , DNA , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Feminino , Instabilidade Genômica , Mutação em Linhagem Germinativa , Recombinação Homóloga , Humanos , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Cultura Primária de Células , Reparo de DNA por Recombinação
11.
Cell ; 178(1): 135-151.e19, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31251913

RESUMO

Loss of BRCA1 p220 function often results in basal-like breast cancer (BLBC), but the underlying disease mechanism is largely opaque. In mammary epithelial cells (MECs), BRCA1 interacts with multiple proteins, including NUMB and HES1, to form complexes that participate in interstrand crosslink (ICL) DNA repair and MEC differentiation control. Unrepaired ICL damage results in aberrant transdifferentiation to a mesenchymal state of cultured, human basal-like MECs and to a basal/mesenchymal state in primary mouse luminal MECs. Loss of BRCA1, NUMB, or HES1 or chemically induced ICL damage in primary murine luminal MECs results in persistent DNA damage that triggers luminal to basal/mesenchymal transdifferentiation. In vivo single-cell analysis revealed a time-dependent evolution from normal luminal MECs to luminal progenitor-like tumor cells with basal/mesenchymal transdifferentiation during murine BRCA1 BLBC development. Growing DNA damage accompanied this malignant transformation.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Transdiferenciação Celular/genética , Dano ao DNA/genética , Reparo do DNA/genética , Glândulas Mamárias Animais/patologia , Animais , Proteína BRCA1/metabolismo , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/patologia , Diferenciação Celular/genética , Transformação Celular Neoplásica , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Células HEK293 , Humanos , Células MCF-7 , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição HES-1/metabolismo , Transfecção
12.
Annu Rev Biochem ; 87: 295-322, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925262

RESUMO

The nuclear genome decays as organisms age. Numerous studies demonstrate that the burden of several classes of DNA lesions is greater in older mammals than in young mammals. More challenging is proving this is a cause rather than a consequence of aging. The DNA damage theory of aging, which argues that genomic instability plays a causal role in aging, has recently gained momentum. Support for this theory stems partly from progeroid syndromes in which inherited defects in DNA repair increase the burden of DNA damage leading to accelerated aging of one or more organs. Additionally, growing evidence shows that DNA damage accrual triggers cellular senescence and metabolic changes that promote a decline in tissue function and increased susceptibility to age-related diseases. Here, we examine multiple lines of evidence correlating nuclear DNA damage with aging. We then consider how, mechanistically, nuclear genotoxic stress could promote aging. We conclude that the evidence, in toto, supports a role for DNA damage as a nidus of aging.


Assuntos
Envelhecimento/genética , Núcleo Celular/genética , Instabilidade Genômica , Envelhecimento/efeitos dos fármacos , Envelhecimento/efeitos da radiação , Animais , Autofagia/genética , Senescência Celular/genética , Dano ao DNA/genética , Reparo do DNA/genética , Humanos , Longevidade/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Genéticos , Mutação , Neoplasias/genética , Neoplasias/terapia , Proteostase/genética , Regeneração/genética , Transdução de Sinais/genética
13.
Nat Rev Mol Cell Biol ; 21(10): 633-651, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32612242

RESUMO

Complete and accurate DNA replication requires the progression of replication forks through DNA damage, actively transcribed regions, structured DNA and compact chromatin. Recent studies have revealed a remarkable plasticity of the replication process in dealing with these obstacles, which includes modulation of replication origin firing, of the architecture of replication forks, and of the functional organization of the replication machinery in response to replication stress. However, these specialized mechanisms also expose cells to potentially dangerous transactions while replicating DNA. In this Review, we discuss how replication forks are actively stalled, remodelled, processed, protected and restarted in response to specific types of stress. We also discuss adaptations of the replication machinery and the role of chromatin modifications during these transactions. Finally, we discuss interesting recent data on the relevance of replication fork plasticity to human health, covering its role in tumorigenesis, its crosstalk with innate immunity responses and its potential as an effective cancer therapy target.


Assuntos
Dano ao DNA/genética , Replicação do DNA/genética , DNA/genética , Origem de Replicação/genética , Animais , Carcinogênese/genética , Cromatina/genética , Humanos , Imunidade Inata/genética
14.
Nat Rev Mol Cell Biol ; 21(3): 167-178, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32005969

RESUMO

R-loops are three-stranded structures that harbour an RNA-DNA hybrid and frequently form during transcription. R-loop misregulation is associated with DNA damage, transcription elongation defects, hyper-recombination and genome instability. In contrast to such 'unscheduled' R-loops, evidence is mounting that cells harness the presence of RNA-DNA hybrids in scheduled, 'regulatory' R-loops to promote DNA transactions, including transcription termination and other steps of gene regulation, telomere stability and DNA repair. R-loops formed by cellular RNAs can regulate histone post-translational modification and may be recognized by dedicated reader proteins. The two-faced nature of R-loops implies that their formation, location and timely removal must be tightly regulated. In this Perspective, we discuss the cellular processes that regulatory R-loops modulate, the regulation of R-loops and the potential differences that may exist between regulatory R-loops and unscheduled R-loops.


Assuntos
DNA/química , Instabilidade Genômica/genética , Estruturas R-Loop/genética , Animais , DNA/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA/genética , Replicação do DNA/genética , Replicação do DNA/fisiologia , Regulação da Expressão Gênica/genética , Código das Histonas/genética , Humanos , Conformação de Ácido Nucleico , Estruturas R-Loop/fisiologia , RNA/química , RNA/genética , Telômero/genética , Transcrição Gênica/genética
15.
Mol Cell ; 84(7): 1377-1391.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38423013

RESUMO

Micronuclei (MN) are induced by various genotoxic stressors and amass nuclear- and cytoplasmic-resident proteins, priming the cell for MN-driven signaling cascades. Here, we measured the proteome of micronuclear, cytoplasmic, and nuclear fractions from human cells exposed to a panel of six genotoxins, comprehensively profiling their MN protein landscape. We find that MN assemble a proteome distinct from both surrounding cytoplasm and parental nuclei, depleted of spliceosome and DNA damage repair components while enriched for a subset of the replisome. We show that the depletion of splicing machinery within transcriptionally active MN contributes to intra-MN DNA damage, a known precursor to chromothripsis. The presence of transcription machinery in MN is stress-dependent, causing a contextual induction of MN DNA damage through spliceosome deficiency. This dataset represents a unique resource detailing the global proteome of MN, guiding mechanistic studies of MN generation and MN-associated outcomes of genotoxic stress.


Assuntos
Cromotripsia , Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteômica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Dano ao DNA/genética
16.
Annu Rev Genet ; 57: 157-179, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37552891

RESUMO

Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.


Assuntos
Replicação do DNA , Transcrição Gênica , Animais , Replicação do DNA/genética , Instabilidade Genômica/genética , Eucariotos/genética , Dano ao DNA/genética , Mamíferos
17.
Nat Rev Mol Cell Biol ; 20(4): 199-210, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30824861

RESUMO

The tumour suppressor p53 has a central role in the response to cellular stress. Activated p53 transcriptionally regulates hundreds of genes that are involved in multiple biological processes, including in DNA damage repair, cell cycle arrest, apoptosis and senescence. In the context of DNA damage, p53 is thought to be a decision-making transcription factor that selectively activates genes as part of specific gene expression programmes to determine cellular outcomes. In this Review, we discuss the multiple molecular mechanisms of p53 regulation and how they modulate the induction of apoptosis or cell cycle arrest following DNA damage. Specifically, we discuss how the interaction of p53 with DNA and chromatin affects gene expression, and how p53 post-translational modifications, its temporal expression dynamics and its interactions with chromatin regulators and transcription factors influence cell fate. These multiple layers of regulation enable p53 to execute cellular responses that are appropriate for specific cellular states and environmental conditions.


Assuntos
Apoptose/genética , Proteína Supressora de Tumor p53/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Dano ao DNA/genética , Regulação da Expressão Gênica/genética , Humanos
18.
Mol Cell ; 83(7): 1022-1023, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028412

RESUMO

In this issue, Ciesla et al.1 report a translation regulation through ALKBH5-mediated 5'-UTR m6A demethylation of the SF3B1 transcript during leukemic transformation. The SF3B1 protein maintains efficient splicing and expression of transcripts encoding DNA damage repair components to restrain excessive DNA damage.


Assuntos
Fosfoproteínas , Splicing de RNA , Fatores de Processamento de RNA/genética , Mutação , Fosfoproteínas/genética , Splicing de RNA/genética , Dano ao DNA/genética
19.
Mol Cell ; 83(20): 3669-3678.e7, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37816354

RESUMO

UV irradiation induces "bulky" DNA photodimers such as (6-4)-photoproducts and cyclobutane pyrimidine dimers that are removed by nucleotide excision repair, a complex process defective in the sunlight-sensitive and cancer-prone disease xeroderma pigmentosum. Some bacteria and lower eukaryotes can also repair photodimers by enzymatically simpler mechanisms, but such pathways have not been reported in normal human cells. Here, we have identified such a mechanism. We show that normal human cells can employ a DNA base excision repair process involving NTH1, APE1, PARP1, XRCC1, and FEN1 to rapidly remove a subset of photodimers at early times following UVC irradiation. Loss of these proteins slows the early rate of repair of photodimers in normal cells, ablates their residual repair in xeroderma pigmentosum cells, and increases UVC sensitivity ∼2-fold. These data reveal that human cells can excise photodimers using a long-patch base excision repair process that functions additively but independently of nucleotide excision repair.


Assuntos
Xeroderma Pigmentoso , Humanos , Xeroderma Pigmentoso/genética , Reparo do DNA/genética , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Dano ao DNA/genética , DNA/genética , Raios Ultravioleta , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
20.
Annu Rev Genet ; 56: 207-228, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36028228

RESUMO

DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.


Assuntos
DNA Polimerase Dirigida por DNA , Neoplasias , Animais , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Reparo do DNA por Junção de Extremidades/genética , DNA , Dano ao DNA/genética , Neoplasias/genética , DNA Polimerase teta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa