Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.750
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
N Engl J Med ; 389(1): 45-57, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37318140

RESUMO

BACKGROUND: Guidelines recommend normocapnia for adults with coma who are resuscitated after out-of-hospital cardiac arrest. However, mild hypercapnia increases cerebral blood flow and may improve neurologic outcomes. METHODS: We randomly assigned adults with coma who had been resuscitated after out-of-hospital cardiac arrest of presumed cardiac or unknown cause and admitted to the intensive care unit (ICU) in a 1:1 ratio to either 24 hours of mild hypercapnia (target partial pressure of arterial carbon dioxide [Paco2], 50 to 55 mm Hg) or normocapnia (target Paco2, 35 to 45 mm Hg). The primary outcome was a favorable neurologic outcome, defined as a score of 5 (indicating lower moderate disability) or higher, as assessed with the use of the Glasgow Outcome Scale-Extended (range, 1 [death] to 8, with higher scores indicating better neurologic outcome) at 6 months. Secondary outcomes included death within 6 months. RESULTS: A total of 1700 patients from 63 ICUs in 17 countries were recruited, with 847 patients assigned to targeted mild hypercapnia and 853 to targeted normocapnia. A favorable neurologic outcome at 6 months occurred in 332 of 764 patients (43.5%) in the mild hypercapnia group and in 350 of 784 (44.6%) in the normocapnia group (relative risk, 0.98; 95% confidence interval [CI], 0.87 to 1.11; P = 0.76). Death within 6 months after randomization occurred in 393 of 816 patients (48.2%) in the mild hypercapnia group and in 382 of 832 (45.9%) in the normocapnia group (relative risk, 1.05; 95% CI, 0.94 to 1.16). The incidence of adverse events did not differ significantly between groups. CONCLUSIONS: In patients with coma who were resuscitated after out-of-hospital cardiac arrest, targeted mild hypercapnia did not lead to better neurologic outcomes at 6 months than targeted normocapnia. (Funded by the National Health and Medical Research Council of Australia and others; TAME ClinicalTrials.gov number, NCT03114033.).


Assuntos
Reanimação Cardiopulmonar , Coma , Hipercapnia , Parada Cardíaca Extra-Hospitalar , Adulto , Humanos , Dióxido de Carbono/sangue , Coma/sangue , Coma/etiologia , Hospitalização , Hipercapnia/sangue , Hipercapnia/etiologia , Parada Cardíaca Extra-Hospitalar/sangue , Parada Cardíaca Extra-Hospitalar/complicações , Parada Cardíaca Extra-Hospitalar/terapia , Cuidados Críticos
2.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R46-R53, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38766773

RESUMO

Despite elite human free divers achieving incredible feats in competitive free diving, there has yet to be a study that compares consummate divers, (i.e. northern elephant seals) to highly conditioned free divers (i.e., elite competitive free-diving humans). Herein, we compare these two diving models and suggest that hematological traits detected in seals reflect species-specific specializations, while hematological traits shared between the two species are fundamental mammalian characteristics. Arterial blood samples were analyzed in elite human free divers (n = 14) during a single, maximal volitional apnea and in juvenile northern elephant seals (n = 3) during rest-associated apnea. Humans and elephant seals had comparable apnea durations (∼6.5 min) and end-apneic arterial Po2 [humans: 40.4 ± 3.0 mmHg (means ± SE); seals: 27.1 ± 5.9 mmHg; P = 0.2]. Despite similar increases in arterial Pco2 (humans: 33 ± 5%; seals: 16.3 ± 5%; P = 0.2), only humans experienced reductions in pH from baseline (humans: 7.45 ± 0.01; seals: 7.39 ± 0.02) to end apnea (humans: 7.37 ± 0.01; seals: 7.38 ± 0.02; P < 0.0001). Hemoglobin P50 was greater in humans compared to elephant seals (29.9 ± 1.5 and 28.7 ± 0.6 mmHg, respectively; P = 0.046). Elephant seals overall had higher carboxyhemoglobin (COHb) levels (5.9 ± 2.6%) compared to humans (0.8 ± 1.2%; P < 0.0001); however, following apnea, COHb was reduced in seals (baseline: 6.1 ± 0.3%; end apnea: 5.6 ± 0.3%) and was slightly elevated in humans (baseline: 0.7 ± 0.1%; end apnea: 0.9 ± 0.1%; P < 0.0002, both comparisons). Our data indicate that during static apnea, seals have reduced hemoglobin P50, greater pH buffering, and increased COHb levels. The differences in hemoglobin P50 are likely due to the differences in the physiological environment between the two species during apnea, whereas enhanced pH buffering and higher COHb may represent traits selected for in elephant seals.NEW & NOTEWORTHY This study uses similar methods and protocols in elite human free divers and northern elephant seals. Using highly conditioned divers (elite free-diving humans) and highly adapted divers (northern elephant seals), we explored which hematological traits are fundamentally mammalian and which may have been selected for. We found differences in P50, which may be due to different physiological environments between species, while elevated pH buffering and carbon monoxide levels might have been selected for in seals.


Assuntos
Apneia , Mergulho , Focas Verdadeiras , Animais , Focas Verdadeiras/sangue , Humanos , Mergulho/fisiologia , Apneia/sangue , Apneia/fisiopatologia , Masculino , Adulto , Feminino , Especificidade da Espécie , Hemoglobinas/metabolismo , Adulto Jovem , Dióxido de Carbono/sangue , Oxigênio/sangue
3.
Crit Care ; 28(1): 146, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693569

RESUMO

PURPOSE: A systematic review and meta-analysis to evaluate the impact of extracorporeal carbon dioxide removal (ECCO2R) on gas exchange and respiratory settings in critically ill adults with respiratory failure. METHODS: We conducted a comprehensive database search, including observational studies and randomized controlled trials (RCTs) from January 2000 to March 2022, targeting adult ICU patients undergoing ECCO2R. Primary outcomes were changes in gas exchange and ventilator settings 24 h after ECCO2R initiation, estimated as mean of differences, or proportions for adverse events (AEs); with subgroup analyses for disease indication and technology. Across RCTs, we assessed mortality, length of stay, ventilation days, and AEs as mean differences or odds ratios. RESULTS: A total of 49 studies encompassing 1672 patients were included. ECCO2R was associated with a significant decrease in PaCO2, plateau pressure, and tidal volume and an increase in pH across all patient groups, at an overall 19% adverse event rate. In ARDS and lung transplant patients, the PaO2/FiO2 ratio increased significantly while ventilator settings were variable. "Higher extraction" systems reduced PaCO2 and respiratory rate more efficiently. The three available RCTs did not demonstrate an effect on mortality, but a significantly longer ICU and hospital stay associated with ECCO2R. CONCLUSIONS: ECCO2R effectively reduces PaCO2 and acidosis allowing for less invasive ventilation. "Higher extraction" systems may be more efficient to achieve this goal. However, as RCTs have not shown a mortality benefit but increase AEs, ECCO2R's effects on clinical outcome remain unclear. Future studies should target patient groups that may benefit from ECCO2R. PROSPERO Registration No: CRD 42020154110 (on January 24, 2021).


Assuntos
Dióxido de Carbono , Humanos , Dióxido de Carbono/análise , Dióxido de Carbono/sangue , Troca Gasosa Pulmonar/fisiologia , Respiração Artificial/métodos , Insuficiência Respiratória/terapia
4.
Crit Care ; 28(1): 198, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863072

RESUMO

BACKGROUND: Current continuous kidney replacement therapy (CKRT) protocols ignore physiological renal compensation for hypercapnia. This study aimed to explore feasibility, safety, and clinical benefits of pCO2-adapted CKRT for hypercapnic acute respiratory distress syndrome (ARDS) patients with indication for CKRT. METHODS: We enrolled mechanically ventilated hypercapnic ARDS patients (pCO2 > 7.33 kPa) receiving regional citrate anticoagulation (RCA) based CKRT in a prospective, randomized-controlled pilot-study across five intensive care units at the Charité-Universitätsmedizin Berlin, Germany. Patients were randomly assigned 1:1 to the control group with bicarbonate targeted to 24 mmol/l or pCO2-adapted-CKRT with target bicarbonate corresponding to physiological renal compensation. Study duration was six days. Primary outcome was bicarbonate after 72 h. Secondary endpoints included safety and clinical endpoints. Endpoints were assessed in all patients receiving treatment. RESULTS: From September 2021 to May 2023 40 patients (80% male) were enrolled. 19 patients were randomized to the control group, 21 patients were randomized to pCO2-adapted-CKRT. Five patients were excluded before receiving treatment: three in the control group (consent withdrawal, lack of inclusion criteria fulfillment (n = 2)) and two in the intervention group (lack of inclusion criteria fulfillment, sudden unexpected death) and were therefore not included in the analysis. Median plasma bicarbonate 72 h after randomization was significantly higher in the intervention group (30.70 mmol/l (IQR 29.48; 31.93)) than in the control group (26.40 mmol/l (IQR 25.63; 26.88); p < 0.0001). More patients in the intervention group received lung protective ventilation defined as tidal volume < 8 ml/kg predicted body weight. Thirty-day mortality was 10/16 (63%) in the control group vs. 8/19 (42%) in the intervention group (p = 0.26). CONCLUSION: Tailoring CKRT to physiological renal compensation of respiratory acidosis appears feasible and safe with the potential to improve patient care in hypercapnic ARDS. TRIAL REGISTRATION: The trial was registered in the German Clinical Trials Register (DRKS00026177) on September 9, 2021 and is now closed.


Assuntos
Dióxido de Carbono , Hipercapnia , Terapia de Substituição Renal , Síndrome do Desconforto Respiratório , Humanos , Masculino , Feminino , Projetos Piloto , Pessoa de Meia-Idade , Hipercapnia/terapia , Hipercapnia/tratamento farmacológico , Idoso , Dióxido de Carbono/sangue , Dióxido de Carbono/análise , Dióxido de Carbono/uso terapêutico , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Estudos Prospectivos , Terapia de Substituição Renal/métodos , Terapia de Substituição Renal/estatística & dados numéricos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Respiração Artificial/métodos , Respiração Artificial/estatística & dados numéricos , Terapia de Substituição Renal Contínua/métodos , Terapia de Substituição Renal Contínua/estatística & dados numéricos
5.
Pediatr Crit Care Med ; 25(5): 390-395, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329377

RESUMO

OBJECTIVES: Mechanical ventilation (MV) is pervasive among critically ill children. We sought to validate a computerized physiologic equation to predict minute ventilation requirements in children and test its performance against clinician actions in an in silico trial. DESIGN: Retrospective, electronic medical record linkage, cohort study. SETTING: Quaternary PICU. PATIENTS: Patients undergoing invasive MV, serial arterial blood gas (ABG) analysis within 1-6 hours, and pharmacologic neuromuscular blockade (NMB). MEASUREMENTS AND MAIN RESULTS: ABG values were filtered to those occurring during periods of NMB. Simultaneous ABG and minute ventilation data were linked to predict serial Pa co2 and pH values using previously published physiologic equations. There were 15,121 included ABGs across 500 encounters among 484 patients, with a median (interquartile range [IQR]) of 20 (10-43) ABGs per encounter at a duration of 3.6 (2.1-4.2) hours. The median (IQR) Pa co2 prediction error was 0.00 (-3.07 to 3.00) mm Hg. In Bland-Altman analysis, the mean error was -0.10 mm Hg (95% CI, -0.21 to 0.01 mm Hg). A nested, in silico trial of ABGs meeting criteria for weaning (respiratory alkalosis) or escalation (respiratory acidosis), compared the performance of recommended ventilator changes versus clinician decisions. There were 1,499 of 15,121 ABGs (9.9%) among 278 of 644 (43.2%) encounters included in the trial. Calculated predictions were favorable to clinician actions in 1124 of 1499 ABGs (75.0%), equivalent to clinician choices in 26 of 1499 ABGs (1.7%), and worse than clinician decisions in 349 of 1499 ABGs (23.3%). Calculated recommendations were favorable to clinician decisions in sensitivity analyses limiting respiratory rate, analyzing only when clinicians made changes, excluding asthma, and excluding acute respiratory distress syndrome. CONCLUSIONS: A computerized equation to predict minute ventilation requirements outperformed clinicians' ventilator adjustments in 75% of ABGs from critically ill children in this retrospective analysis. Prospective validation studies are needed.


Assuntos
Gasometria , Estado Terminal , Unidades de Terapia Intensiva Pediátrica , Respiração Artificial , Humanos , Estudos Retrospectivos , Estado Terminal/terapia , Respiração Artificial/métodos , Feminino , Masculino , Pré-Escolar , Criança , Lactente , Adolescente , Bloqueio Neuromuscular/métodos , Dióxido de Carbono/sangue
6.
Artif Organs ; 48(6): 586-594, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38304926

RESUMO

BACKGROUND: A critical parameter of extracorporeal CO2 removal (ECCO2R) applications is the CO2 removal rate (VCO2). Low-flow venovenous extracorporeal support with large-size membrane lung remains undefined. This study aimed to evaluate the VCO2 of a low-flow ECCO2R with large-size membrane lung using a renal replacement therapy platform in an experimental animal model. METHODS: Twelve healthy pigs were placed under mechanical ventilation and connected to an ECCO2R-CRRT system (surface area = 1.8 m2; OMNIset®, BBraun, Germany). Respiratory settings were reduced to induce two degrees of hypercapnia. VCO2 was recorded under different combinations of PaCO2 (50-69 or 70-89 mm Hg), extracorporeal blood flow (ECBF; 200 or 350 mL/min), and gas flow (4, 6, or 10 L/min). RESULTS: VCO2 increased with ECBF at all three gas flow rates. In severe hypercapnia, the increase in sweep gas flow from 4 to 10 L/min increased VCO2 from 86.38 ± 7.08 to 96.50 ± 8.71 mL/min at an ECBF of 350 mL/min, whereas at ECBF of 200 mL/min, any increase was less effective. But in mild hypercapnia, the increase in sweep gas flow result in significantly increased VCO2 at two ECBF. VCO2 increased with PaCO2 from 50-69 to 70-89 mm Hg at an ECBF of 350 mL/min, but not at ECBF of 200 mL/min. Post-membrane lung PCO2 levels were similar for different levels of premembrane lung PCO2 (p = 0.08), highlighting the gas exchange diffusion efficacy of the membrane lung in gas exchange diffusion. In severe hypercapnia, the reduction of PaCO2 elevated from 11.5% to 19.6% with ECBF increase only at a high gas flow of 10 L/min (p < 0.05) and increase of gas flow significantly reduced PaCO2 only at a high ECBF of 350 mL/min (p < 0.05). CONCLUSIONS: Low-flow venovenous extracorporeal ECCO2R-CRRT with large-size membrane lung is more efficient with the increase of ECBF, sweep gas flow rate, and the degree of hypercapnia. The influence of sweep gas flow on VCO2 depends on the ECBF and degree of hypercapnia. Higher ECBF and gas flow should be chosen to reverse severe hypercapnia.


Assuntos
Dióxido de Carbono , Hipercapnia , Animais , Dióxido de Carbono/sangue , Suínos , Hipercapnia/terapia , Oxigenação por Membrana Extracorpórea/métodos , Terapia de Substituição Renal/métodos , Respiração Artificial/métodos , Circulação Extracorpórea/métodos , Pulmão/metabolismo
7.
Anaesthesia ; 79(6): 576-582, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38100148

RESUMO

High-flow nasal oxygen can be administered at induction of anaesthesia for the purposes of pre-oxygenation and apnoeic oxygenation. This intervention is claimed to enhance carbon dioxide elimination during apnoea, but the extent to which this occurs remains poorly quantified. The optimal nasal oxygen flow rate for gas exchange is also unknown. In this study, 114 patients received pre-oxygenation with high-flow nasal oxygen at 50 l.min-1. At the onset of apnoea, patients were allocated randomly to receive one of three nasal oxygen flow rates: 0 l.min-1; 70 l.min-1; or 120 l.min-1. After 4 minutes of apnoea, all oxygen delivery was ceased, tracheal intubation was performed, and oxygen delivery was recommenced when SpO2 was 92%. Mean (SD) PaCO2 rise during the first minute of apnoea was 1.39 (0.39) kPa, 1.41 (0.29) kPa, and 1.26 (0.38) kPa in the 0 l.min-1, 70 l.min-1 and 120 l.min-1 groups, respectively; p = 0.16. During the second, third and fourth minutes of apnoea, mean (SD) rates of rise in PaCO2 were 0.34 (0.08) kPa.min-1, 0.36 (0.06) kPa.min-1 and 0.37 (0.07) kPa.min-1 in the 0 l.min-1, 70 l.min-1 and 120 l.min-1 groups, respectively; p = 0.17. After 4 minutes of apnoea, median (IQR [range]) arterial oxygen partial pressures in the 0 l.min-1, 70 l.min-1 and 120 l.min-1 groups were 24.5 (18.6-31.4 [12.3-48.3]) kPa; 36.6 (28.1-43.8 [9.8-56.9]) kPa; and 37.6 (26.5-45.4 [11.0-56.6]) kPa, respectively; p < 0.001. Median (IQR [range]) times to desaturate to 92% after the onset of apnoea in the 0 l.min-1, 70 l.min-1 and 120 l.min-1 groups, were 412 (347-509 [190-796]) s; 533 (467-641 [192-958]) s; and 531 (462-681 [326-1007]) s, respectively; p < 0.001. In conclusion, the rate of carbon dioxide accumulation in arterial blood did not differ significantly between apnoeic patients who received high-flow nasal oxygen and those who did not.


Assuntos
Apneia , Oxigenoterapia , Oxigênio , Troca Gasosa Pulmonar , Humanos , Apneia/terapia , Apneia/fisiopatologia , Apneia/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Oxigenoterapia/métodos , Troca Gasosa Pulmonar/fisiologia , Oxigênio/sangue , Oxigênio/metabolismo , Oxigênio/administração & dosagem , Dióxido de Carbono/sangue , Dióxido de Carbono/metabolismo , Adulto , Idoso , Administração Intranasal
8.
BMC Pulm Med ; 24(1): 228, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730395

RESUMO

OBJECTIVE: To explore the association between PaCO2 and noninvasive ventilation (NIV) failure in patients with hypoxemic respiratory failure. METHODS: A retrospective study was performed in a respiratory ICU of a teaching hospital. Patients admitted to ICU between 2011 and 2019 were screened. We enrolled the patients with hypoxemic respiratory failure. However, patients who used NIV due to acute-on-chronic respiratory failure or heart failure were excluded. Data before the use of NIV were collected. Requirement of intubation was defined as NIV failure. RESULTS: A total of 1029 patients were enrolled in final analysis. The rate of NIV failure was 45% (461/1029). A nonlinear relationship between PaCO2 and NIV failure was found by restricted cubic splines (p = 0.03). The inflection point was 32 mmHg. The rate of NIV failure was 42% (224/535) in patients with PaCO2 >32 mmHg. However, it increased to 48% (237/494) in those with PaCO2 ≤ 32 mmHg. The crude and adjusted hazard ratio (HR) for NIV failure was 1.36 (95%CI:1.13-1.64) and 1.23(1.01-1.49), respectively, if the patients with PaCO2 >32 mmHg were set as reference. In patients with PaCO2 ≤ 32 mmHg, one unit increment of PaCO2 was associated with 5% reduction of NIV failure. However, it did not associate with NIV failure in patients with PaCO2 >32 mmHg. CONCLUSIONS: PaCO2 and NIV failure was nonlinear relationship. The inflection point was 32 mmHg. Below the inflection point, lower PaCO2 was associated with higher NIV failure. However, it did not associate with NIV failure above this point.


Assuntos
Dióxido de Carbono , Hipóxia , Ventilação não Invasiva , Insuficiência Respiratória , Falha de Tratamento , Humanos , Insuficiência Respiratória/terapia , Insuficiência Respiratória/sangue , Estudos Retrospectivos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Hipóxia/sangue , Hipóxia/terapia , Dióxido de Carbono/sangue , Unidades de Terapia Intensiva , Idoso de 80 Anos ou mais , Gasometria
9.
Arch Gynecol Obstet ; 310(2): 705-709, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874777

RESUMO

BACKGROUND: This study aimed to address the increasing prevalence of cesarean section and the importance of evaluating newborn health through arterial blood gas analysis. Its primary objective was to compare the umbilical cord blood gas levels in newborns delivered through different delivery methods. METHOD: This retrospective descriptive cross-sectional study included singleton pregnancies with a gestational age between 37 and 42 weeks and infants weighing between 2500 and 4000 g. Newborns with an Apgar score of 7 or higher at 1 and 5 min were included. Umbilical cord blood samples were collected from each newborn for blood gas analysis within 60 min after birth. RESULT: The study included 340 neonates, with 170 born via caesarean section and 170 born through vaginal delivery. No significant differences were observed in Apgar scores between two groups. ABG analysis showed that vaginally born neonates had lower pH (7.24 ± 0.08 vs. 7.27 ± 0.07, P < 0.001), PCO2 (P = 0.015), and HCO3 (P < 0.001). Cesarean section neonates had higher oxygen saturation (P = 0.007) and pressure of oxygen (P < 0.001), and less negative base excess (P < 0.001). In the subgroup analysis, neonates whose mothers received epidural anesthesia had lower pH (7.23 ± 0.07 vs. 7.25 ± 0.08, P = 0.021) and more negative base excess (P = 0.026). Other parameters of ABG did not differ significantly between the groups (P > 0.05). CONCLUSION: It has been proven that the mode of delivery, whether it is vaginal or cesarean, as well as the administration of epidural anesthesia during vaginal delivery, have a significant impact on newborns at birth. Newborns delivered vaginally exhibit metabolic acidosis compared to those delivered via cesarean section. Although these differences are statistically significant, they do not have a notable clinical significance, as the average values of the evaluated parameters in both groups fall within the normal range.


Assuntos
Índice de Apgar , Gasometria , Cesárea , Parto Obstétrico , Sangue Fetal , Humanos , Recém-Nascido , Sangue Fetal/química , Feminino , Estudos Retrospectivos , Estudos Transversais , Parto Obstétrico/métodos , Parto Obstétrico/estatística & dados numéricos , Cesárea/estatística & dados numéricos , Gravidez , Adulto , Masculino , Concentração de Íons de Hidrogênio , Oxigênio/sangue , Oxigênio/administração & dosagem , Dióxido de Carbono/sangue
10.
Proc Natl Acad Sci U S A ; 117(18): 10067-10078, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32321831

RESUMO

Disorders of oxygen transport are commonly attributed to inadequate carrying capacity (anemia) but may also relate to inefficient gas exchange by red blood cells (RBCs), a process that is poorly characterized yet assumed to be rapid. Without direct measurements of gas exchange at the single-cell level, the barriers to O2 transport and their relationship with hematological disorders remain ill defined. We developed a method to track the flow of O2 in individual RBCs by combining ultrarapid solution switching (to manipulate gas tension) with single-cell O2 saturation fluorescence microscopy. O2 unloading from RBCs was considerably slower than previously estimated in acellular hemoglobin solutions, indicating the presence of diffusional barriers in intact cells. Rate-limiting diffusion across cytoplasm was demonstrated by osmotically induced changes to hemoglobin concentration (i.e., diffusive tortuosity) and cell size (i.e., diffusion pathlength) and by comparing wild-type cells with hemoglobin H (HbH) thalassemia (shorter pathlength and reduced tortuosity) and hereditary spherocytosis (HS; expanded pathlength). Analysis of the distribution of O2 unloading rates in HS RBCs identified a subpopulation of spherocytes with greatly impaired gas exchange. Tortuosity imposed by hemoglobin was verified by demonstrating restricted diffusivity of CO2, an acidic gas, from the dissipative spread of photolytically uncaged H+ ions across cytoplasm. Our findings indicate that cytoplasmic diffusion, determined by pathlength and tortuosity, is a major barrier to efficient gas handling by RBCs. Consequently, changes in RBC shape and hemoglobin concentration, which are common manifestations of hematological disorders, can have hitherto unrecognized and clinically significant implications on gas exchange.


Assuntos
Transporte Biológico/genética , Eritrócitos/metabolismo , Gases/sangue , Oxigênio/sangue , Adulto , Idoso , Dióxido de Carbono/sangue , Citoplasma/metabolismo , Feminino , Voluntários Saudáveis , Hemoglobinas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Célula Única
11.
Anesthesiology ; 136(1): 82-92, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758057

RESUMO

BACKGROUND: Anesthesia studies using high-flow, humidified, heated oxygen delivered via nasal cannulas at flow rates of more than 50 l · min-1 postulated a ventilatory effect because carbon dioxide increased at lower levels as reported earlier. This study investigated the increase of arterial partial pressure of carbon dioxide between different flow rates of 100% oxygen in elective anesthetized and paralyzed surgical adults before intubation. METHODS: After preoxygenation and standardized anesthesia induction with nondepolarizing neuromuscular blockade, all patients received 100% oxygen (via high-flow nasal oxygenation system or circuit of the anesthesia machine), and continuous jaw thrust/laryngoscopy was applied throughout the 15-min period. In this single-center noninferiority trial, 25 patients each, were randomized to five groups: (1) minimal flow: 0.25 l · min-1, endotracheal tube; (2) low flow: 2 l · min-1, continuous jaw thrust; (3) medium flow: 10 l · min-1, continuous jaw thrust; (4) high flow: 70 l · min-1, continuous jaw thrust; and (5) control: 70 l · min-1, continuous laryngoscopy. Immediately after anesthesia induction, the 15-min apnea period started with oxygen delivered according to the randomized flow rate. Serial arterial blood gas analyses were drawn every 2 min. The study was terminated if either oxygen saturation measured by pulse oximetry was less than 92%, transcutaneous carbon dioxide was greater than 100 mmHg, pH was less than 7.1, potassium level was greater than 6 mmol · l-1, or apnea time was 15 min. The primary outcome was the linear rate of mean increase of arterial carbon dioxide during the 15-min apnea period computed from linear regressions. RESULTS: In total, 125 patients completed the study. Noninferiority with a predefined noninferiority margin of 0.3 mmHg · min-1 could be declared for all treatments with the following mean and 95% CI for the mean differences in the linear rate of arterial partial pressure of carbon dioxide with associated P values regarding noninferiority: high flow versus control, -0.0 mmHg · min-1 (-0.3, 0.3 mmHg · min-1, P = 0.030); medium flow versus control, -0.1 mmHg · min-1 (-0.4, 0.2 mmHg · min-1, P = 0.002); low flow versus control, -0.1 mmHg · min-1 (-0.4, 0.2 mmHg · min-1, P = 0.003); and minimal flow versus control, -0.1 mmHg · min-1 (-0.4, 0.2 mmHg · min-1, P = 0.004). CONCLUSIONS: Widely differing flow rates of humidified 100% oxygen during apnea resulted in comparable increases of arterial partial pressure of carbon dioxide, which does not support an additional ventilatory effect of high-flow nasal oxygenation.


Assuntos
Administração Intranasal/métodos , Apneia/sangue , Apneia/terapia , Dióxido de Carbono/sangue , Oxigenoterapia/métodos , Administração Intranasal/efeitos adversos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigenoterapia/efeitos adversos , Pressão Parcial
12.
Circ Res ; 126(1): 129-158, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31590598

RESUMO

A continuous supply of oxygen is essential for the survival of multicellular organisms. The understanding of how this supply is regulated in the microvasculature has evolved from viewing erythrocytes (red blood cells [RBCs]) as passive carriers of oxygen to recognizing the complex interplay between Hb (hemoglobin) and oxygen, carbon dioxide, and nitric oxide-the three-gas respiratory cycle-that insures adequate oxygen and nutrient delivery to meet local metabolic demand. In this context, it is blood flow and not blood oxygen content that is the main driver of tissue oxygenation by RBCs. Herein, we review the lines of experimentation that led to this understanding of RBC function; from the foundational understanding of allosteric regulation of oxygen binding in Hb in the stereochemical model of Perutz, to blood flow autoregulation (hypoxic vasodilation governing oxygen delivery) observed by Guyton, to current understanding that centers on S-nitrosylation of Hb (ie, S-nitrosohemoglobin; SNO-Hb) as a purveyor of oxygen-dependent vasodilatory activity. Notably, hypoxic vasodilation is recapitulated by native S-nitrosothiol (SNO)-replete RBCs and by SNO-Hb itself, whereby SNO is released from Hb and RBCs during deoxygenation, in proportion to the degree of Hb deoxygenation, to regulate vessels directly. In addition, we discuss how dysregulation of this system through genetic mutation in Hb or through disease is a common factor in oxygenation pathologies resulting from microcirculatory impairment, including sickle cell disease, ischemic heart disease, and heart failure. We then conclude by identifying potential therapeutic interventions to correct deficits in RBC-mediated vasodilation to improve oxygen delivery-steps toward effective microvasculature-targeted therapies. To the extent that diseases of the heart, lungs, and blood are associated with impaired tissue oxygenation, the development of new therapies based on the three-gas respiratory system have the potential to improve the well-being of millions of patients.


Assuntos
Dióxido de Carbono/sangue , Fenômenos Fisiológicos Cardiovasculares , Hemoglobinas/metabolismo , Óxido Nítrico/sangue , Oxigênio/sangue , Regulação Alostérica , Animais , Transfusão de Sangue , Sequência Conservada , Cisteína/metabolismo , Células Endoteliais/fisiologia , Eritrócitos/metabolismo , Hemoglobinas/genética , Hemoglobinas Anormais/metabolismo , Humanos , Hipóxia/fisiopatologia , Mamíferos/sangue , Microcirculação , Modelos Cardiovasculares , Oxiemoglobinas/metabolismo , Doença Arterial Periférica/sangue , Doença Arterial Periférica/fisiopatologia , S-Nitrosotióis/análise , S-Nitrosotióis/sangue , Vasodilatação/fisiologia
13.
Anaesthesia ; 77(1): 46-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34182603

RESUMO

Whether high-flow vs. low-flow nasal oxygen reduces hypoxaemia for sedation during endoscopic retrograde cholangiopancreatography is currently unknown. In this multicentre trial, 132 patients ASA physical status 3 or higher, BMI > 30 kg.m-2 or with known or suspected obstructive sleep apnoea were randomly allocated to high-flow nasal oxygen up to 60 l.min-1 at 100% FI O2 or low-flow nasal oxygen at 4 l.min-1 . The low-flow nasal oxygen group also received oxygen at 4 l.min-1 through an oxygenating mouthguard, totalling 8 l.min-1 . Primary outcome was hypoxaemia, defined as Sp O2 < 90% regardless of duration. Hypoxaemia occurred in 7.7% (5/65) of patients with high-flow and 9.1% (6/66) with low-flow nasal oxygen (percentage point difference -1.4%, 95%CI -10.9 to 8.0; p = 0.77). Between the groups, there were no significant differences in frequency of hypoxaemic episodes; lowest Sp O2 ; peak transcutaneous carbon dioxide; hypercarbia (transcutaneous carbon dioxide > 2.66 kPa from baseline); requirement of chin lift/jaw thrust; nasopharyngeal airway insertion; bag-mask ventilation; or tracheal intubation. Following adjustment for duration of the procedure, the primary outcome remained non-significant. In high-risk patients undergoing endoscopic retrograde cholangiopancreatography, oxygen therapy with high-flow nasal oxygen did not reduce the rate of hypoxaemia, hypercarbia or the need for airway interventions, compared with combined oral and nasal low-flow oxygen.


Assuntos
Hipóxia/terapia , Oxigenoterapia/métodos , Administração Intranasal , Idoso , Idoso de 80 Anos ou mais , Anestesia Geral , Dióxido de Carbono/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/administração & dosagem , Oxigênio/sangue , Resultado do Tratamento
14.
Anaesthesia ; 77(1): 40-45, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34402044

RESUMO

High-flow nasal oxygen used before and during apnoea prolongs time to desaturation at induction of anaesthesia. It is unclear how much oxygenation before apnoea prolongs this time. We randomly allocated 84 participants to 3 minutes of pre-oxygenation by one of three methods: 15 l.min-1 by facemask; 50 l.min-1 by high-flow nasal cannulae only; or 50 l.min-1 by high-flow nasal cannulae plus 15 l.min-1 by mouthpiece. We then anaesthetised and intubated the trachea of 79 participants and waited for oxygen saturation to fall to 92%. Median (IQR [range]) times to desaturate to 92% after pre-oxygenation with facemask oxygen, high-flow nasal oxygen only and high-flow nasal oxygen with mouthpiece, were: 309 (208-417 [107-544]) s; 344 (250-393 [194-585]) s; and 386 (328-498 [182-852]) s, respectively, p = 0.014. Time to desaturation after facemask pre-oxygenation was shorter than after combined nasal and mouthpiece pre-oxygenation, p = 0.006. We could not statistically distinguish high-flow nasal oxygen without mouthpiece from the other two groups for this outcome. Median (IQR [range]) arterial oxygen partial pressure after 3 minutes of pre-oxygenation by facemask, nasal cannulae and nasal cannulae plus mouthpiece, was: 49 (36-61 [24-66]) kPa; 57 (48-62 [30-69]) kPa; and 61 (55-64 [36-72]) kPa, respectively, p = 0.003. Oxygen partial pressure after 3 minutes of pre-oxygenation with nasal and mouthpiece combination was greater than after facemask pre-oxygenation, p = 0.002, and after high-flow nasal oxygen alone, p = 0.016. We did not reject the null hypothesis for the pairwise comparison of facemask pre-oxygenation and high-flow nasal pre-oxygenation, p = 0.14.


Assuntos
Apneia/terapia , Oxigenoterapia/métodos , Saturação de Oxigênio/fisiologia , Administração Intranasal , Adulto , Idoso , Anestesia Geral , Dióxido de Carbono/sangue , Feminino , Humanos , Masculino , Máscaras , Pessoa de Meia-Idade , Oxigênio/administração & dosagem , Oxigênio/sangue , Oxigenoterapia/instrumentação , Resultado do Tratamento
15.
Anaesthesia ; 77(1): 54-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34403493

RESUMO

Sore throat after tracheal intubation impairs postoperative recovery. We randomly allocated 172 ASA physical status 1-2 participants, scheduled for laparoscopic lower abdominal surgery, to tracheal intubation with larger tubes (n = 88) or smaller tubes (n = 84), with internal diameters 7.5-mm vs. 6.5-mm for men and 7.0-mm vs. 6.0-mm for women. Primary outcome was the rates of no, mild, moderate or severe sore throat 1 h after surgery, which were 60, 10, 17 and 1 with larger tracheal tubes and 79, 5, 0 and 0 with smaller tubes, p < 0.001. The equivalent rates 24 h after surgery were 64, 16, 8 and 0 vs. 74, 6, 3 and 1, p = 0.037. Intra-operative ventilatory variables were unaffected by tube diameter, including peak inspiratory pressure, plateau pressure and end-tidal carbon dioxide partial pressure. In summary, smaller tracheal tubes benefitted patients having laparoscopic operations.


Assuntos
Intubação Intratraqueal/métodos , Adulto , Idoso , Dióxido de Carbono/sangue , Feminino , Humanos , Intubação Intratraqueal/efeitos adversos , Intubação Intratraqueal/instrumentação , Laparoscopia , Masculino , Pessoa de Meia-Idade , Faringite/etiologia , Resultado do Tratamento
16.
Eur J Appl Physiol ; 122(3): 735-743, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34978604

RESUMO

Both voluntary rebreathing (RB) of expired air and voluntary apneas (VA) elicit changes in arterial carbon dioxide and oxygen (CO2 and O2) chemostimuli. These chemostimuli elicit synergistic increases in cerebral blood flow (CBF) and sympathetic nervous system activation, with the latter increasing systemic blood pressure. The extent that simultaneous and inverse changes in arterial CO2 and O2 and associated increases in blood pressure affect the CBF responses during RB versus VAs are unclear. We instrumented 21 healthy participants with a finometer (beat-by-beat mean arterial blood pressure; MAP), transcranial Doppler ultrasound (middle and posterior cerebral artery velocity; MCAv, PCAv) and a mouthpiece with sample line attached to a dual gas analyzer to assess pressure of end-tidal (PET)CO2 and PETO2. Participants performed two protocols: RB and a maximal end-inspiratory VA. A second-by-second stimulus index (SI) was calculated as PETCO2/PETO2 during RB. For VA, where PETCO2 and PETO2 could not be measured throughout, SI values were calculated using interpolated end-tidal gas values before and at the end of the apneas. MAP reactivity (MAPR) was calculated as the slope of the MAP/SI, and cerebrovascular reactivity (CVR) was calculated as the slope of MCAv or PCAv/SI. We found that compared to RB, VA elicited ~ fourfold increases in MAPR slope (P < 0.001), translating to larger anterior and posterior CVR (P ≤ 0.01). However, cerebrovascular conductance (MCAv or PCAv/MAP) was unchanged between interventions (P ≥ 0.2). MAP responses during VAs are larger than those during RB across similar chemostimuli, and differential CVR may be driven by increases in perfusion pressure.


Assuntos
Apneia/fisiopatologia , Pressão Arterial/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Dióxido de Carbono/sangue , Feminino , Voluntários Saudáveis , Humanos , Masculino , Oxigênio/sangue , Troca Gasosa Pulmonar , Ultrassonografia Doppler Transcraniana
17.
J Assoc Physicians India ; 70(5): 11-12, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35598131

RESUMO

AIMS AND OBJECTIVES: Patients with pulmonary thromboembolism (PTE) are commonly admitted to hospital and generally have a prolonged hospital stay in this part of the world. We aimed to determine different clinical and laboratory parameters that are associated with prolonged hospital stay in our set-up and to analyse effectiveness of Pulmonary Embolism Severity Index (PESI) score as a predictor of prolonged hospital stay in patients with PTE. MATERIALS AND METHODS: It was a hospital based observational prospective study. Confirmed cases of PTE defined as patients with evidence of thrombus on CT pulmonary angiogram (CTPA) were included in this study. Depending on the length of hospital stay, patients were divided into two cohorts: Shorter Hospital stay (less than mean i.e., < 10 Days) and Prolonged Hospital stay (longer than mean i.e., ≥ 10 Days). Logistic regression analysis was done to identify predictors of prolonged hospital stay. RESULTS: 150 patients were included in the study with 67 patients (44.67%) having shorter hospital stay (<10 days) and 83 patients (55.33%) having prolonged hospital stay (≥10 days). On multivariate regression analysis, parameters that were found to be statistically significant were hypotension at presentation, decreased level of consciousness, pco2 < 30 mmHg, presence of S1Q3T3 pattern on electrocardiogram (ECG) and high risk PESI (class III-V). CONCLUSION: PESI class can be effectively used to predict prolonged hospital stay in patients with pulmonary embolism. Patients with hypotension at presentation, decreased level of consciousness, pco2 less than 30 mmHg, and S1Q3T3 on ECG are more likely to have prolonged hospital stay in our healthcare setup.


Assuntos
Tempo de Internação , Embolia Pulmonar , Doença Aguda , Dióxido de Carbono/sangue , Angiografia por Tomografia Computadorizada , Transtornos da Consciência/etiologia , Eletrocardiografia , Humanos , Hipotensão/etiologia , Estudos Prospectivos , Embolia Pulmonar/sangue , Embolia Pulmonar/complicações , Embolia Pulmonar/diagnóstico por imagem , Embolia Pulmonar/terapia , Doença Cardiopulmonar/diagnóstico , Doença Cardiopulmonar/etiologia , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença
18.
Neuroimage ; 239: 118306, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175427

RESUMO

Cerebrovascular reactivity (CVR), defined here as the Blood Oxygenation Level Dependent (BOLD) response to a CO2 pressure change, is a useful metric of cerebrovascular function. Both the amplitude and the timing (hemodynamic lag) of the CVR response can bring insight into the nature of a cerebrovascular pathology and aid in understanding noise confounds when using functional Magnetic Resonance Imaging (fMRI) to study neural activity. This research assessed a practical modification to a typical resting-state fMRI protocol, to improve the characterization of cerebrovascular function. In 9 healthy subjects, we modelled CVR and lag in three resting-state data segments, and in data segments which added a 2-3 minute breathing task to the start of a resting-state segment. Two different breathing tasks were used to induce fluctuations in arterial CO2 pressure: a breath-hold task to induce hypercapnia (CO2 increase) and a cued deep breathing task to induce hypocapnia (CO2 decrease). Our analysis produced voxel-wise estimates of the amplitude (CVR) and timing (lag) of the BOLD-fMRI response to CO2 by systematically shifting the CO2 regressor in time to optimize the model fit. This optimization inherently increases gray matter CVR values and fit statistics. The inclusion of a simple breathing task, compared to a resting-state scan only, increases the number of voxels in the brain that have a significant relationship between CO2 and BOLD-fMRI signals, and improves our confidence in the plausibility of voxel-wise CVR and hemodynamic lag estimates. We demonstrate the clinical utility and feasibility of this protocol in an incidental finding of Moyamoya disease, and explore the possibilities and challenges of using this protocol in younger populations. This hybrid protocol has direct applications for CVR mapping in both research and clinical settings and wider applications for fMRI denoising and interpretation.


Assuntos
Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Descanso/fisiologia , Adulto , Suspensão da Respiração , Dióxido de Carbono/sangue , Paralisia Cerebral/diagnóstico por imagem , Paralisia Cerebral/fisiopatologia , Conjuntos de Dados como Assunto , Feminino , Humanos , Achados Incidentais , Masculino , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/fisiopatologia , Oxigênio/sangue , Respiração , Adulto Jovem
19.
BMC Neurosci ; 22(1): 67, 2021 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-34775960

RESUMO

BACKGROUND: Electrical muscle stimulation (EMS) induces involuntary muscle contraction. Several studies have suggested that EMS has the potential to be an alternative method of voluntary exercise; however, its effects on cerebral blood flow (CBF) when applied to large lower limb muscles are poorly understood. Thus, the purpose of this study was to examine the effects of EMS on CBF, focusing on whether the effects differ between the internal carotid (ICA) and vertebral (VA) arteries. METHODS: The participants performed the experiments under EMS and control (rest) conditions in a randomized crossover design. The ICA and VA blood flow were measured before and during EMS or control. Heart rate, blood pressure, minute ventilation, oxygen uptake, and end-tidal partial pressure of carbon dioxide (PETCO2) were monitored and measured as well. RESULTS: The ICA blood flow increased during EMS [Pre: 330 ± 69 mL min-1; EMS: 371 ± 81 mL min-1, P = 0.001, effect size (Cohen's d) = 0.55]. In contrast, the VA blood flow did not change during EMS (Pre: 125 ± 47 mL min-1; EMS: 130 ± 45 mL min-1, P = 0.26, effect size = 0.12). In the EMS condition, there was a significant positive linear correlation between ΔPETCO2 and ΔICA blood flow (R = 0.74, P = 0.02). No relationships were observed between ΔPETCO2 and ΔVA blood flow (linear: R = - 0.17, P = 0.66; quadratic: R = 0.43, P = 0.55). CONCLUSIONS: The present results indicate that EMS increased ICA blood flow but not VA blood flow, suggesting that the effects of EMS on cerebral perfusion differ between anterior and posterior cerebral circulation, primarily due to the differences in cerebrovascular response to CO2.


Assuntos
Dióxido de Carbono/sangue , Circulação Cerebrovascular/fisiologia , Estimulação Elétrica , Hemodinâmica/fisiologia , Adulto , Pressão Sanguínea/fisiologia , Estimulação Elétrica/métodos , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Masculino , Músculos/irrigação sanguínea , Artéria Vertebral/fisiologia , Adulto Jovem
20.
Am J Physiol Regul Integr Comp Physiol ; 321(6): R869-R878, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704846

RESUMO

In the developing embryos of egg-laying vertebrates, O2 flux takes place across a fixed surface area of the eggshell and the chorioallantoic membrane. In the case of crocodilians, the developing embryo may experience a decrease in O2 flux when the nest becomes hypoxic, which may cause compensatory adjustments in blood O2 transport. However, whether the switch from embryonic to adult hemoglobin isoforms (isoHbs) plays some role in these adjustments is unknown. Here, we provide a detailed characterization of the developmental switch of isoHb synthesis in the American alligator, Alligator mississippiensis. We examined the in vitro functional properties and subunit composition of purified alligator isoHbs expressed during embryonic developmental stages in normoxia and hypoxia (10% O2). We found distinct patterns of isoHb expression in alligator embryos at different stages of development, but these patterns were not affected by hypoxia. Specifically, alligator embryos expressed two main isoHbs: HbI, prevalent at early developmental stages, with a high O2 affinity and high ATP sensitivity, and HbII, prevalent at later stages and identical to the adult protein, with a low O2 affinity and high CO2 sensitivity. These results indicate that whole blood O2 affinity is mainly regulated by ATP in the early embryo and by CO2 and bicarbonate from the late embryo until adult life, but the developmental regulation of isoHb expression is not affected by hypoxia exposure.


Assuntos
Jacarés e Crocodilos/embriologia , Embrião não Mamífero/metabolismo , Hemoglobinas/metabolismo , Proteínas de Répteis/metabolismo , Trifosfato de Adenosina/sangue , Animais , Dióxido de Carbono/sangue , Desenvolvimento Embrionário , Oxigênio/sangue , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa