Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Acta Neuropathol ; 137(6): 901-918, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30874922

RESUMO

Emerging evidence suggested a converging mechanism in neurodegenerative brain diseases (NBD) involving early neuronal network dysfunctions and alterations in the homeostasis of neuronal firing as culprits of neurodegeneration. In this study, we used paired-end short-read and direct long-read whole genome sequencing to investigate an unresolved autosomal dominant dementia family significantly linked to 7q36. We identified and validated a chromosomal inversion of ca. 4 Mb, segregating on the disease haplotype and disrupting the coding sequence of dipeptidyl-peptidase 6 gene (DPP6). DPP6 resequencing identified significantly more rare variants-nonsense, frameshift, and missense-in early-onset Alzheimer's disease (EOAD, p value = 0.03, OR = 2.21 95% CI 1.05-4.82) and frontotemporal dementia (FTD, p = 0.006, OR = 2.59, 95% CI 1.28-5.49) patient cohorts. DPP6 is a type II transmembrane protein with a highly structured extracellular domain and is mainly expressed in brain, where it binds to the potassium channel Kv4.2 enhancing its expression, regulating its gating properties and controlling the dendritic excitability of hippocampal neurons. Using in vitro modeling, we showed that the missense variants found in patients destabilize DPP6 and reduce its membrane expression (p < 0.001 and p < 0.0001) leading to a loss of protein. Reduced DPP6 and/or Kv4.2 expression was also detected in brain tissue of missense variant carriers. Loss of DPP6 is known to cause neuronal hyperexcitability and behavioral alterations in Dpp6-KO mice. Taken together, the results of our genomic, genetic, expression and modeling analyses, provided direct evidence supporting the involvement of DPP6 loss in dementia. We propose that loss of function variants have a higher penetrance and disease impact, whereas the missense variants have a variable risk contribution to disease that can vary from high to low penetrance. Our findings of DPP6, as novel gene in dementia, strengthen the involvement of neuronal hyperexcitability and alteration in the homeostasis of neuronal firing as a disease mechanism to further investigate.


Assuntos
Inversão Cromossômica , Demência/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Mutação , Proteínas do Tecido Nervoso/deficiência , Doenças Neurodegenerativas/genética , Neurônios/fisiologia , Canais de Potássio/deficiência , Potenciais de Ação/fisiologia , Adulto , Idoso , Cromossomos Humanos Par 7/genética , Demência/fisiopatologia , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/fisiologia , Feminino , Genes Dominantes , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Linhagem , Penetrância , Polimorfismo de Nucleotídeo Único , Canais de Potássio/genética , Canais de Potássio/fisiologia , Estabilidade Proteica , Transporte Proteico , Transmissão Sináptica , Sequenciamento Completo do Genoma
2.
Mol Ther ; 25(7): 1531-1543, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28456380

RESUMO

We have investigated delivery of protein therapeutics from the bloodstream into the brain using a mouse model of late-infantile neuronal ceroid lipofuscinosis (LINCL), a lysosomal disease due to deficiencies in tripeptidyl peptidase 1 (TPP1). Supraphysiological levels of TPP1 are delivered to the mouse brain by acute intravenous injection when co-administered with K16ApoE, a peptide that in trans mediates passage across the blood-brain barrier (BBB). Chronic treatment of LINCL mice with TPP1 and K16ApoE extended the lifespan from 126 to >294 days, diminished pathology, and slowed locomotor dysfunction. K16ApoE enhanced uptake of a fixable biotin tracer by brain endothelial cells in a dose-dependent manner, suggesting that its mechanism involves stimulation of endocytosis. Pharmacokinetic experiments indicated that K16ApoE functions without disrupting the BBB, with minimal effects on overall clearance or uptake by the liver and kidney. K16ApoE has a narrow therapeutic index, with toxicity manifested as lethargy and/or death in mice. To address this, we evaluated variant peptides but found that efficacy and toxicity are associated, suggesting that desired and adverse effects are mechanistically related. Toxicity currently precludes direct clinical application of peptide-mediated delivery in its present form but it remains a useful approach to proof-of-principle studies for biologic therapies to the brain in animal models.


Assuntos
Aminopeptidases/genética , Apolipoproteínas E/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Portadores de Fármacos , Lipofuscinoses Ceroides Neuronais/terapia , Peptídeos/farmacocinética , Serina Proteases/genética , Sequência de Aminoácidos , Aminopeptidases/deficiência , Animais , Apolipoproteínas E/química , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Modelos Animais de Doenças , Endocitose , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Terapia de Reposição de Enzimas/métodos , Regulação da Expressão Gênica , Humanos , Lactente , Injeções Intravenosas , Camundongos , Lipofuscinoses Ceroides Neuronais/enzimologia , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Peptídeos/química , Serina Proteases/deficiência , Análise de Sobrevida , Resultado do Tratamento , Tripeptidil-Peptidase 1
3.
J Proteome Res ; 16(10): 3787-3804, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28792770

RESUMO

Clinical trials have been conducted for the neuronal ceroid lipofuscinoses (NCLs), a group of neurodegenerative lysosomal diseases that primarily affect children. Whereas clinical rating systems will evaluate long-term efficacy, biomarkers to measure short-term response to treatment would be extremely valuable. To identify candidate biomarkers, we analyzed autopsy brain and matching CSF samples from controls and three genetically distinct NCLs due to deficiencies in palmitoyl protein thioesterase 1 (CLN1 disease), tripeptidyl peptidase 1 (CLN2 disease), and CLN3 protein (CLN3 disease). Proteomic and biochemical methods were used to analyze lysosomal proteins, and, in general, we find that changes in protein expression compared with control were most similar between CLN2 disease and CLN3 disease. This is consistent with previous observations of biochemical similarities between these diseases. We also conducted unbiased proteomic analyses of CSF and brain using isobaric labeling/quantitative mass spectrometry. Significant alterations in protein expression were identified in each NCL, including reduced STXBP1 in CLN1 disease brain. Given the confounding variable of post-mortem changes, additional validation is required, but this study provides a useful starting set of candidate NCL biomarkers for further evaluation.


Assuntos
Encéfalo/metabolismo , Proteínas Munc18/genética , Lipofuscinoses Ceroides Neuronais/genética , Proteômica , Aminopeptidases/deficiência , Aminopeptidases/genética , Autopsia , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/química , Biomarcadores/metabolismo , Encéfalo/patologia , Líquido Cefalorraquidiano/química , Líquido Cefalorraquidiano/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Humanos , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Proteínas Munc18/deficiência , Mutação , Lipofuscinoses Ceroides Neuronais/líquido cefalorraquidiano , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Serina Proteases/deficiência , Serina Proteases/genética , Tioléster Hidrolases/deficiência , Tioléster Hidrolases/genética , Tripeptidil-Peptidase 1
4.
Blood ; 125(5): 753-61, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25414442

RESUMO

Autoimmune cytopenia is a frequent manifestation of primary immunodeficiencies. Two siblings presented with Evans syndrome, viral infections, and progressive leukopenia. DNA available from one patient showed a homozygous frameshift mutation in tripeptidyl peptidase II (TPP2) abolishing protein expression. TPP2 is a serine exopeptidase involved in extralysosomal peptide degradation. Its deficiency in mice activates cell death programs and premature senescence. Similar to cells from naïve, uninfected TPP2-deficient mice, patient cells showed increased major histocompatibility complex I expression and most CD8(+) T-cells had a senescent CCR7-CD127(-)CD28(-)CD57(+) phenotype with poor proliferative responses and enhanced staurosporine-induced apoptosis. T-cells showed increased expression of the effector molecules perforin and interferon-γ with high expression of the transcription factor T-bet. Age-associated B-cells with a CD21(-) CD11c(+) phenotype expressing T-bet were increased in humans and mice, combined with antinuclear antibodies. Moreover, markers of senescence were also present in human and murine TPP2-deficient fibroblasts. Telomere lengths were normal in patient fibroblasts and granulocytes, and low normal in lymphocytes, which were compatible with activation of stress-induced rather than replicative senescence programs. TPP2 deficiency is the first primary immunodeficiency linking premature immunosenescence to severe autoimmunity. Determination of senescent lymphocytes should be part of the diagnostic evaluation of children with refractory multilineage cytopenias.


Assuntos
Envelhecimento/imunologia , Aminopeptidases/imunologia , Anemia Hemolítica Autoimune/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/imunologia , Mutação da Fase de Leitura , Síndromes de Imunodeficiência/genética , Serina Endopeptidases/imunologia , Trombocitopenia/genética , Aminopeptidases/deficiência , Aminopeptidases/genética , Anemia Hemolítica Autoimune/complicações , Anemia Hemolítica Autoimune/imunologia , Anemia Hemolítica Autoimune/patologia , Animais , Apoptose , Sequência de Bases , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Criança , Pré-Escolar , Consanguinidade , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Humanos , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/patologia , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Perforina/genética , Perforina/imunologia , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Irmãos , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Trombocitopenia/complicações , Trombocitopenia/imunologia , Trombocitopenia/patologia
6.
Exp Eye Res ; 125: 164-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24954537

RESUMO

Late-infantile neuronal ceroid lipofuscinosis (CLN2 disease) is a hereditary neurological disorder characterized by progressive retinal degeneration and vision loss, cognitive and motor decline, seizures, and pronounced brain atrophy. This fatal pediatric disease is caused by mutations in the CLN2 gene which encodes the lysosomal enzyme tripeptidyl peptidase-1 (TPP1). Utilizing a TPP1-/- Dachshund model of CLN2 disease, studies were conducted to assess the effects of TPP1 enzyme replacement administered directly to the CNS on disease progression. Recombinant human TPP1 (rhTPP1) or artificial cerebrospinal fluid vehicle was administered to CLN2-affected dogs via infusion into the CSF. Untreated and vehicle treated affected dogs exhibited progressive declines in pupillary light reflexes (PLRs) and electroretinographic (ERG) responses to light stimuli. Studies were undertaken to determine whether CSF administration of rhTPP1 alters progression of the PLR and ERG deficits in the canine model. rhTPP1 administration did not inhibit the decline in ERG responses, as rhTPP1 treated, vehicle treated, and untreated dogs all exhibited similar progressive and profound declines in ERG amplitudes. However, in some of the dogs treated with rhTPP1 there were substantial delays in the appearance and progression of PLR deficits compared with untreated or vehicle treated affected dogs. These findings indicate that CSF administration of TPP1 can attenuate functional impairment of neural pathways involved in mediating the PLR but does not prevent loss of retinal responses detectable with ERG.


Assuntos
Aminopeptidases/uso terapêutico , Dipeptidil Peptidases e Tripeptidil Peptidases/uso terapêutico , Terapia de Reposição de Enzimas , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Reflexo Pupilar/efeitos dos fármacos , Serina Proteases/uso terapêutico , Aminopeptidases/deficiência , Análise de Variância , Animais , Axônios , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Modelos Animais de Doenças , Progressão da Doença , Cães , Eletrorretinografia/efeitos dos fármacos , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Nervo Óptico/citologia , Proteínas Recombinantes/uso terapêutico , Serina Proteases/deficiência , Tripeptidil-Peptidase 1
7.
Brain ; 136(Pt 5): 1488-507, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23587805

RESUMO

Tripeptidyl peptidase 1 (TPP1) deficiency causes CLN2 disease, late infantile (or classic late infantile neuronal ceroid lipofuscinosis), a paediatric neurodegenerative disease of autosomal recessive inheritance. Patients suffer from blindness, ataxia, epilepsy and cognitive defects, with MRI indicating widespread brain atrophy, and profound neuron loss is evident within the retina and brain. Currently there are no effective therapies for this disease, which causes premature death in adolescence. Zebrafish have been successfully used to model a range of neurological and behavioural abnormalities. The aim of this study was to characterize the pathological and functional consequences of Tpp1 deficiency in zebrafish and to correlate these with human CLN2 disease, thereby providing a platform for drug discovery. Our data show that homozygous tpp1(sa0011) mutant (tpp1(sa0011)(-/-)) zebrafish display a severe, progressive, early onset neurodegenerative phenotype, characterized by a significantly small retina, a small head and curved body. The mutant zebrafish have significantly reduced median survival with death occurring 5 days post-fertilization. As in human patients with CLN2 disease, mutant zebrafish display storage of subunit c of mitochondrial ATP-synthase, hypertrophic lysosomes as well as localized apoptotic cell death in the retina, optic tectum and cerebellum. Further neuropathological phenotypes of these mutants provide novel insights into mechanisms of pathogenesis in CLN2 disease. Secondary neurogenesis in the retina, optic tectum and cerebellum is impaired and axon tracts within the spinal cord, optic nerve and the posterior commissure are disorganized, with the optic nerve failing to reach its target. This severe neurodegenerative phenotype eventually results in functional motor impairment, but this is preceded by a phase of hyperactivity that is consistent with seizures. Importantly, both of these locomotion phenotypes can be assayed in an automated manner suitable for high-throughput studies. Our study provides proof-of-principle that tpp1(sa0011)(-/-) mutants can utilize the advantages of zebrafish for understanding pathogenesis and drug discovery in CLN2 disease and other epilepsies.


Assuntos
Aminopeptidases/deficiência , Proliferação de Células , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Progressão da Doença , Lipofuscinoses Ceroides Neuronais/enzimologia , Lipofuscinoses Ceroides Neuronais/patologia , Serina Proteases/deficiência , Aminopeptidases/genética , Aminopeptidases/fisiologia , Animais , Animais Geneticamente Modificados , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/fisiologia , Modelos Animais de Doenças , Inibidores do Crescimento/deficiência , Inibidores do Crescimento/genética , Inibidores do Crescimento/fisiologia , Humanos , Atividade Motora/fisiologia , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Lipofuscinoses Ceroides Neuronais/genética , Serina Proteases/genética , Serina Proteases/fisiologia , Tripeptidil-Peptidase 1 , Peixe-Zebra
8.
Neurol India ; 60(3): 316-20, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22824694

RESUMO

Neuronal ceroid lipofuscinosis is a group of progressive neurodegenerative disorders characterized by accumulation of ceroid lipopigment in lysosomes in neurons and other cell types. This study is a retrospective review of charts of patients with a diagnosis of infantile and late-infantile neuronal ceroid lipofuscinosis seen between January 2009 and December 2011. Of the 16 patients, 5 had infantile type and 11 had late-infantile neuronal ceroid lipofuscinosis. Diagnosis was confirmed by appropriate enzyme assay. Clinical presentation was quite varied. Common presenting features included refractory seizures, developmental delay/regression, and abnormal movements. Visual failure was not common in the present case series, and novel neuroimaging finding in the form of isolated dentate nucleus hyperintensities were noted. During follow-up, all patients had a progressive downhill course and one patient died. Prenatal diagnosis could be offered to one family. This study suggests that infantile and late-infantile neuronal ceroid lipofuscinosis is not uncommon in this region of the country and the phenotype may be different.


Assuntos
Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Idade de Início , Aminopeptidases/deficiência , Criança , Pré-Escolar , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Feminino , Humanos , Lactente , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Lipofuscinoses Ceroides Neuronais/enzimologia , Estudos Retrospectivos , Serina Proteases/deficiência , Tripeptidil-Peptidase 1
9.
J Neurosci ; 29(10): 3242-51, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19279261

RESUMO

The neuronal subthreshold-operating A-type K(+) current regulates electrical excitability, spike timing, and synaptic integration and plasticity. The Kv4 channels underlying this current have been implicated in epilepsy, regulation of dopamine release, and pain plasticity. However, the unitary conductance (gamma) of neuronal somatodendritic A-type K(+) channels composed of Kv4 pore-forming subunits is larger (approximately 7.5 pS) than that of Kv4 channels expressed singly in heterologous cells (approximately 4 pS). Here, we examined the putative novel contribution of the dipeptidyl-peptidase-like protein-6 DPP6-S to the gamma of native [cerebellar granule neuron (CGN)] and reconstituted Kv4.2 channels. Coexpression of Kv4.2 proteins with DPP6-S was sufficient to match the gamma of native CGN channels; and CGN Kv4 channels from dpp6 knock-out mice yielded a gamma indistinguishable from that of Kv4.2 channels expressed singly. Moreover, suggesting electrostatic interactions, charge neutralization mutations of two N-terminal acidic residues in DPP6-S eliminated the increase in gamma. Therefore, DPP6-S, as a membrane protein extrinsic to the pore domain, is necessary and sufficient to explain a fundamental difference between native and recombinant Kv4 channels. These observations may help to understand the molecular basis of neurological disorders correlated with recently identified human mutations in the dpp6 gene.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Peptídeo Hidrolases/fisiologia , Canais de Potássio/fisiologia , Canais de Potássio Shal/fisiologia , Animais , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/fisiologia , Feminino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Neurônios/enzimologia , Peptídeo Hidrolases/deficiência , Canais de Potássio/deficiência , Ratos , Canais de Potássio Shal/deficiência , Xenopus laevis
10.
Pediatr Neurol ; 110: 64-70, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32684372

RESUMO

BACKGROUND: Neuronal ceroid lipofuscinosis type 2 or CLN2 disease is a rare, autosomal recessive, neurodegenerative lysosomal storage disorder caused by tripeptidyl peptidase 1 deficiency. Cerliponase alfa, a recombinant human tripeptidyl peptidase 1 enzyme, is the first and only approved treatment for CLN2 disease and the first approved enzyme replacement therapy administered via intracerebroventricular infusion. METHODS: A meeting of health care professionals from US institutions with experience in cerliponase alfa treatment of children with CLN2 disease was held in November 2018. Key common practices were identified, and later refined during the drafting of this article, that facilitate safe chronic administration of cerliponase alfa. RESULTS: Key practices include developing a multidisciplinary team of clinicians, pharmacists, and coordinators, and institution-specific processes. Infection risk may be reduced through strict aseptic techniques and minimizing connections and disconnections during infusion. The impact of intracerebroventricular device design on port needle stability during extended intracerebroventricular infusion is a critical consideration in device selection. Monitoring for central nervous system infection is performed at each patient contact, but with flexibility in the degree of monitoring. Although few institutions had experienced positive cerebrospinal fluid test results, the response to a positive cerebrospinal fluid culture should be determined on a case-by-case basis, and the intracerebroventricular device should be removed if cerebrospinal fluid infection is confirmed. CONCLUSIONS: The key common practices and flexible practices used by institutions with cerliponase alfa experience may assist other institutions in process development. Continued sharing of experiences will be essential for developing standards and patient care guidelines.


Assuntos
Aminopeptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/administração & dosagem , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Bombas de Infusão/normas , Infusões Intraventriculares , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Procedimentos Neurocirúrgicos/normas , Equipe de Assistência ao Paciente , Guias de Prática Clínica como Assunto , Proteínas Recombinantes/administração & dosagem , Serina Proteases/deficiência , Criança , Humanos , Bombas de Infusão/efeitos adversos , Comunicação Interdisciplinar , Equipe de Assistência ao Paciente/normas , Tripeptidil-Peptidase 1 , Estados Unidos
11.
Cells ; 9(5)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443895

RESUMO

CLN2 Batten disease (BD) is one of a broad class of lysosomal storage disorders that is characterized by the deficiency of lysosomal enzyme, TPP1, resulting in a build-up of toxic intracellular storage material in all organs and subsequent damage. A major challenge for BD therapeutics is delivery of enzymatically active TPP1 to the brain to attenuate progressive loss of neurological functions. To accomplish this daunting task, we propose the harnessing of naturally occurring nanoparticles, extracellular vesicles (EVs). Herein, we incorporated TPP1 into EVs released by immune cells, macrophages, and examined biodistribution and therapeutic efficacy of EV-TPP1 in BD mouse model, using various routes of administration. Administration through intrathecal and intranasal routes resulted in high TPP1 accumulation in the brain, decreased neurodegeneration and neuroinflammation, and reduced aggregation of lysosomal storage material in BD mouse model, CLN2 knock-out mice. Parenteral intravenous and intraperitoneal administrations led to TPP1 delivery to peripheral organs: liver, kidney, spleen, and lungs. A combination of intrathecal and intraperitoneal EV-TPP1 injections significantly prolonged lifespan in BD mice. Overall, the optimization of treatment strategies is crucial for successful applications of EVs-based therapeutics for BD.


Assuntos
Portadores de Fármacos/química , Terapia de Reposição de Enzimas , Vesículas Extracelulares/química , Lipofuscinoses Ceroides Neuronais/terapia , Aminopeptidases/deficiência , Aminopeptidases/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Vias de Administração de Medicamentos , Humanos , Medições Luminescentes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Serina Proteases/deficiência , Serina Proteases/metabolismo , Distribuição Tecidual , Resultado do Tratamento , Tripeptidil-Peptidase 1
12.
Clin Genet ; 76(4): 372-82, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19793312

RESUMO

The neuronal ceroid lipofuscinoses (NCLs) are a family of progressive neurodegenerative diseases that are characterized by the cellular accumulation of ceroid lipofuscin-like bodies. NCL type 1 (CLN1) and type 2 (CLN2) are caused by deficiencies of the lysosomal enzymes palmitoyl-protein thioesterase 1 (PPT-1) and tripeptidyl peptidase 1 (TPP-1), respectively. In this study, 118 Latin American patients were examined for NCL using an integrated multidisciplinary program. This revealed two patients affected by CLN1 and nine by CLN2. Both CLN1 patients had a juvenile-onset phenotype with mutation studies of one patient demonstrating the known mutation p.Arg151X and a novel mutation in intron 3, c.363-3T>G. Six of the CLN2 patients presented with the 'classical' late-infantile phenotype. The remaining three patients, who were siblings, presented with a 'protracted' phenotype and had a higher level of residual TPP-1 activity than the 'classical' CLN2 patients. Genotype analysis of the TPP1 gene in the 'classical' CLN2 patients showed the presence of the known mutation p.Arg208X and the novel mutations p.Leu104X, p.Asp276Val, and p.Ala453Val. The siblings with the 'protracted' phenotype were heterozygous for two known TPP1 mutations, p.Gln66X and c.887-10A>G. This multidisciplinary program is also being used to diagnose other NCL types.


Assuntos
Aminopeptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Predisposição Genética para Doença/genética , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Fenótipo , Serina Proteases/genética , Aminopeptidases/deficiência , Aminopeptidases/metabolismo , Argentina , Criança , Pré-Escolar , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Feminino , Genótipo , Hispânico ou Latino , Humanos , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Mutação/genética , Lipofuscinoses Ceroides Neuronais/patologia , Serina Proteases/deficiência , Serina Proteases/metabolismo , Tioléster Hidrolases , Tripeptidil-Peptidase 1
13.
J Bone Miner Res ; 34(11): 2133-2148, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31295380

RESUMO

Controlling oxidative stress through the activation of antioxidant pathways is crucial in bone homeostasis, and impairments of the cellular defense systems involved contribute to the pathogenesis of common skeletal diseases. In this work we focused on the dipeptidyl peptidase 3 (DPP3), a poorly investigated ubiquitous zinc-dependent exopeptidase activating the Keap1-Nrf2 antioxidant pathway. We showed Dpp3 expression in bone and, to understand its role in this compartment, we generated a Dpp3 knockout (KO) mouse model and specifically investigated the skeletal phenotype. Adult Dpp3 KO mice showed a mild growth defect, a significant increase in bone marrow cellularity, and bone loss mainly caused by increased osteoclast activity. Overall, in the mouse model, lack of DPP3 resulted in sustained oxidative stress and in alterations of bone microenvironment favoring the osteoclast compared to the osteoblast lineage. Accordingly, in vitro studies revealed that Dpp3 KO osteoclasts had an inherent increased resorptive activity and ROS production, which on the other hand made them prone to apoptosis. Moreover, absence of DPP3 augmented bone loss after estrogen withdrawal in female mice, further supporting its relevance in the framework of bone pathophysiology. Overall, we show a nonredundant role for DPP3 in the maintenance of bone homeostasis and propose that DPP3 might represent a possible new osteoimmunological player and a marker of human bone loss pathology. © 2019 American Society for Bone and Mineral Research.


Assuntos
Reabsorção Óssea , Microambiente Celular , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Osteoclastos , Estresse Oxidativo , Transdução de Sinais , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia
14.
Sci Rep ; 9(1): 7292, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086209

RESUMO

The ubiquitous intracellular protease dipeptidyl peptidase 9 (DPP9) has roles in antigen presentation and B cell signaling. To investigate the importance of DPP9 in immune regeneration, primary and secondary chimeric mice were created in irradiated recipients using fetal liver cells and adult bone marrow cells, respectively, using wild-type (WT) and DPP9 gene-knockin (DPP9S729A) enzyme-inactive mice. Immune cell reconstitution was assessed at 6 and 16 weeks post-transplant. Primary chimeric mice successfully regenerated neutrophils, natural killer, T and B cells, irrespective of donor cell genotype. There were no significant differences in total myeloid cell or neutrophil numbers between DPP9-WT and DPP9S729A-reconstituted mice. In secondary chimeric mice, cells of DPP9S729A-origin cells displayed enhanced engraftment compared to WT. However, we observed no differences in myeloid or lymphoid lineage reconstitution between WT and DPP9S729A donors, indicating that hematopoietic stem cell (HSC) engraftment and self-renewal is not diminished by the absence of DPP9 enzymatic activity. This is the first report on transplantation of bone marrow cells that lack DPP9 enzymatic activity.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Células-Tronco Hematopoéticas/fisiologia , Reconstituição Imune/fisiologia , Linfócitos/imunologia , Neutrófilos/imunologia , Animais , Transplante de Medula Óssea , Domínio Catalítico/genética , Diferenciação Celular/imunologia , Proliferação de Células , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Feminino , Feto , Técnicas de Introdução de Genes , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos da radiação , Sistema Imunitário/efeitos da radiação , Fígado/citologia , Mutação com Perda de Função , Linfócitos/efeitos da radiação , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Neutrófilos/efeitos da radiação , Mutação Puntual , Quimeras de Transplante/imunologia , Irradiação Corporal Total
15.
Cell Rep ; 29(11): 3708-3725.e5, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31825846

RESUMO

Telomeres use shelterin to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), repressing ataxia-telangiectasia, mutated (ATM) and ATM and Rad3-related (ATR) dependent DNA damage checkpoint responses. The MRE11 nuclease is thought to be essential for the resection of the 5' C-strand to generate the microhomologies necessary for alternative non-homologous end joining (A-NHEJ) repair. In the present study, we uncover DNA damage signaling and repair pathways engaged by components of the replisome complex to repair dysfunctional telomeres. In cells lacking MRN, single-stranded telomeric overhangs devoid of POT1-TPP1 do not recruit replication protein A (RPA), ATR-interacting protein (ATRIP), and RAD 51. Rather, components of the replisome complex, including Claspin, Proliferating cell nuclear antigen (PCNA), and Downstream neighbor of SON (DONSON), initiate DNA-PKcs-mediated p-CHK1 activation and A-NHEJ repair. In addition, Claspin directly interacts with TRF2 and recruits EXO1 to newly replicated telomeres to promote 5' end resection. Our data indicate that MRN is dispensable for the repair of dysfunctional telomeres lacking POT1-TPP1 and highlight the contributions of the replisome in telomere repair.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Telômero/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminopeptidases/deficiência , Aminopeptidases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Quinase 1 do Ponto de Checagem/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Exodesoxirribonucleases/metabolismo , Células HEK293 , Humanos , Proteína Homóloga a MRE11/metabolismo , Camundongos , Complexos Multienzimáticos/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Serina Proteases/deficiência , Serina Proteases/metabolismo , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/deficiência , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
16.
Acta Neuropathol Commun ; 5(1): 74, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29041969

RESUMO

The neuronal ceroid lipofuscinoses (NCLs or Batten disease) are a group of inherited, fatal neurodegenerative disorders of childhood. In these disorders, glial (microglial and astrocyte) activation typically occurs early in disease progression and predicts where neuron loss subsequently occurs. We have found that in the most common juvenile form of NCL (CLN3 disease or JNCL) this glial response is less pronounced in both mouse models and human autopsy material, with the morphological transformation of both astrocytes and microglia severely attenuated or delayed. To investigate their properties, we isolated glia and neurons from Cln3-deficient mice and studied their basic biology in culture. Upon stimulation, both Cln3-deficient astrocytes and microglia also showed an attenuated ability to transform morphologically, and an altered protein secretion profile. These defects were more pronounced in astrocytes, including the reduced secretion of a range of neuroprotective factors, mitogens, chemokines and cytokines, in addition to impaired calcium signalling and glutamate clearance. Cln3-deficient neurons also displayed an abnormal organization of their neurites. Most importantly, using a co-culture system, Cln3-deficient astrocytes and microglia had a negative impact on the survival and morphology of both Cln3-deficient and wildtype neurons, but these effects were largely reversed by growing mutant neurons with healthy glia. These data provide evidence that CLN3 disease astrocytes are functionally compromised. Together with microglia, they may play an active role in neuron loss in this disorder and can be considered as potential targets for therapeutic interventions.


Assuntos
Encéfalo/fisiopatologia , Neuroglia/fisiologia , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Neurônios/fisiologia , Adulto , Aminopeptidases/deficiência , Aminopeptidases/genética , Animais , Encéfalo/patologia , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Criança , Técnicas de Cocultura , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Feminino , Glutationa/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares/genética , Neuroglia/patologia , Lipofuscinoses Ceroides Neuronais/patologia , Neurônios/patologia , Serina Proteases/deficiência , Serina Proteases/genética , Tripeptidil-Peptidase 1 , Adulto Jovem
17.
Sci Transl Med ; 7(313): 313ra180, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26560358

RESUMO

The most common form of the childhood neurodegenerative disease late infantile neuronal ceroid lipofuscinosis (also called Batten disease) is caused by deficiency of the soluble lysosomal enzyme tripeptidyl peptidase 1 (TPP1) resulting from mutations in the TPP1 gene. We tested whether TPP1 gene transfer to the ependyma, the epithelial lining of the brain ventricular system, in TPP1-deficient dogs would be therapeutically beneficial. A one-time administration of recombinant adeno-associated virus (rAAV) expressing canine TPP1 (rAAV.caTPP1) resulted in high expression of TPP1 predominantly in ependymal cells and secretion of the enzyme into the cerebrospinal fluid leading to clinical benefit. Diseased dogs treated with rAAV.caTPP1 showed delays in onset of clinical signs and disease progression, protection from cognitive decline, and extension of life span. By immunostaining and enzyme assay, recombinant protein was evident throughout the brain and spinal cord, with correction of the neuropathology characteristic of the disease. This study in a naturally occurring canine model of TPP1 deficiency highlights the utility of AAV transduction of ventricular lining cells to accomplish stable secretion of recombinant protein for broad distribution in the central nervous system and therapeutic benefit.


Assuntos
Aminopeptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Terapia de Reposição de Enzimas , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/terapia , Serina Proteases/genética , Transdução Genética , Aminopeptidases/líquido cefalorraquidiano , Aminopeptidases/deficiência , Animais , Ventrículos Cerebrais/metabolismo , Dependovirus/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/líquido cefalorraquidiano , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Modelos Animais de Doenças , Cães , Vetores Genéticos/administração & dosagem , Serina Proteases/líquido cefalorraquidiano , Serina Proteases/deficiência , Tripeptidil-Peptidase 1
18.
Endocrinology ; 137(8): 3279-85, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8754751

RESUMO

Thyroid hormones are synthesized within the thyroglobulin (Tg) molecule and must be released to reach the circulation and exert their metabolic effect. We have previously shown that three lysosomal endopeptidases, cathepsin B, D, and L, are active in the early stages of intrathyroidal degradation of Tg but do not themselves release free hormone. The current study examines the role of exopeptidases as the next step in thyroid hormone release. Human thyroidal cathepsin B and two partially purified exopeptidases, dipeptidyl peptidase II (DP-PII) and lysosomal dipeptidase I (LDPI), were used to digest the 20-kDa N-terminal peptide of rabbit Tg, which contains the dominant T4 site of Tg at residue 5. Cathepsin B acted as an endopeptidase initially, producing small T4-containing peptides. After more extended digestion, it also acted as an exopeptidase, producing the dipeptide T4-Gln, corresponding to residues 5 and 6 of Tg. Lysosomal dipeptidase I alone had no effect on 20 kDa but acted in combination with cathepsin B to release T4 from the T4-Gln dipeptide. Although addition of DPPII increased the release of hormone from 125I-Tg by an extract of DPPII-deficient lysosomes, it had no apparent effect on the degradation of the 20-kDa peptide, either alone or in combination with cathepsin B or LDPI. Thus DPPII may act in synergy with some other endopeptidase, or alternatively, may play a role in the release of hormone from other sites in Tg. We conclude that the N-terminus of Tg, which contains its major hormonogenic site, is particularly susceptible to hydrolysis by the endopeptidase cathepsin B and that cathepsin B additionally has an important exopeptidase action that allows it to release a T4 dipeptide that is then further degraded by LDPI to release free T4.


Assuntos
Catepsina B/metabolismo , Peptídeo Hidrolases/metabolismo , Tireoglobulina/metabolismo , Glândula Tireoide/enzimologia , Hormônios Tireóideos/biossíntese , Tiroxina/metabolismo , Sequência de Aminoácidos , Animais , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Endopeptidases/metabolismo , Exopeptidases , Humanos , Lisossomos/química , Lisossomos/enzimologia , Metaloendopeptidases/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Coelhos , Extratos de Tecidos/farmacologia
19.
FEBS Lett ; 286(1-2): 167-70, 1991 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-1677896

RESUMO

A rat liver plasma membrane glycoprotein, gp110, was compared with dipeptidyl aminopeptidase IV (DAP IV) by using Wistar rats (DAP IV-positive rats) and Fischer 344 rats (DAP IV-negative rats). Fischer rats also lacked gp110 and gp110 of Wistar rats had DAP IV activity. Furthermore, we showed that the C-terminal sequence of gp110 was Ser-Leu-Arg, which was the same as the C-terminal amino acid sequence deduced from the nucleotide sequence of the cDNA of DAP IV. According to these results, we concluded that gp110 was identical with DAP IV.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Fígado/enzimologia , Glicoproteínas de Membrana/química , Sequência de Aminoácidos , Aminopeptidases/deficiência , Animais , Cromatografia Líquida de Alta Pressão , Dipeptidil Peptidase 4 , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos , Alinhamento de Sequência
20.
Arch Neurol ; 43(1): 39-41, 1986 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-3942512

RESUMO

Fluorescent protease histochemical analysis of muscle biopsy specimens from two patients with nemaline myopathy revealed the apparent absence of one proteolytic enzyme, dipeptidyl peptidase. Although the function of peptidases in normal muscle is obscure, this abnormality suggests that proteases may participate in posttranslational modification of proteins that are to be assembled into Z lines or, alternatively, in the disassembly and degradation of Z-line material.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Doenças Musculares/metabolismo , Adulto , Pré-Escolar , Feminino , Histocitoquímica , Humanos , Masculino , Microscopia de Fluorescência , Músculos/metabolismo , Músculos/patologia , Doenças Musculares/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa