Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.092
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 327(1): F113-F127, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38660712

RESUMO

The kidneys maintain fluid-electrolyte balance and excrete waste in the presence of constant fluctuations in plasma volume and systemic blood pressure. The kidneys perform these functions to control capillary perfusion and glomerular filtration by modulating the mechanisms of autoregulation. An effect of these modulations are spontaneous, natural fluctuations in glomerular perfusion. Numerous other mechanisms can lead to fluctuations in perfusion and flow. The ability to monitor these spontaneous physiological fluctuations in vivo could facilitate the early detection of kidney disease. The goal of this work was to investigate the use of resting-state magnetic resonance imaging (rsMRI) to detect spontaneous physiological fluctuations in the kidney. We performed rsMRI of rat kidneys in vivo over 10 min, applying motion correction to resolve time series in each voxel. We observed spatially variable, spontaneous fluctuations in rsMRI signal between 0 and 0.3 Hz, in frequency bands associated with autoregulatory mechanisms. We further applied rsMRI to investigate changes in these fluctuations in a rat model of diabetic nephropathy. Spectral analysis was performed on time series of rsMRI signals in the kidney cortex and medulla. The power from spectra in specific frequency bands from the cortex correlated with severity of glomerular pathology caused by diabetic nephropathy. Finally, we investigated the feasibility of using rsMRI of the human kidney in two participants, observing the presence of similar, spatially variable fluctuations. This approach may enable a range of preclinical and clinical investigations of kidney function and facilitate the development of new therapies to improve outcomes in patients with kidney disease.NEW & NOTEWORTHY This work demonstrates the development and use of resting-state MRI to detect low-frequency, spontaneous physiological fluctuations in the kidney consistent with previously observed fluctuations in perfusion and potentially due to autoregulatory function. These fluctuations are detectable in rat and human kidneys, and the power of these fluctuations is affected by diabetic nephropathy in rats.


Assuntos
Nefropatias Diabéticas , Rim , Imageamento por Ressonância Magnética , Ratos Sprague-Dawley , Animais , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Rim/fisiopatologia , Rim/diagnóstico por imagem , Ratos , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/diagnóstico por imagem , Circulação Renal , Humanos , Homeostase/fisiologia
2.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664801

RESUMO

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Assuntos
Caveolina 1 , Dieta Hiperlipídica , Células Endoteliais , Endotélio Vascular , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III , Vasodilatação , Animais , Masculino , Camundongos , Aorta/enzimologia , Aorta/fisiopatologia , Aorta/metabolismo , Aorta/efeitos dos fármacos , Aorta/patologia , Caveolina 1/metabolismo , Caveolina 1/deficiência , Caveolina 1/genética , Células Cultivadas , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/efeitos dos fármacos , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/enzimologia , Obesidade/fisiopatologia , Obesidade/metabolismo , Transdução de Sinais , Esterol Esterase/metabolismo , Esterol Esterase/genética , Ubiquitinação , Vasodilatação/efeitos dos fármacos
3.
J Cardiovasc Pharmacol ; 83(6): 621-634, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547520

RESUMO

ABSTRACT: Type 2 diabetes mellitus increases the risk of cardiovascular diseases. Therefore, elucidation of the cardiovascular effects of antidiabetics is crucial. Incretin-based therapies are increasingly used for type 2 diabetes mellitus treatment as monotherapy and in combination. We aimed to study the effects of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sitagliptin on beating rates in isolated atria from diabetic rats. The chronotropic responses to GLP-1 RAs and sitagliptin as monotherapy and in combinations with metformin, pioglitazone, and glimepiride in isolated atria from control and diabetic rats were determined. GLP-1 (7-36), GLP-1 (9-36), and exendin-4 (1-39) produced increases in beating rates in both control and diabetic rat atria. However, sitagliptin increased the beating frequency only in the diabetic group. Exendin (9-39), nitro- l -arginine methyl ester hydrochloride, and indomethacin blocked responses to GLP-1 RAs but not the response to sitagliptin. Glibenclamide, 4-aminopyridine, apamin, charybdotoxin, superoxide dismutase, and catalase incubations did not change responses to GLP-1 RAs and sitagliptin. GLP-1 RAs increase beating rates in isolated rat atrium through GLP-1 receptor, nitric oxide, and cyclooxygenase pathways but not potassium channels and reactive oxygen radicals.


Assuntos
Diabetes Mellitus Experimental , Receptor do Peptídeo Semelhante ao Glucagon 1 , Átrios do Coração , Frequência Cardíaca , Hipoglicemiantes , Fosfato de Sitagliptina , Animais , Fosfato de Sitagliptina/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Masculino , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Átrios do Coração/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Ratos , Ratos Wistar , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Exenatida/farmacologia , Incretinas/farmacologia , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Pirazinas/farmacologia , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon
4.
Int J Med Sci ; 21(6): 1144-1154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774757

RESUMO

Objectives: To examine time-dependent functional and structural changes of the lower urinary tract in streptozotocin-induced diabetic rats with or without low-dose insulin treatment and explore the pathophysiological characteristics of insulin therapy on lower urinary tract dysfunction (LUTD) caused by diabetes mellitus (DM). Methods: Female Sprague-Dawley rats were divided into five groups: normal control (NC) group, 4 weeks insulin-treated DM (4-DI) group, 4 weeks DM (4-DM) group, 8 weeks insulin-treated DM (8-DI) group and 8 weeks DM (8-DM) group. DM was initially induced by i.p. injection of streptozotocin (65 mg/kg), and then the DI groups received subcutaneous implantation of insulin pellets under the mid dorsal skin. Voiding behavior was evaluated in metabolic cages. The function of bladder and urethra in vivo were evaluated by simultaneous recordings of the cystometrogram and urethral perfusion pressure (UPP) under urethane anesthesia. The function of bladder and urethra in vitro were tested by organ bath techniques. The morphologic changes of the bladder and urethra were investigated using Hematoxylin-Eosin and Masson's staining. Results: Both 4-and 8-weeks diabetic rats have altered micturition patterns, including increased 12-h urine volume, urinary frequency/12 hours and voided volume. In-vivo urodynamics showed the EUS bursting activity duration is longer in 4-DM group and shorter in 8-DM group compared to NC group. UPP change in 8-DM were significantly lower than NC group. While none of these changes were found between DI and NC groups. Organ bath showed the response to Carbachol and EFS in bladder smooth muscle per tissue weights was decreased significantly in 4- and 8-weeks DM groups compared with insulin-treated DM or NC groups. In contrast, the contraction of urethral muscle and maximum urethral muscle contraction per gram of the tissue to EFS stimulation were significantly increased in 4- and 8-weeks DM groups. The thickness of bladder smooth muscle was time-dependently increased, but the thickness of the urethral muscle had no difference. Conclusions: DM-induced LUTD is characterized by time-dependent functional and structural remodeling in the bladder and urethra, which shows the hypertrophy of the bladder smooth muscle, reduced urethral smooth muscle relaxation and EUS dysfunction. Low-dose insulin can protect against diuresis-induced bladder over-distention, preserve urethral relaxation and protect EUS bursting activity, which would be helpful to study the slow-onset, time-dependent progress of DM-induced LUTD.


Assuntos
Diabetes Mellitus Experimental , Insulina , Ratos Sprague-Dawley , Uretra , Bexiga Urinária , Micção , Animais , Feminino , Ratos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , Insulina/administração & dosagem , Sintomas do Trato Urinário Inferior/tratamento farmacológico , Sintomas do Trato Urinário Inferior/etiologia , Sintomas do Trato Urinário Inferior/fisiopatologia , Estreptozocina/toxicidade , Fatores de Tempo , Uretra/efeitos dos fármacos , Uretra/fisiopatologia , Uretra/patologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiopatologia , Bexiga Urinária/patologia , Micção/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161259

RESUMO

The quantity and quality of food intake have been considered crucial for peoples' wellness. Only recently has it become appreciated that the timing of food intake is also critical. Nondipping blood pressure (BP) is prevalent in diabetic patients and is associated with increased cardiovascular events. However, the causes and mechanisms of nondipping BP in diabetes are not fully understood. Here, we report that food intake and BP were arrhythmic in diabetic db/db mice fed a normal chow diet ad libitum. Imposing a food intake diurnal rhythm by time-restricted feeding (TRF; food was only available for 8 h during the active phase) prevented db/db mice from developing nondipping BP and effectively restored the already disrupted BP circadian rhythm in db/db mice. Interestingly, increasing the time of food availability from 8 h to 12 h during the active dark phase in db/db mice prompted isocaloric feeding and still provided robust protection of the BP circadian rhythm in db/db mice. In contrast, neither 8-h nor 12-h TRF affected BP dipping in wild-type mice. Mechanistically, we demonstrate that TRF protects the BP circadian rhythm in db/db mice via suppressing the sympathetic activity during the light phase when they are inactive and fasting. Collectively, these data reveal a potentially pivotal role of the timing of food intake in the prevention and treatment of nondipping BP in diabetes.


Assuntos
Pressão Sanguínea/fisiologia , Ritmo Circadiano/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Jejum/fisiologia , Animais , Ingestão de Energia , Camundongos , Sistema Nervoso Simpático/fisiopatologia , Fatores de Tempo
6.
Medicina (Kaunas) ; 60(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38792932

RESUMO

Background and Objectives: The influence of montelukast (MK), an antagonist of cysLT1 leukotriene receptors, on lung lesions caused by experimental diabetes was studied. Materials and Methods: The study was conducted on four groups of six adult male Wistar rats. Diabetes was produced by administration of streptozotocin 65 mg/kg ip. in a single dose. Before the administration of streptozotocin, after 72 h, and after 8 weeks, the serum values of glucose, SOD, MDA, and total antioxidant capacity (TAS) were determined. After 8 weeks, the animals were anesthetized and sacrificed, and the lungs were harvested and examined by optical microscopy. Pulmonary fibrosis, the extent of lung lesions, and the lung wet-weight/dry-weight ratio were evaluated. Results: The obtained results showed that MK significantly reduced pulmonary fibrosis (3.34 ± 0.41 in the STZ group vs. 1.73 ± 0.24 in the STZ+MK group p < 0.01) and lung lesion scores and also decreased the lung wet-weight/dry-weight (W/D) ratio. SOD and TAS values increased significantly when MK was administered to animals with diabetes (77.2 ± 11 U/mL in the STZ group vs. 95.7 ± 13.3 U/mL in the STZ+MK group, p < 0.05, and 25.52 ± 2.09 Trolox units in the STZ group vs. 33.29 ± 1.64 Trolox units in the STZ+MK group, respectively, p < 0.01), and MDA values decreased. MK administered alone did not significantly alter any of these parameters in normal animals. Conclusions: The obtained data showed that by blocking the action of peptide leukotrienes on cysLT1 receptors, montelukast significantly reduced the lung lesions caused by diabetes. The involvement of these leukotrienes in the pathogenesis of fibrosis and other lung diabetic lesions was also demonstrated.


Assuntos
Acetatos , Ciclopropanos , Diabetes Mellitus Experimental , Pulmão , Quinolinas , Ratos Wistar , Sulfetos , Ciclopropanos/uso terapêutico , Animais , Quinolinas/uso terapêutico , Quinolinas/farmacologia , Acetatos/uso terapêutico , Acetatos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Masculino , Ratos , Pulmão/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Antagonistas de Leucotrienos/uso terapêutico , Antagonistas de Leucotrienos/farmacologia , Estreptozocina , Glicemia/análise , Glicemia/efeitos dos fármacos
7.
J Neurosci ; 41(24): 5287-5302, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33753547

RESUMO

Diabetic neuropathic pain (DNP) is a common complication of diabetes characterized by persistent pain. Emerging evidence links astrocytes to mechanical nociceptive processing, and the motor cortex (MCx) is a cerebral cortex region that is known to play a key role in pain regulation. However, the association between MCx astrocytes and DNP pathogenesis remains largely unexplored. Here, we studied this association using designer receptors exclusively activated by designer drugs to specifically manipulate MCx astrocytes. We proved that the selective inhibition of MCx astrocytes reduced DNP in streptozocin (STZ)-induced DNP models and discovered a potential mechanism by which astrocytes release cytokines, including TNF-α and IL-1ß, to increase neuronal activation in the MCx, thereby regulating pain. Together, these results demonstrate a pivotal role for MCx astrocytes in DNP pathogenesis and provide new insight into DNP treatment strategies.


Assuntos
Astrócitos/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/fisiopatologia , Córtex Motor/fisiopatologia , Neuralgia/fisiopatologia , Animais , Masculino , Ratos Sprague-Dawley
8.
Biochem Biophys Res Commun ; 586: 8-13, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34818584

RESUMO

AIM: To evaluate the effects of exercise training (ET) on cardiac extracellular matrix (ECM) proteins homeostasis and cardiac dysfunction in mice with diabetic cardiomyopathy. METHODS: Thirty-six male C57BL/6 mice were randomized into 3 groups for 8 weeks (12mice/group): Diabetic control-DC: Diabetes was induced by single streptozotocin injection (200 mg/kg i.p.); Diabetic exercise-DE: Diabetic mice underwent ET program on motorized-treadmill (6-times/week, 60min/session); Non-diabetic control-NDC: Vehicle-treated, sedentary, non-diabetic mice served as controls. Before euthanasia, all groups underwent transthoracic echocardiography (TTE). Post-mortem, left-ventricle (LV) samples were histologically analysed for ECM proteins (collagen, elastin), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). RESULTS: DC group showed significantly higher cardiac contents of collagen and MMP-9 and lower elastic concentration than NDC (p < 0.001). The implementation of ET completely outweighed those diabetes-induced changes (DE vs NDC, p > 0.05). TIMP-1 levels significantly increased across all groups (DC: 18.98 ± 3.47%, DE: 24.24 ± 2.36%, NDC: 46.36 ± 5.91%; p < 0.05), while MMP-9/TIMP-1 ratio followed a reverse pattern. ET tended to increase MMP-2 concentrations versus DC (p = 0.055), but did not achieve non-diabetic levels (p < 0.05). TIMP-2 cardiac concentrations remained unaltered throughout the study (p > 0.05). Importantly, ET ameliorated both LV end-systolic internal diameter (LVESD) (p < 0.001) and the percentage of LV fractional shortening (FS%) (p = 0.006) compared to DC. Despite that favorable effect, the cardiac function level of DE group remained worse than NDC group (%FS: p = 0.002; LVESD: p < 0.001). CONCLUSION: Systemic ET may favorably change ECM proteins, MMP-9 and TIMP-1 cardiac concentrations in mice with diabetic cardiomyopathy. Those results were associated with partial improvement of echocardiography-assessed cardiac function, indicating a therapeutic effect of ET in diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Cardiomiopatias Diabéticas/enzimologia , Matriz Extracelular/enzimologia , Metaloproteinase 9 da Matriz/genética , Condicionamento Físico Animal/fisiologia , Inibidor Tecidual de Metaloproteinase-1/genética , Animais , Glicemia/metabolismo , Colágeno/genética , Colágeno/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/induzido quimicamente , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Ecocardiografia , Elastina/genética , Elastina/metabolismo , Teste de Esforço , Matriz Extracelular/genética , Regulação da Expressão Gênica , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Estreptozocina/administração & dosagem , Inibidor Tecidual de Metaloproteinase-1/metabolismo
9.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R181-R191, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34984919

RESUMO

Intrauterine programming of cardiovascular and renal function occurs in diabetes because of the adverse maternal environment. Heme oxygenase 1 (HO-1) and -2 (HO-2) exert vasodilatory and antioxidant actions, particularly in conditions of elevated HO-1 expression or deficient nitric oxide levels. We evaluated whether the activity of the heme-HO system is differentially regulated by oxidative stress in the female offspring of diabetic mothers, contributing to the improved cardiovascular function in comparison with males. Diabetes was induced in pregnant rats by a single dose of streptozotocin (STZ, 50 mg/kg ip) in late gestation. Three-month-old male offspring from diabetic mothers (MODs) exhibited higher blood pressure (BP), higher renal vascular resistance (RVR), worse endothelium-dependent response to acetylcholine (ACH), and an increased constrictor response to phenylephrine (PHE) compared with those in age-matched female offspring of diabetic mothers (FODs), which were abolished by chronic tempol (1 mM) treatment. In anesthetized animals, stannous mesoporphyrin (SnMP; 40 µmol/kg iv) administration, to inhibit HO activity, increased RVR in FODs and reduced glomerular filtration rate (GFR) in MODs, without altering these parameters in control animals. When compared with MODs, FODs showed lower nitrotirosyne levels and higher HO-1 protein expression in renal homogenates. Indeed, chronic treatment with tempol in MODs prevented elevations in nitrotyrosine levels and the acute renal hemodynamics response to SnMP. Then, maternal diabetes results in sex-specific hypertension and renal alterations associated with oxidative stress mainly in adult male offspring, which are reduced in the female offspring by elevation in HO-1 expression and lower oxidative stress levels.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Gestacional , Heme Oxigenase (Desciclizante)/metabolismo , Hemodinâmica , Hipertensão/etiologia , Rim/irrigação sanguínea , Efeitos Tardios da Exposição Pré-Natal , Circulação Renal , Animais , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Gestacional/enzimologia , Diabetes Gestacional/fisiopatologia , Feminino , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Rim/enzimologia , Masculino , Estresse Oxidativo , Gravidez , Ratos Sprague-Dawley , Fatores Sexuais
10.
FASEB J ; 35(9): e21823, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34396581

RESUMO

Exercise training exerts protective effects against diabetic nephropathy. This study aimed to investigate whether exercise training could attenuate diabetic renal injury via regulating endogenous hydrogen sulfide (H2 S) production. First, C57BL/6 mice were allocated into the control, diabetes, exercise, and diabetes + exercise groups. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ). Treadmill exercise continued for four weeks. Second, mice was allocated into the control, diabetes, H2 S and diabetes + H2 S groups. H2 S donor sodium hydrosulfide (NaHS) was intraperitoneally injected once daily for four weeks. STZ-induced diabetic mice exhibited glomerular hypertrophy, tissue fibrosis and increased urine albumin levels, urine protein- and albumin-to-creatinine ratios, which were relieved by exercise training. Diabetic renal injury was associated with apoptotic cell death, as evidenced by the enhanced caspase-3 activity, the increased TdT-mediated dUTP nick-end labeling -positive cells and the reduced expression of anti-apoptotic proteins, all of which were attenuated by exercise training. Exercise training enhanced renal sirtuin 1 (SIRT1) expression in diabetic mice, accompanied by an inhibition of the p53-#ediated pro-apoptotic pathway. Furthermore, exercise training restored the STZ-mediated downregulation of cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE) and the reduced renal H2 S production. NaHS treatment restored SIRT1 expression, inhibited the p53-mediated pro-apoptotic pathway and attenuated diabetes-associated apoptosis and renal injury. In high glucose-treated MPC5 podocytes, NaHS treatment inhibited the p53-mediated pro-apoptotic pathway and podocyte apoptosis in a SIRT1-dependent manner. Collectively, exercise training upregulated CBS/CSE expression and enhanced the endogenous H2 S production in renal tissues, thereby contributing to the modulation of the SIRT1/p53 apoptosis pathway and improvement of diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/metabolismo , Sulfeto de Hidrogênio/metabolismo , Condicionamento Físico Animal/fisiologia , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/fisiologia , Caspase 3/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/fisiopatologia , Rim/metabolismo , Rim/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Podócitos/metabolismo , Transdução de Sinais/fisiologia
11.
FASEB J ; 35(5): e21559, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33835594

RESUMO

Diabetic nephropathy (DN) remains the major cause of end-stage renal disease (ESRD). We used high-fat/high-sucrose (HFHS)-fed LDLr-/- /ApoB100/100 mice with transgenic overexpression of IGFII in pancreatic ß-cells (LRKOB100/IGFII) as a model of ESRD to test whether dietary long chain omega-3 polyunsaturated fatty acids LCω3FA-rich fish oil (FO) could prevent ESRD development. We further evaluated the potential of docosahexaenoic acid (DHA)-derived pro-resolving lipid mediators, 17-hydroxy-DHA (17-HDHA) and Protectin DX (PDX), to reverse established ESRD damage. HFHS-fed vehicle-treated LRKOB100/IGFII mice developed severe kidney dysfunction leading to ESRD, as revealed by advanced glomerular fibrosis and mesangial expansion along with reduced percent survival. The kidney failure outcome was associated with cardiac dysfunction, revealed by reduced heart rate and prolonged diastolic and systolic time. Dietary FO prevented kidney damage, lean mass loss, cardiac dysfunction, and death. 17-HDHA reduced podocyte foot process effacement while PDX treatment alleviated kidney fibrosis and mesangial expansion as compared to vehicle treatment. Only PDX therapy was effective at preserving the heart function and survival rate. These results show that dietary LCω3FA intake can prevent ESRD and cardiac dysfunction in LRKOB100/IGFII diabetic mice. Our data further reveals that PDX can protect against renal failure and cardiac dysfunction, offering a potential new therapeutic strategy against ESRD.


Assuntos
Aterosclerose/complicações , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/tratamento farmacológico , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/administração & dosagem , Óleos de Peixe/administração & dosagem , Falência Renal Crônica/tratamento farmacológico , Animais , Apolipoproteína B-100/fisiologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Falência Renal Crônica/etiologia , Falência Renal Crônica/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/fisiologia
12.
FASEB J ; 35(3): e21296, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33675115

RESUMO

Adenine phosphoribosyltransferase (APRT) is the key enzyme involved in purine salvage by the incorporation of adenine and phosphoribosyl pyrophosphate to provide adenylate nucleotides. To evaluate the role of APRT in the repair processes of cutaneous wounds in healthy skin and in diabetic patients, a diabetic mouse model (db/db) and age-matched wild-type mice were used. Moreover, the topical application of adenine was assessed. In vitro studies, analytical, histological, and immunohistochemical methods were used. Diabetic mice treated with adenine exhibited elevated ATP levels in organismic skin and accelerated wound healing. In vitro studies showed that APRT utilized adenine to rescue cellular ATP levels and proliferation from hydrogen peroxide-induced oxidative damage. HPLC-ESI-MS/MS-based analysis of total adenylate nucleotides in NIH-3T3 fibroblasts demonstrated that adenine addition enlarged the cellular adenylate pool, reduced the adenylate energy charge, and provided additional AMP for the further generation of ATP. These data indicate an upregulation of APRT in skin wounds, highlighting its role during the healing of diabetic wounds through regulation of the nucleotide pool after injury. Furthermore, topical adenine supplementation resulted in an enlargement of the adenylate pool needed for the generation of ATP, an important molecule for wound repair.


Assuntos
Adenina Fosforribosiltransferase/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Cicatrização/fisiologia , Adenina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Cicatrização/efeitos dos fármacos
13.
Pharmacol Res ; 176: 106086, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35033649

RESUMO

Type 2 diabetes mellitus (T2D) contributes to sustained inflammation and myopathic changes in the heart although the precise interplay between the two remains largely unknown. This study evaluated the impact of deficiency in CD74, the cognate receptor for the regulatory cytokine macrophage migration inhibitory factor (MIF), in T2D-induced cardiac remodeling and functional responses, and cell death domains involved. WT and CD74-/- mice were fed a high fat diet (60% calorie from fat) for 8 weeks prior to injection of streptozotocin (STZ, 35 mg/kg, i.p., 3 consecutive days) and were maintained for another 8 weeks. KEGG analysis for differentially expressed genes (DEGs) reported gene ontology term related to ferroptosis in T2D mouse hearts. T2D patients displayed elevated plasma MIF levels. Murine T2D exerted overt global metabolic derangements, cardiac remodeling, contractile dysfunction, apoptosis, pyroptosis, ferroptosis and mitochondrial dysfunction, ablation of CD74 attenuated T2D-induced cardiac remodeling, contractile dysfunction, various forms of cell death and mitochondrial defects without affecting global metabolic defects. CD74 ablation rescued T2D-evoked NLRP3-Caspase1 activation and oxidative stress but not dampened autophagy. In vitro evidence depicted that high glucose/high fat (HGHF) compromised cardiomyocyte function and promoted lipid peroxidation, the effects were ablated by inhibitors of NLRP3, pyroptosis, and ferroptosis but not by the mitochondrial targeted antioxidant mitoQ. Recombinant MIF mimicked HGHF-induced lipid peroxidation, GSH depletion and ferroptosis, the effects of which were reversed by inhibitors of MIF, NLRP3 and pyroptosis. Taken together, these data suggest that CD74 ablation protects against T2D-induced cardiac remodeling and contractile dysfunction through NLRP3/pyroptosis-mediated regulation of ferroptosis.


Assuntos
Antígenos de Diferenciação de Linfócitos B/genética , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ferroptose , Antígenos de Histocompatibilidade Classe II/genética , Piroptose , Remodelação Ventricular , Adulto , Animais , Linhagem Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Expressão Gênica , Humanos , Fatores Inibidores da Migração de Macrófagos/sangue , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Contração Miocárdica , Miocárdio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Estresse Oxidativo , Consumo de Oxigênio , Ratos
14.
Arterioscler Thromb Vasc Biol ; 41(9): 2469-2482, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320834

RESUMO

Objective: Critical limb ischemia is a major complication of diabetes characterized by insufficient collateral vessel development and proper growth factor signaling unresponsiveness. Although mainly deactivated by hypoxia, phosphatases are important players in the deregulation of proangiogenetic pathways. Previously, SHP-1 (Scr homology 2-containing phosphatase-1) was found to be associated with the downregulation of growth factor actions in the diabetic muscle. Thus, we aimed to gain further understanding of the impact of SHP-1 on smooth muscle cell (SMC) function under hypoxic and diabetic conditions. Approach and Results: Despite being inactivated under hypoxic conditions, high glucose level exposure sustained SHP-1 phosphatase activity in SMC and increased its interaction with PDGFR (platelet-derived growth factor receptor)-ß, thus reducing PDGF proangiogenic actions. Overexpression of an inactive form of SHP-1 fully restored PDGF-induced proliferation, migration, and signaling pathways in SMC exposed to high glucose and hypoxia. Nondiabetic and diabetic mice with deletion of SHP-1 specifically in SMC were generated. Ligation of the femoral artery was performed, and blood flow was measured for 4 weeks. Blood flow reperfusion, vascular density and maturation, and limb survival were all improved while vascular apoptosis was attenuated in diabetic SMC-specific SHP-1 null mice as compared to diabetic mice. Conclusions: Diabetes and high glucose level exposure maintained SHP-1 activity preventing hypoxia-induced PDGF actions in SMC. Specific deletion of SHP-1 in SMC partially restored blood flow reperfusion in the diabetic ischemic limb. Therefore, local modulation of SHP-1 activity in SMC could represent a potential therapeutic avenue to improve the proangiogenic properties of SMC under ischemia and diabetes.


Assuntos
Indutores da Angiogênese/farmacologia , Diabetes Mellitus Experimental/enzimologia , Angiopatias Diabéticas/enzimologia , Membro Posterior/irrigação sanguínea , Isquemia/enzimologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Animais , Glicemia/metabolismo , Estudos de Casos e Controles , Bovinos , Hipóxia Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/fisiopatologia , Ativação Enzimática , Humanos , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Transdução de Sinais
15.
Gut ; 70(6): 1078-1087, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33020209

RESUMO

OBJECTIVE: The enteric nervous system (ENS) plays a key role in controlling the gut-brain axis under normal and pathological conditions, such as type 2 diabetes. The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is considered an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia is still developed. We studied whether the modulation of gut microbiota by prebiotics could permit the identification of novel enterosynes. DESIGN: We measured the effects of prebiotics on the production of bioactive lipids in the intestine and tested the identified lipid on ENS-induced contraction and glucose metabolism. Then, we studied the signalling pathways involved and compared the results obtained in mice to human. RESULTS: We found that modulating the gut microbiota with prebiotics modifies the actions of enteric neurons, thereby controlling duodenal contraction and subsequently attenuating hyperglycaemia in diabetic mice. We discovered that the signalling pathway involved in these effects depends on the synthesis of a bioactive lipid 12-hydroxyeicosatetraenoic acid (12-HETE) and the presence of mu-opioid receptors (MOR) on enteric neurons. Using pharmacological approaches, we demonstrated the key role of the MOR receptors and proliferator-activated receptor γ for the effects of 12-HETE. These findings are supported by human data showing a decreased expression of the proenkephalin and MOR messanger RNAs in the duodenum of patients with diabetic. CONCLUSIONS: Using a prebiotic approach, we identified enkephalin and 12-HETE as new enterosynes with potential real beneficial and safety impact in diabetic human.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/biossíntese , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Duodeno/fisiologia , Sistema Nervoso Entérico/fisiologia , Prebióticos , Receptores Opioides mu/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacologia , Adulto , Idoso , Animais , Eixo Encéfalo-Intestino , Diabetes Mellitus Experimental/fisiopatologia , Duodeno/inervação , Encefalinas/genética , Encefalinas/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Microbioma Gastrointestinal , Teste de Tolerância a Glucose , Humanos , Contração Isotônica/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Liso/fisiologia , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Oligossacarídeos/farmacologia , PPAR gama/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores Opioides mu/genética , Transdução de Sinais
16.
J Mol Cell Cardiol ; 151: 74-87, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33197445

RESUMO

BACKGROUND: Diabetes mellitus is a worldwide epidemic that causes high mortality due to cardiovascular complications, in particular heart failure. Diabetes is associated with profound pathophysiological changes in the heart. The aim of this study was to investigate the impact of diabetes on gene expression and DNA methylation in cardiac cells. METHODS AND RESULTS: Transcriptome analysis of heart tissue from mice with streptozotocin-induced diabetes revealed only 39 genes regulated, whereas cell type-specific analysis of the diabetic heart was more sensitive and more specific than heart tissue analysis and revealed a total of 3205 differentially regulated genes in five cell types. Whole genome DNA methylation analysis with basepair resolution of distinct cardiac cell types identified highly specific DNA methylation signatures of genic and regulatory regions. Interestingly, despite marked changes in gene expression, DNA methylation remained stable in streptozotocin-induced diabetes. Integrated analysis of cell type-specific gene expression enabled us to assign the particular contribution of single cell types to the pathophysiology of the diabetic heart. Finally, analysis of gene regulation revealed ligand-receptor pairs as potential mediators of heterocellular interaction in the diabetic heart, with fibroblasts and monocytes showing the highest degree of interaction. CONCLUSION: In summary, cell type-specific analysis reveals differentially regulated gene programs that are associated with distinct biological processes in diabetes. Interestingly, despite these changes in gene expression, cell type-specific DNA methylation signatures of genic and regulatory regions remain stable in diabetes. Analysis of heterocellular interactions in the diabetic heart suggest that the interplay between fibroblasts and monocytes is of pivotal importance.


Assuntos
Metilação de DNA/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica , Miocárdio/metabolismo , Miocárdio/patologia , Animais , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/fisiopatologia , Perfilação da Expressão Gênica , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Receptores de Superfície Celular/metabolismo
17.
J Mol Cell Cardiol ; 151: 163-172, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32147518

RESUMO

Patients with type 2 diabetes mellitus (T2DM) are more susceptible to acute myocardial ischemia/reperfusion (MI/R) injury. However, the mechanism remains largely elusive. Clinical observation showed that high levels of hepatokine fetuin-B (FetB) in plasma are significantly associated with both diabetes and coronary artery diseases. This study was aimed to determine whether FetB mostly derived from liver exacerbates MI/R-induced injury and the underlying mechanisms in T2DM. Mice were given high-fat diet and streptozotocin to induce T2DM model and subjected to 30 min MI followed by reperfusion. Diabetes caused increased hepatic FetB expression and greater myocardial injury as evidenced by increased apoptosis and myocardial enzymes release following MI/R. In T2DM hearts, insulin-induced phosphorylations of insulin receptor substrate 1 at Tyr608 site and Akt at Ser473 site and glucose transporter 4 membrane translocation were markedly reduced. Interaction between FetB and insulin receptor-ß subunit (IRß) was enhanced assessed by immunoprecipitation analysis. More importantly, FetB knockdown via AAV9 alleviated MI/R injury and improved cardiac insulin-induced signaling in T2DM mice. Conversely, upregulation of FetB in normal mice caused exacerbated MI/R injury and impairment of insulin-mediated signaling. In cultured neonatal mouse cardiomyocytes, incubation of FetB significantly reduced tyrosine kinase activity of IR and insulin-induced glucose uptake, and increased hypoxia/reoxygenation-induced apoptosis. Furthermore, FoxO1 knockdown by siRNA suppressed FetB expressions in hepatocytes treated with palmitic acid. In conclusion, upregulated FetB in diabetic liver contributes to increased MI/R injury and cardiac dysfunction via directly interacting with IRß and consequently impairing cardiac insulin signaling.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Fetuína-B/metabolismo , Insulina/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Transdução de Sinais , Animais , Dependovirus/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ligação Proteica , Receptor de Insulina/metabolismo , Regulação para Cima
18.
Diabetologia ; 64(1): 226-239, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33106900

RESUMO

AIMS/HYPOTHESIS: Microvascular endothelial hyperpermeability, mainly caused by claudin-5 deficiency, is the initial pathological change that occurs in diabetes-associated cardiovascular disease. The ketone body ß-hydroxybutyrate (BHB) exerts unique beneficial effects on the cardiovascular system, but the involvement of BHB in promoting the generation of claudin-5 to attenuate cardiac microvascular hyperpermeability in diabetes is poorly understood. METHODS: The effects of BHB on cardiac microvascular endothelial hyperpermeability and claudin-5 generation were evaluated in rats with streptozotocin-induced diabetes and in high glucose (HG)-stimulated human cardiac microvascular endothelial cells (HCMECs). To explore the underlying mechanisms, we also measured ß-catenin nuclear translocation, binding of ß-catenin, histone deacetylase (HDAC)1, HDAC3 and p300 to the Claudin-5 (also known as CLDN5) promoter, interaction between HDAC3 and ß-catenin, and histone acetylation in the Claudin-5 promoter. RESULTS: We found that 10 weeks of BHB treatment promoted claudin-5 generation and antagonised cardiac microvascular endothelial hyperpermeability in rat models of diabetes. Meanwhile, BHB promoted claudin-5 generation and inhibited paracellular permeability in HG-stimulated HCMECs. Specifically, BHB (2 mmol/l) inhibited HG-induced HDAC3 from binding to the Claudin-5 promoter, although nuclear translocation or promoter binding of ß-catenin did not change with BHB treatment. In addition, BHB prevented the binding and co-localisation of HDAC3 to ß-catenin in HG-stimulated HCMECs. Furthermore, using mass spectrometry, acetylated H3K14 (H3K14ac) in the Claudin-5 promoter following BHB treatment was identified, regardless of whether cells were stimulated by HG or not. Although reduced levels of acetylated H3K9 in the Claudin-5 promoter were found following HG stimulation, increased H3K14ac was specifically associated with BHB treatment. CONCLUSIONS/INTERPRETATION: BHB inhibited HDAC3 and caused acetylation of H3K14 in the Claudin-5 promoter, thereby promoting claudin-5 generation and antagonising diabetes-associated cardiac microvascular hyperpermeability. Graphical abstract.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Claudina-5/biossíntese , Vasos Coronários/fisiopatologia , Diabetes Mellitus Experimental/fisiopatologia , Histona Desacetilases/efeitos dos fármacos , Animais , Permeabilidade Capilar/fisiologia , Claudina-5/genética , Complicações do Diabetes/prevenção & controle , Endotélio Vascular/fisiopatologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Masculino , Microvasos/fisiopatologia , Regiões Promotoras Genéticas/fisiologia , Ratos , Ratos Sprague-Dawley , beta Catenina/metabolismo
19.
Diabetologia ; 64(7): 1674-1689, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33770194

RESUMO

AIMS/HYPOTHESIS: Homo sapiens evolved under conditions of intermittent food availability and prolonged fasting between meals. Periods of fasting are important for recovery from meal-induced oxidative and metabolic stress, and tissue repair. Constant high energy-density food availability in present-day society contributes to the pathogenesis of chronic diseases, including diabetes and its complications, with intermittent fasting (IF) and energy restriction shown to improve metabolic health. We have previously demonstrated that IF prevents the development of diabetic retinopathy in a mouse model of type 2 diabetes (db/db); however the mechanisms of fasting-induced health benefits and fasting-induced risks for individuals with diabetes remain largely unknown. Sirtuin 1 (SIRT1), a nutrient-sensing deacetylase, is downregulated in diabetes. In this study, the effect of SIRT1 stimulation by IF, fasting-mimicking cell culture conditions (FMC) or pharmacological treatment using SRT1720 was evaluated on systemic and retinal metabolism, systemic and retinal inflammation and vascular and bone marrow damage. METHODS: The effects of IF were modelled in vivo using db/db mice and in vitro using bovine retinal endothelial cells or rat retinal neuroglial/precursor R28 cell line serum starved for 24 h. mRNA expression was analysed by quantitative PCR (qPCR). SIRT1 activity was measured via histone deacetylase activity assay. NR1H3 (also known as liver X receptor alpha [LXRα]) acetylation was measured via western blot analysis. RESULTS: IF increased Sirt1 mRNA expression in mouse liver and retina when compared with non-fasted animals. IF also increased SIRT1 activity eightfold in mouse retina while FMC increased SIRT1 activity and expression in retinal endothelial cells when compared with control. Sirt1 expression was also increased twofold in neuronal retina progenitor cells (R28) after FMC treatment. Moreover, FMC led to SIRT1-mediated LXRα deacetylation and subsequent 2.4-fold increase in activity, as measured by increased mRNA expression of the genes encoding ATP-binding cassette transporter (Abca1 and Abcg1). These changes were reduced when retinal endothelial cells expressing a constitutively acetylated LXRα mutant were tested. Increased SIRT1/LXR/ABC-mediated cholesterol export resulted in decreased retinal endothelial cell cholesterol levels. Direct activation of SIRT1 by SRT1720 in db/db mice led to a twofold reduction of diabetes-induced inflammation in the retina and improved diabetes-induced visual function impairment, as measured by electroretinogram and optokinetic response. In the bone marrow, there was prevention of diabetes-induced myeloidosis and decreased inflammatory cytokine expression. CONCLUSIONS/INTERPRETATION: Taken together, activation of SIRT1 signalling by IF or through pharmacological activation represents an effective therapeutic strategy that provides a mechanistic link between the advantageous effects associated with fasting regimens and prevention of microvascular and bone marrow dysfunction in diabetes.


Assuntos
Angiopatias Diabéticas/prevenção & controle , Jejum/fisiologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Animais , Bovinos , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/terapia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Hipoglicemiantes/farmacologia , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Retina/efeitos dos fármacos , Retina/patologia , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/metabolismo , Neurônios Retinianos/patologia , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/genética , Sirtuína 1/metabolismo
20.
J Cell Mol Med ; 25(16): 7746-7759, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34227224

RESUMO

Endothelial hyperpermeability is the initial event in the development of diabetic microvascular complications, and advanced glycation end products (AGEs) are suggested to cause much of the endothelial hyperpermeability associated with diabetes mellitus, but the molecular mechanism remains to be characterized. ß-catenin reportedly plays dual functions in maintaining normal endothelial permeability by serving both as an adhesive component and a signal transduction component. Here, we found that AGEs induced the phosphorylation of ß-catenin at residues Y654 and Y142 and the endothelial hyperpermeability was reversed when the two residues were blocked. In mechanism, phosphorylation of Y654 was blocked by Src inactivation, whereas phosphorylation of Y142 was reduced by a focal adhesion kinase inhibitor. ß-catenin Y654 phosphorylation induced by AGEs facilitated the dissociation of vascular endothelial (VE)-cadherin/ß-catenin and the impairment of adherens junctions (AJs), whereas ß-catenin Y142 phosphorylation favoured the dissociation of ß-catenin and α-catenin. Further investigation revealed that ß-catenin Y142 phosphorylation was required for AGEs-mediated ß-catenin nuclear translocation, and this nuclear-located ß-catenin subsequently activated the TCF/LEF pathway. This pathway promotes the transcription of the Wnt target, ADAM10 (a disintegrin and metalloprotease 10), which mediates VE-cadherin shedding and leads to further impairment of AJs. In summary, our study showed the role of ß-catenin Y654 and Y142 phosphorylation in AGEs-mediated endothelial hyperpermeability through VE-cadherin/ß-catenin/α-catenin dissociation and up-regulation of ADAM10, thereby advancing our understanding of the underlying mechanisms of AGEs-induced microvascular hyperpermeability.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Permeabilidade Capilar , Diabetes Mellitus Experimental/fisiopatologia , Células Endoteliais/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , beta Catenina/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Fosforilação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa