Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.466
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 39: 345-368, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33556247

RESUMO

For many infections and almost all vaccines, neutralizing-antibody-mediated immunity is the primary basis and best functional correlate of immunological protection. Durable long-term humoral immunity is mediated by antibodies secreted by plasma cells that preexist subsequent exposures and by memory B cells that rapidly respond to infections once they have occurred. In the midst of the current pandemic of coronavirus disease 2019, it is important to define our current understanding of the unique roles of memory B cells and plasma cells in immunity and the factors that control the formation and persistence of these cell types. This fundamental knowledge is the basis to interpret findings from natural infections and vaccines. Here, we review transcriptional and metabolic programs that promote and support B cell fates and functions, suggesting points at which these pathways do and do not intersect.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica , Memória Imunológica , Plasmócitos/imunologia , Plasmócitos/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Humanos , Memória Imunológica/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Transcrição Gênica
2.
Annu Rev Immunol ; 38: 397-419, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31990620

RESUMO

T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Linfopoese , Linfócitos T/imunologia , Linfócitos T/metabolismo , Acetilação , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Histonas , Humanos , Linfopoese/genética , Linfopoese/imunologia , Metilação , Processamento de Proteína Pós-Traducional , Linfócitos T/citologia , Linfócitos T/enzimologia , Ubiquitinação
3.
Annu Rev Immunol ; 38: 229-247, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31928469

RESUMO

Neonatal CD4+ and CD8+ T cells have historically been characterized as immature or defective. However, recent studies prompt a reinterpretation of the functions of neonatal T cells. Rather than a population of cells always falling short of expectations set by their adult counterparts, neonatal T cells are gaining recognition as a distinct population of lymphocytes well suited for the rapidly changing environment in early life. In this review, I will highlight new evidence indicating that neonatal T cells are not inert or less potent versions of adult T cells but instead are a broadly reactive layer of T cells poised to quickly develop into regulatory or effector cells, depending on the needs of the host. In this way, neonatal T cells are well adapted to provide fast-acting immune protection against foreign pathogens, while also sustaining tolerance to self-antigens.


Assuntos
Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Imunidade Adaptativa , Animais , Biomarcadores , Diferenciação Celular/imunologia , Interações Hospedeiro-Patógeno , Humanos , Memória Imunológica , Ativação Linfocitária/imunologia , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/imunologia , Células Progenitoras Linfoides/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/citologia
4.
Annu Rev Immunol ; 38: 705-725, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340571

RESUMO

The discovery of CD4+ T cell subset-defining master transcription factors and framing of the Th1/Th2 paradigm ignited the CD4+ T cell field. Advances in in vivo experimental systems, however, have revealed that more complex lineage-defining transcriptional networks direct CD4+ T cell differentiation in the lymphoid organs and tissues. This review focuses on the layers of fate decisions that inform CD4+ T cell differentiation in vivo. Cytokine production by antigen-presenting cells and other innate cells influences the CD4+ T cell effector program [e.g., T helper type 1 (Th1), Th2, Th17]. Signals downstream of the T cell receptor influence whether individual clones bearing hallmarks of this effector program become T follicular helper cells, supporting development of B cells expressing specific antibody isotypes, or T effector cells, which activate microbicidal innate cells in tissues. These bifurcated, parallel axes allow CD4+ T cells to augment their particular effector program and prevent disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular/genética , Citocinas/metabolismo , Humanos , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
5.
Annu Rev Immunol ; 38: 421-453, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31990619

RESUMO

Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.


Assuntos
Diferenciação Celular/imunologia , Linfopoese/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Biomarcadores , Diferenciação Celular/genética , Deleção Clonal , Seleção Clonal Mediada por Antígeno , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Linfopoese/genética , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/citologia , Timo/citologia , Timo/imunologia , Timo/metabolismo
6.
Annu Rev Immunol ; 36: 221-246, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29328786

RESUMO

Researchers are intensifying efforts to understand the mechanisms by which changes in metabolic states influence differentiation programs. An emerging objective is to define how fluctuations in metabolites influence the epigenetic states that contribute to differentiation programs. This is because metabolites such as S-adenosylmethionine, acetyl-CoA, α-ketoglutarate, 2-hydroxyglutarate, and butyrate are donors, substrates, cofactors, and antagonists for the activities of epigenetic-modifying complexes and for epigenetic modifications. We discuss this topic from the perspective of specialized CD4+ T cells as well as effector and memory T cell differentiation programs. We also highlight findings from embryonic stem cells that give mechanistic insight into how nutrients processed through pathways such as glycolysis, glutaminolysis, and one-carbon metabolism regulate metabolite levels to influence epigenetic events and discuss similar mechanistic principles in T cells. Finally, we highlight how dysregulated environments, such as the tumor microenvironment, might alter programming events.


Assuntos
Diferenciação Celular/genética , Diferenciação Celular/imunologia , Metabolismo Energético , Epigênese Genética , Animais , Biomarcadores , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neoplasias/etiologia , Neoplasias/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
7.
Annu Rev Immunol ; 36: 127-156, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29237129

RESUMO

T cells possess an array of functional capabilities important for host defense against pathogens and tumors. T cell effector functions require the T cell antigen receptor (TCR). The TCR has no intrinsic enzymatic activity, and thus signal transduction from the receptor relies on additional signaling molecules. One such molecule is the cytoplasmic tyrosine kinase ZAP-70, which associates with the TCR complex and is required for initiating the canonical biochemical signal pathways downstream of the TCR. In this article, we describe recent structure-based insights into the regulation and substrate specificity of ZAP-70, and then we review novel methods for determining the role of ZAP-70 catalytic activity-dependent and -independent signals in developing and mature T cells. Lastly, we discuss the disease states in mouse models and humans, which range from immunodeficiency to autoimmunity, that are caused by mutations in ZAP-70.


Assuntos
Suscetibilidade a Doenças , Transdução de Sinais , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Animais , Autoimunidade , Biomarcadores , Catálise , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica , Humanos , Imunidade , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Fosforilação , Transporte Proteico , Relação Estrutura-Atividade , Especificidade por Substrato , Linfócitos T/imunologia , Proteína-Tirosina Quinase ZAP-70/antagonistas & inibidores , Proteína-Tirosina Quinase ZAP-70/química , Proteína-Tirosina Quinase ZAP-70/genética
8.
Annu Rev Immunol ; 36: 411-433, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29677473

RESUMO

The discovery of interleukin-2 (IL-2) changed the molecular understanding of how the immune system is controlled. IL-2 is a pleiotropic cytokine, and dissecting the signaling pathways that allow IL-2 to control the differentiation and homeostasis of both pro- and anti-inflammatory T cells is fundamental to determining the molecular details of immune regulation. The IL-2 receptor couples to JAK tyrosine kinases and activates the STAT5 transcription factors. However, IL-2 does much more than control transcriptional programs; it is a key regulator of T cell metabolic programs. The development of global phosphoproteomic approaches has expanded the understanding of IL-2 signaling further, revealing the diversity of phosphoproteins that may be influenced by IL-2 in T cells. However, it is increasingly clear that within each T cell subset, IL-2 will signal within a framework of other signal transduction networks that together will shape the transcriptional and metabolic programs that determine T cell fate.


Assuntos
Interleucina-2/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Citocinas/metabolismo , Humanos , Janus Quinases/metabolismo , Ativação Linfocitária/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Transcrição STAT5/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
9.
Annu Rev Immunol ; 36: 461-488, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29677474

RESUMO

Metabolism drives function, on both an organismal and a cellular level. In T cell biology, metabolic remodeling is intrinsically linked to cellular development, activation, function, differentiation, and survival. After naive T cells are activated, increased demands for metabolic currency in the form of ATP, as well as biomass for cell growth, proliferation, and the production of effector molecules, are met by rewiring cellular metabolism. Consequently, pharmacological strategies are being developed to perturb or enhance selective metabolic processes that are skewed in immune-related pathologies. Here we review the most recent advances describing the metabolic changes that occur during the T cell lifecycle. We discuss how T cell metabolism can have profound effects on health and disease and where it might be a promising target to treat a variety of pathologies.


Assuntos
Metabolismo Energético , Imunidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Humanos , Memória Imunológica , Imunoterapia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Mitocôndrias/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/citologia
10.
Annu Rev Immunol ; 36: 579-601, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29677476

RESUMO

A fundamental question in developmental immunology is how bipotential thymocyte precursors generate both CD4+ helper and CD8+ cytotoxic T cell lineages. The MHC specificity of αß T cell receptors (TCRs) on precursors is closely correlated with cell fate-determining processes, prompting studies to characterize how variations in TCR signaling are linked with genetic programs establishing lineage-specific gene expression signatures, such as exclusive CD4 or CD8 expression. The key transcription factors ThPOK and Runx3 have been identified as mediating development of helper and cytotoxic T cell lineages, respectively. Together with increasing knowledge of epigenetic regulators, these findings have advanced our understanding of the transcription factor network regulating the CD4/CD8 dichotomy. It has also become apparent that CD4+ T cells retain developmental plasticity, allowing them to acquire cytotoxic activity in the periphery. Despite such advances, further studies are necessary to identify the molecular links between TCR signaling and the nuclear machinery regulating expression of ThPOK and Runx3.


Assuntos
Diferenciação Celular/imunologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Antígenos CD4/genética , Antígenos CD4/metabolismo , Antígenos CD8/genética , Antígenos CD8/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , Imunomodulação/genética , Imunomodulação/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Sequências Reguladoras de Ácido Nucleico , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
11.
Annu Rev Immunol ; 33: 107-38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25493331

RESUMO

Immune responses occur in the midst of a variety of cellular stresses that can severely perturb endoplasmic reticulum (ER) function. The unfolded protein response is a three-pronged signaling axis dedicated to preserving ER homeostasis. In this review, we highlight many important and emerging functional roles for ER stress in immunity, focusing on how the bidirectional cross talk between immunological processes and basic cell biology leads to pleiotropic signaling outcomes and enhanced sensitivity to inflammatory stimuli. We also discuss how dysregulated ER stress responses can provoke many diseases, including autoimmunity, firmly positioning the unfolded protein response as a major therapeutic target in human disease.


Assuntos
Estresse do Retículo Endoplasmático/imunologia , Imunidade , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Autoimunidade , Diferenciação Celular/imunologia , Retículo Endoplasmático/metabolismo , Humanos , Fenômenos do Sistema Imunitário , Infecções/etiologia , Infecções/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Ligação Proteica , Transdução de Sinais , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
12.
Annu Rev Immunol ; 33: 563-606, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25665078

RESUMO

In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Seleção Clonal Mediada por Antígeno , Resistência à Doença , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Linfócitos/citologia , Linfócitos/imunologia , Linfócitos/metabolismo , Estresse Fisiológico
13.
Nat Immunol ; 25(7): 1172-1182, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38871999

RESUMO

Natural killer (NK) cells traffic through the blood and mount cytolytic and interferon-γ (IFNγ)-focused responses to intracellular pathogens and tumors. Type 1 innate lymphoid cells (ILC1s) also produce type 1 cytokines but reside in tissues and are not cytotoxic. Whether these differences reflect discrete lineages or distinct states of a common cell type is not understood. Using single-cell RNA sequencing and flow cytometry, we focused on populations of TCF7+ cells that contained precursors for NK cells and ILC1s and identified a subset of bone marrow lineage-negative NK receptor-negative cells that expressed the transcription factor Eomes, termed EomeshiNKneg cells. Transfer of EomeshiNKneg cells into Rag2-/-Il2rg-/- recipients generated functional NK cells capable of preventing metastatic disease. By contrast, transfer of PLZF+ ILC precursors generated a mixture of ILC1s, ILC2s and ILC3s that lacked cytotoxic potential. These findings identified EomeshiNKneg cells as the bone marrow precursor to classical NK cells and demonstrated that the NK and ILC1 lineages diverged early during development.


Assuntos
Células Matadoras Naturais , Proteínas com Domínio T , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Camundongos , Camundongos Knockout , Linhagem da Célula/imunologia , Camundongos Endogâmicos C57BL , Imunidade Inata , Diferenciação Celular/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Análise de Célula Única
14.
Nat Immunol ; 25(6): 1046-1058, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816618

RESUMO

The durability of an antitumor immune response is mediated in part by the persistence of progenitor exhausted CD8+ T cells (Tpex). Tpex serve as a resource for replenishing effector T cells and preserve their quantity through self-renewal. However, it is unknown how T cell receptor (TCR) engagement affects the self-renewal capacity of Tpex in settings of continued antigen exposure. Here we use a Lewis lung carcinoma model that elicits either optimal or attenuated TCR signaling in CD8+ T cells to show that formation of Tpex in tumor-draining lymph nodes and their intratumoral persistence is dependent on optimal TCR engagement. Notably, attenuated TCR stimulation accelerates the terminal differentiation of optimally primed Tpex. This TCR-reinforced Tpex development and self-renewal is coupled to proximal positioning to dendritic cells and epigenetic imprinting involving increased chromatin accessibility at Egr2 and Tcf1 target loci. Collectively, this study highlights the critical function of TCR engagement in sustaining Tpex during tumor progression.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Lewis , Fator 1-alfa Nuclear de Hepatócito , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T , Animais , Linfócitos T CD8-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Camundongos , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Transdução de Sinais/imunologia , Camundongos Knockout , Ativação Linfocitária/imunologia , Autorrenovação Celular , Camundongos Transgênicos , Proteína 2 de Resposta de Crescimento Precoce
15.
Nat Immunol ; 25(6): 1007-1019, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816617

RESUMO

Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge.


Assuntos
Plaquetas , Diferenciação Celular , Células-Tronco Hematopoéticas , Megacariócitos , Plaquetas/imunologia , Plaquetas/metabolismo , Animais , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Diferenciação Celular/imunologia , Megacariócitos/citologia , Linhagem da Célula , Camundongos Endogâmicos C57BL , Hematopoese , Trombopoese , Camundongos Knockout , Humanos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/imunologia
16.
Nat Immunol ; 25(7): 1283-1295, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862796

RESUMO

While some infections elicit germinal centers, others produce only extrafollicular responses. The mechanisms controlling these dichotomous fates are poorly understood. We identify IL-12 as a cytokine switch, acting directly on B cells to promote extrafollicular and suppress germinal center responses. IL-12 initiates a B cell-intrinsic feed-forward loop between IL-12 and IFNγ, amplifying IFNγ production, which promotes proliferation and plasmablast differentiation from mouse and human B cells, in synergy with IL-12. IL-12 sustains the expression of a portion of IFNγ-inducible genes. Together, they also induce unique gene changes, reflecting both IFNγ amplification and cooperative effects between both cytokines. In vivo, cells lacking both IL-12 and IFNγ receptors are more impaired in plasmablast production than those lacking either receptor alone. Further, B cell-derived IL-12 enhances both plasmablast responses and T helper 1 cell commitment. Thus, B cell-derived IL-12, acting on T and B cells, determines the immune response mode, with implications for vaccines, pathogen protection and autoimmunity.


Assuntos
Linfócitos B , Diferenciação Celular , Centro Germinativo , Interferon gama , Interleucina-12 , Animais , Interleucina-12/imunologia , Interleucina-12/metabolismo , Camundongos , Interferon gama/metabolismo , Interferon gama/imunologia , Centro Germinativo/imunologia , Humanos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Plasmócitos/imunologia , Plasmócitos/metabolismo , Ativação Linfocitária/imunologia , Receptores de Interferon/metabolismo , Receptores de Interferon/genética , Células Cultivadas , Proliferação de Células
17.
Nat Immunol ; 25(7): 1183-1192, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38872000

RESUMO

Natural killer (NK) cells function by eliminating virus-infected or tumor cells. Here we identified an NK-lineage-biased progenitor population, referred to as early NK progenitors (ENKPs), which developed into NK cells independently of common precursors for innate lymphoid cells (ILCPs). ENKP-derived NK cells (ENKP_NK cells) and ILCP-derived NK cells (ILCP_NK cells) were transcriptionally different. We devised combinations of surface markers that identified highly enriched ENKP_NK and ILCP_NK cell populations in wild-type mice. Furthermore, Ly49H+ NK cells that responded to mouse cytomegalovirus infection primarily developed from ENKPs, whereas ILCP_NK cells were better IFNγ producers after infection with Salmonella and herpes simplex virus. Human CD56dim and CD56bright NK cells were transcriptionally similar to ENKP_NK cells and ILCP_NK cells, respectively. Our findings establish the existence of two pathways of NK cell development that generate functionally distinct NK cell subsets in mice and further suggest these pathways may be conserved in humans.


Assuntos
Diferenciação Celular , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Animais , Camundongos , Humanos , Diferenciação Celular/imunologia , Camundongos Endogâmicos C57BL , Imunidade Inata , Antígeno CD56/metabolismo , Muromegalovirus/imunologia , Linhagem da Célula/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/imunologia , Camundongos Knockout , Células Cultivadas
18.
Nat Immunol ; 25(5): 860-872, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632339

RESUMO

Adaptive immunity relies on specialized effector functions elicited by lymphocytes, yet how antigen recognition activates appropriate effector responses through nonspecific signaling intermediates is unclear. Here we examined the role of chromatin priming in specifying the functional outputs of effector T cells and found that most of the cis-regulatory landscape active in effector T cells was poised early in development before the expression of the T cell antigen receptor. We identified two principal mechanisms underpinning this poised landscape: the recruitment of the nucleosome remodeler mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) by the transcription factors RUNX1 and PU.1 to establish chromatin accessibility at T effector loci; and a 'relay' whereby the transcription factor BCL11B succeeded PU.1 to maintain occupancy of the chromatin remodeling complex mSWI/SNF together with RUNX1, after PU.1 silencing during lineage commitment. These mechanisms define modes by which T cells acquire the potential to elicit specialized effector functions early in their ontogeny and underscore the importance of integrating extrinsic cues to the developmentally specified intrinsic program.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Transativadores , Fatores de Transcrição , Proteínas Supressoras de Tumor , Proteínas Proto-Oncogênicas/metabolismo , Animais , Transativadores/metabolismo , Transativadores/genética , Camundongos , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Camundongos Endogâmicos C57BL , Proteínas Cromossômicas não Histona/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos Knockout , Montagem e Desmontagem da Cromatina , Diferenciação Celular/imunologia
19.
Annu Rev Immunol ; 32: 283-321, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24471430

RESUMO

T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors; they also have developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in contrast to B cell gene networks, the T cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete T cell-like effector differentiation can proceed without T cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Transcrição Gênica , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/imunologia , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células Progenitoras Linfoides/citologia , Células Progenitoras Linfoides/metabolismo , Linfopoese/fisiologia , Fenótipo , Receptores Notch/metabolismo
20.
Annu Rev Immunol ; 31: 387-411, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23298207

RESUMO

The immune cells that reside at the interface between the placenta and uterus are thought to play many important roles in pregnancy. Recent work has revealed that the composition and function of these cells are locally controlled by the specialized uterine stroma (the decidua) that surrounds the implanted conceptus. Here, I discuss how key immune cell types (natural killer cells, macrophages, dendritic cells, and T cells) are either enriched or excluded from the decidua, how their function is regulated within the decidua, and how they variously contribute to pregnancy success or failure. The discussion emphasizes the relationship between human and mouse studies. Deeper understanding of the immunology of the maternal-fetal interface promises to yield significant insight into the pathogenesis of many human pregnancy complications, including preeclampsia, intrauterine growth restriction, spontaneous abortion, preterm birth, and congenital infection.


Assuntos
Troca Materno-Fetal/imunologia , Animais , Diferenciação Celular/imunologia , Decídua/citologia , Decídua/imunologia , Decídua/patologia , Implantação do Embrião/imunologia , Feminino , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Placenta/irrigação sanguínea , Placenta/imunologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa