RESUMO
Heart failure is a leading cause of morbidity and mortality1,2. Elevated intracardiac pressures and myocyte stretch in heart failure trigger the release of counter-regulatory natriuretic peptides, which act through their receptor (NPR1) to affect vasodilation, diuresis and natriuresis, lowering venous pressures and relieving venous congestion3-8. Recombinant natriuretic peptide infusions were developed to treat heart failure but have been limited by a short duration of effect9,10. Here we report that in a human genetic analysis of over 700,000 individuals, lifelong exposure to coding variants of the NPR1 gene is associated with changes in blood pressure and risk of heart failure. We describe the development of REGN5381, an investigational monoclonal agonist antibody that targets the membrane-bound guanylate cyclase receptor NPR1. REGN5381, an allosteric agonist of NPR1, induces an active-like receptor conformation that results in haemodynamic effects preferentially on venous vasculature, including reductions in systolic blood pressure and venous pressure in animal models. In healthy human volunteers, REGN5381 produced the expected haemodynamic effects, reflecting reductions in venous pressures, without obvious changes in diuresis and natriuresis. These data support the development of REGN5381 for long-lasting and selective lowering of venous pressures that drive symptomatology in patients with heart failure.
Assuntos
Anticorpos Monoclonais , Pressão Sanguínea , Receptores do Fator Natriurético Atrial , Vasoconstrição , Veias , Adulto , Animais , Cães , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Regulação Alostérica/efeitos dos fármacos , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Diurese/efeitos dos fármacos , Voluntários Saudáveis , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Macaca fascicularis , Músculo Liso Vascular/efeitos dos fármacos , Natriurese/efeitos dos fármacos , Receptores do Fator Natriurético Atrial/metabolismo , Receptores do Fator Natriurético Atrial/agonistas , Receptores do Fator Natriurético Atrial/genética , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Veias/efeitos dos fármacos , Veias/fisiologiaRESUMO
Cannabis and synthetic cannabinoid consumption are increasing worldwide. Cannabis contains numerous phytocannabinoids that act on the G protein-coupled cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 expressed throughout the body, including the kidney. Essentially every organ, including the kidney, produces endocannabinoids, which are endogenous ligands to these receptors. Cannabinoids acutely increase urine output in rodents and humans, thus potentially influencing total body water and electrolyte homeostasis. As the kidney collecting duct (CD) regulates total body water, acid/base, and electrolyte balance through specific functions of principal cells (PCs) and intercalated cells (ICs), we examined the cell-specific immunolocalization of CB1R in the mouse CD. Antibodies against either the C-terminus or N-terminus of CB1R consistently labeled aquaporin 2 (AQP2)-negative cells in the cortical and medullary CD and thus presumably ICs. Given the well-established role of ICs in urinary acidification, we used a clearance approach in mice that were acid loaded with 280 mM NH4Cl for 7 days and nonacid-loaded mice treated with the cannabinoid receptor agonist WIN55,212-2 (WIN) or a vehicle control. Although WIN had no effect on urinary acidification, these WIN-treated mice had less apical + subapical AQP2 expression in PCs compared with controls and developed acute diabetes insipidus associated with the excretion of large volumes of dilute urine. Mice maximally concentrated their urine when WIN and 1-desamino-8-d-arginine vasopressin [desmopressin (DDAVP)] were coadministered, consistent with central rather than nephrogenic diabetes insipidus. Although ICs express CB1R, the physiological role of CB1R in this cell type remains to be determined.NEW & NOTEWORTHY The CB1R agonist WIN55,212-2 induces central diabetes insipidus in mice. This research integrates existing knowledge regarding the diuretic effects of cannabinoids and the influence of CB1R on vasopressin secretion while adding new mechanistic insights about total body water homeostasis. Our findings provide a deeper understanding about the potential clinical impact of cannabinoids on human physiology and may help identify targets for novel therapeutics to treat water and electrolyte disorders such as hyponatremia and volume overload.
Assuntos
Aquaporina 2 , Benzoxazinas , Diurese , Túbulos Renais Coletores , Morfolinas , Naftalenos , Receptor CB1 de Canabinoide , Animais , Receptor CB1 de Canabinoide/metabolismo , Diurese/efeitos dos fármacos , Benzoxazinas/farmacologia , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Aquaporina 2/metabolismo , Morfolinas/farmacologia , Naftalenos/farmacologia , Masculino , Diabetes Insípido Neurogênico/metabolismo , Diabetes Insípido Neurogênico/fisiopatologia , Camundongos Endogâmicos C57BL , Agonistas de Receptores de Canabinoides/farmacologia , Camundongos , Modelos Animais de DoençasRESUMO
Chronic angiotensin II (ANG II) infusion is an experimental model that induces hypertension in rodents. The natriuresis, diuresis, and blood pressure responses differ between males and females. This is perhaps not unexpected, given the rodent kidney, which plays a key role in blood pressure regulation, exhibits marked sex differences. Under normotensive conditions, compared with males, the female rat nephron exhibits lower Na+/H+ exchanger 3 (NHE3) activity along the proximal tubule but higher Na+ transporter activities along the distal segments. ANG II infusion-induced hypertension induces a pressure natriuretic response that reduces NHE3 activity and shifts Na+ transport capacity downstream. The goals of this study were to apply a computational model of epithelial transport along a rat nephron 1) to understand how a 14-day ANG II infusion impacts segmental electrolyte transport in male and female rat nephrons and 2) to identify and explain any sex differences in the effects of loop diuretics, thiazide diuretics, and K+-sparing diuretics. Model simulations suggest that the NHE3 downregulation in the proximal tubule is a major contributor to natriuresis and diuresis in hypertension, with the effects stronger in males. All three diuretics are predicted to induce stronger natriuretic and diuretic effects under hypertension compared with normotension, with relative increases in sodium excretion higher in hypertensive females than in males. The stronger natriuretic responses can be explained by the downstream shift of Na+ transport load in hypertension and by the larger distal transport load in females, both of which limit the ability of the distal segments to further elevate their Na+ transport.NEW & NOTEWORTHY Sex differences in the prevalence of hypertension are found in human and animal models. The kidney, which regulates blood pressure, exhibits sex differences in morphology, hemodynamics, and membrane transporter distributions. This computational modeling study provides insights into how the sexually dimorphic responses to a 14-day angiotensin II infusion differentially impact segmental electrolyte transport in rats. Simulations of diuretic administration explain how the natriuretic and diuretic effects differ between normotension and hypertension and between the sexes.
Assuntos
Angiotensina II , Hipertensão , Natriurese , Trocador 3 de Sódio-Hidrogênio , Animais , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Feminino , Trocador 3 de Sódio-Hidrogênio/metabolismo , Natriurese/efeitos dos fármacos , Diuréticos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Fatores Sexuais , Simulação por Computador , Sódio/metabolismo , Ratos , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Caracteres Sexuais , Modelos Animais de Doenças , Diurese/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/fisiopatologiaRESUMO
Diuresis to achieve decongestion is a central aim of therapy in patients hospitalized for acute decompensated heart failure (ADHF). While multiple approaches have been tried to achieve adequate decongestion rapidly while minimizing adverse effects, no single diuretic strategy has shown superiority, and there is a paucity of data and guidelines to utilize in making these decisions. Observational cohort studies have shown associations between urine sodium excretion and outcomes after hospitalization for ADHF. Urine chemistries (urine sodium ± urine creatinine) may guide diuretic titration during ADHF, and multiple randomized clinical trials have been designed to compare a strategy of urine chemistry-guided diuresis to usual care. This review will summarize current literature for diuretic monitoring and titration strategies, outline evidence gaps, and describe the recently completed and ongoing clinical trials to address these gaps in patients with ADHF with a particular focus on the utility of urine sodium-guided strategies.
Assuntos
Diurese , Diuréticos , Insuficiência Cardíaca , Sódio , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/urina , Insuficiência Cardíaca/fisiopatologia , Diurese/efeitos dos fármacos , Sódio/urina , Diuréticos/uso terapêutico , Diuréticos/administração & dosagem , Doença AgudaRESUMO
Although several studies have shown that glucocorticoids exert diuretic effects in animals and humans, the underlying mechanism responsible for the acute diuretic effect remains obscure. Here we examined the mechanism in terms of gene-expression. We observed that glucocorticoids, including dexamethasone (Dex) and prednisolone (PSL), acutely induced diuresis in rats in a dose-dependent manner. Free water clearance values were negative after Dex or PSL treatment, similar to those observed after treatment with osmotic diuretics (furosemide and acetazolamide). Dex significantly increased the urinary excretion of sodium, potassium, chloride, glucose, and inorganic phosphorus. Renal microarray analysis revealed that Dex significantly altered the renal expression of genes related to transmembrane transport activity. The mRNA levels of sodium/phosphate (NaPi-2a/Slc34a1, NaPi-2b/Slc34a2, and NaPi-2c/Slc34a3) and sodium/glucose cotransporters (Sglt2/Slc5a2) were significantly reduced in the Dex-treated kidney, being negatively correlated with the urinary excretion of their corresponding solutes. Dex did not affect renal expression of the natriuretic peptide receptor 1 (Npr1) gene, or the expression, localization, and phosphorylation of aquaporin-2 (AQP2), a water channel protein. These findings suggest that the acute diuretic effects of glucocorticoids might be mediated by reduced expression of sodium-dependent cotransporter genes.
Assuntos
Aquaporina 2 , Dexametasona , Diurese , Expressão Gênica , Glucocorticoides , Rim , Animais , Glucocorticoides/farmacologia , Diurese/efeitos dos fármacos , Masculino , Rim/metabolismo , Rim/efeitos dos fármacos , Dexametasona/farmacologia , Aquaporina 2/genética , Aquaporina 2/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Prednisolona/farmacologia , Prednisolona/administração & dosagem , Relação Dose-Resposta a Droga , Ratos , Diuréticos/farmacologia , Diuréticos/administração & dosagem , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Ratos Sprague-Dawley , Ratos Wistar , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Sódio/urina , Sódio/metabolismoRESUMO
Warming Yang promoting blood circulation and diuresis (WYPBD) has been proven effective in treating some diseases. This study aimed to evaluate therapeutic effect of WYPBD in treating chronic heart failure (CHF). CHF rats were established by intraperitoneally injecting doxorubicin (DOX). Therapeutic effects of WYPBD on cardiac function and hemodynamic parameters of myocardial tissues were analyzed. Collagen fiber production and myocardial fibrosis were evaluated. Transcriptions of COL1A1 gene, COL3A1 gene, and TGFB1 gene were evaluated with RT-PCR. Expression of BNP, AVP, PARP, caspase-3, and Bcl-2 in myocardial tissues were evaluated. TUNEL assay was used to identify apoptosis of cardiomyocytes. WYPBD alleviated degree of myocardial hypertrophy in CHF rats compared to the rats in CHF model group (P < 0.05). WYPBD significantly improved cardiac hemodynamics (increased LVEF and LVSF) of CHF rats compared to rats in the CHF model group (P < 0.05). WYPBD protected myocardial structure and inhibited collagen fiber production in myocardial tissues of CHF rats. WYPBD markedly decreased myocardial fibrosis mediators (Col1α, Col3α, TGF-ß1) transcription in myocardial tissues of CHF rats compared to rats in CHF model group (P < 0.05). WYPBD significantly reduced BNP and AVP expression in myocardial tissues of CHF rats compared to rats in the CHF model group (P < 0.05). WYPBD markedly reduced the expression of PRAP and caspase-3, and increased Bcl-2 expression in myocardial tissues of CHF rats compared to rats in the CHF model group (P < 0.05). In conclusion, WYPBD alleviated CHF myocardial damage by inhibiting collagen fiber and myocardial fibrosis, attenuating apoptosis associated with the mitochondria signaling pathway of cardiomyocytes.
Assuntos
Apoptose , Diurese , Fibrose , Insuficiência Cardíaca , Hemodinâmica , Miocárdio , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Masculino , Miocárdio/patologia , Miocárdio/metabolismo , Hemodinâmica/efeitos dos fármacos , Diurese/efeitos dos fármacos , Colágeno/metabolismo , Doença Crônica , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Peptídeo Natriurético Encefálico/sangue , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , RatosRESUMO
BACKGROUND: Stimulation of diuresis is an essential component of heart failure treatment to reduce fluid overload. Over time, increasing doses of loop diuretics are required to achieve adequate urine output, and approximately 30% to 45% of patients develop diuretic resistance. We investigated the feasibility of affecting renal afferent sensory nerves by dorsal root ganglion neurostimulation as an alternative to medication to increase diuresis. MATERIALS AND METHODS: Acute volume overload with an elevated and stable pulmonary capillary wedge pressure (PCWP) was induced by infusion of isotonic fluid in swine (N = 7). In each experiment, diuresis and blood electrolyte levels were measured during cycles of up to two hours (baseline, stimulation, poststimulation) through bladder catheterization. Efficacy was tested using bilateral dorsal root ganglion (bDRG) stimulation at the T11 and/or T12 vertebral levels. RESULTS: An elevated, stable PCWP (15 ± 4 mm Hg, N = 7) was obtained after uploading. Under these conditions, average diuresis increased 20% to 205% compared with no stimulation. Side effects such as motor stimulation were mitigated by decreasing current or terminated spontaneously without intervention. There was no negative effect on acute kidney function because blood electrolyte concentrations remained stable. When stimulation was deactivated, urine output decreased significantly but did not return to baseline levels, suggesting a carry-over effect of up to two hours. CONCLUSIONS: Electrical stimulation (bDRG) at T11 and/or T12 increased diuresis in an acute volume overload model. Side effects caused by unintended (motor) stimulation could be eliminated by reducing the electrical current while sustaining increased diuresis.
Assuntos
Diurese , Gânglios Espinais , Animais , Suínos , Diurese/efeitos dos fármacos , Diurese/fisiologia , Gânglios Espinais/fisiologia , Gânglios Espinais/efeitos dos fármacos , Diuréticos/farmacologia , Diuréticos/administração & dosagem , Feminino , Modelos Animais de DoençasRESUMO
The contribution of angiotensin (1-7) (Ang1-7) to control of extrarenal and renal function may be modified in diabetes. We investigated the effects of Ang1-7 supplementation on blood pressure, renal circulation and intrarenal reactivity (IVR) to vasoactive agents in normoglycaemic (NG) and streptozotocin diabetic rats (DM). In Sprague Dawley DM and NG rats, 3 weeks after streptozotocin (60 mg/kg i.p.) or solvent injection, Ang1-7 was administered (400 ng/min) over the next 2 weeks using subcutaneously implanted osmotic minipumps. For a period of 5 weeks, blood pressure (BP), 24 h water intake and diuresis were determined weekly. In anaesthetised rats, BP, renal total and cortical (CBF), outer (OMBF) and inner medullary (IMBF) perfusion and urine excretion were determined. To check IVR, a short-time infusion of acetylcholine or norepinephrine was randomly given to the renal artery. Unexpectedly, BP did not differ between NG and DM, and this was not modified by Ang-1-7 supplementation. Baseline IMBF was higher in NG vs. DM, and Ang1-7 treatment did not change it in NG but decreased it in DM. In the latter, Ang1-7 increased cortical IVR to vasoconstrictor and vasodilator stimuli. IMBF decrease after high acetylcholine dose seen in untreated NG was reverted to an increase in Ang1-7 treated rats. Irrespective of the glycaemia level, Ang1-7 did not modify BP. However, it impaired medullary circulation in DM, whereas in NG it rendered the medullary vasculature more sensitive to vasodilators. Possibly, the medullary hypoperfusion in DM was mediated by Ang1-7 activation of angiotensin AT-1 receptors which are upregulated by hyperglycaemia.
Assuntos
Angiotensina I/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Diurese/efeitos dos fármacos , Ingestão de Líquidos/efeitos dos fármacos , Rim/irrigação sanguínea , Fragmentos de Peptídeos/farmacologia , Acetilcolina/farmacologia , Animais , Glicemia , Diabetes Mellitus Experimental , Rim/efeitos dos fármacos , Óxido Nítrico , Norepinefrina/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Simpatomiméticos/farmacologia , Vasodilatadores/farmacologiaRESUMO
We examined the effects of exposure to chronic intermittent hypoxia (CIH) on baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory responses to volume expansion (VE) before and after intrarenal transient receptor potential vanilloid 1 (TRPV1) blockade by capsaizepine (CPZ). Male Wistar rats were exposed to 96 cycles of hypoxia per day for 14 days (CIH) or normoxia. Urine flow and absolute Na+ excretion during VE were less in CIH-exposed rats, but the progressive decrease in RSNA during VE was preserved. Assessment of the high-pressure baroreflex revealed an increase in the operating and response range of RSNA and decreased slope in CIH-exposed rats with substantial hypertension [+19 mmHg basal mean arterial pressure (MAP)] but not in a second cohort with modest hypertension (+12 mmHg). Intrarenal CPZ caused diuresis, natriuresis, and a reduction in MAP in sham-exposed (sham) and CIH-exposed rats. After intrarenal CPZ, diuretic and natriuretic responses to VE in CIH-exposed rats were equivalent to those of sham rats. TRPV1 expression in the renal pelvic wall was similar in both experimental groups. Exposure to CIH did not elicit glomerular hypertrophy, renal inflammation, or oxidative stress. We conclude that exposure to CIH 1) does not impair the low-pressure baroreflex control of RSNA; 2) has modest effects on the high-pressure baroreflex control of RSNA, most likely indirectly due to hypertension; 3) can elicit hypertension in the absence of kidney injury; and 4) impairs diuretic and natriuretic responses to fluid overload. Our results suggest that exposure to CIH causes renal dysfunction, which may be relevant to obstructive sleep apnea.
Assuntos
Barorreflexo , Volume Sanguíneo , Diurese , Hipóxia/fisiopatologia , Rim/inervação , Sistema Nervoso Simpático/fisiopatologia , Animais , Pressão Arterial , Barorreflexo/efeitos dos fármacos , Volume Sanguíneo/efeitos dos fármacos , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Doença Crônica , Modelos Animais de Doenças , Diurese/efeitos dos fármacos , Frequência Cardíaca , Hipóxia/metabolismo , Hipóxia/patologia , Infusões Intravenosas , Rim/metabolismo , Rim/patologia , Masculino , Natriurese , Ratos Wistar , Solução Salina/administração & dosagem , Sistema Nervoso Simpático/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Fatores de Tempo , UrodinâmicaRESUMO
Congestion is the primary pathophysiological lesion in most heart failure (HF) hospitalizations. Renal congestion increases renal tubular pressure, reducing glomerular filtration rate (GFR) and diuresis. Because each nephron is a fluid-filled column, renal negative pressure therapy (rNPT) applied to the urinary collecting system should reduce tubular pressure, potentially improving kidney function. We evaluated the renal response to rNPT in congestive HF. Ten anesthetized â¼80-kg pigs underwent instrumentation with bilateral renal pelvic JuxtaFlow catheters. GFR was determined by iothalamate clearance (mGFR) and renal plasma flow (RPF) by para-aminohippurate clearance. Each animal served as its own control with randomization of left versus right kidney to -30 mmHg rNPT or no rNPT. mGFR and RPF were measured simultaneously from the rNPT and no rNPT kidney. Congestive HF was induced via cardiac tamponade maintaining central venous pressure at 20-22.5 mmHg throughout the experiment. Before HF induction, rNPT increased natriuresis, diuresis, and mGFR compared with the control kidney (P < 0.001 for all). Natriuresis, diuresis, and mGFR decreased following HF (P < 0.001 for all) but were higher in rNPT kidney versus control (P < 0.001 for all). RPF decreased during HF (P < 0.001) without significant differences between rNPT treatments. During HF, the rNPT kidney had similar diuresis and natriuresis (P > 0.5 for both) and higher fractional excretion of sodium (P = 0.001) compared with the non-rNPT kidney in the no HF period. In conclusion, rNPT resulted in significantly increased diuresis, natriuresis, and mGFR, with or without experimental HF. rNPT improved key renal parameters of the congested cardiorenal phenotype.
Assuntos
Síndrome Cardiorrenal/terapia , Diurese , Hidratação , Taxa de Filtração Glomerular , Insuficiência Cardíaca/terapia , Rim/fisiopatologia , Animais , Síndrome Cardiorrenal/diagnóstico , Síndrome Cardiorrenal/fisiopatologia , Modelos Animais de Doenças , Diurese/efeitos dos fármacos , Feminino , Furosemida/administração & dosagem , Taxa de Filtração Glomerular/efeitos dos fármacos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Infusões Intravenosas , Rim/efeitos dos fármacos , Natriurese , Fluxo Plasmático Renal , Inibidores de Simportadores de Cloreto de Sódio e Potássio/administração & dosagem , Sus scrofaRESUMO
BACKGROUND: Although diuretics are one of the most widely used drugs by nephrologists, their antiproteinuric properties are not generally taken into consideration. SUMMARY: Thiazide diuretics have been shown to reduce proteinuria by >35% in several prospective controlled studies, and these values are markedly increased when combined with a low-salt diet. Thiazide-like diuretics (indapamide and chlorthalidone) have shown similar effectiveness. The antiproteinuric effect of mineralocorticoid receptor antagonists (spironolactone, eplerenone, and finerenone) has been clearly established through prospective and controlled studies, and treatment with finerenone reduces the risk of chronic kidney disease progression in type-2 diabetic patients. The efficacy of other diuretics such as amiloride, triamterene, acetazolamide, or loop diuretics has been less explored, but different investigations suggest that they might share the same antiproteinuric properties of other diuretics that should be evaluated through controlled studies. Although the inclusion of sodium-glucose cotransporter-2 inhibitors (SGLT2i) among diuretics is a controversial issue, their renoprotective and cardioprotective properties, confirmed in various landmark trials, constitute a true revolution in the treatment of patients with kidney disease. Recent subanalyses of these trials have shown that the early antiproteinuric effect induced by SGLT2i predicts long-term preservation of kidney function. Key Message: Whether the early reduction in proteinuria induced by diuretics other than finerenone and SGLT2i, as summarized in this review, also translates into long-term renoprotection requires further prospective and observational studies. In any case, it is important for the clinician to be aware of the antiproteinuric properties of drugs so often used in daily clinical practice.
Assuntos
Dieta Hipossódica , Diuréticos/uso terapêutico , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Proteinúria/dietoterapia , Proteinúria/tratamento farmacológico , Tiazidas/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Clortalidona/uso terapêutico , Terapia Combinada , Diurese/efeitos dos fármacos , Diuréticos/farmacologia , Humanos , Hipertensão/tratamento farmacológico , Indapamida/uso terapêutico , Natriurese/efeitos dos fármacos , Proteinúria/prevenção & controle , Simportadores de Cloreto de Sódio/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Tiazidas/farmacologiaRESUMO
RATIONALE: Acute kidney injury (AKI) has a high prevalence and mortality in critically ill patients. It is also a powerful risk factor for heart failure incidence driven by hemodynamic changes and neurohormonal activation. However, no drugs have been approved by the Food and Drug Administration. Endogenous pGC-A (particulate guanylyl cyclase A receptor) activators were reported to preserve renal function and improve mortality in AKI patients, although hypotension accompanied by pGC-A activators have limited their therapeutic potential. OBJECTIVE: We investigated the therapeutic potential of a nonhypotensive pGC-A activator/designer natriuretic peptide, CRRL269, in a short-term, large animal model of ischemia-induced AKI and also investigated the potential of uCNP (urinary C-type natriuretic peptide) as a biomarker for AKI. METHODS AND RESULTS: We first showed that CRRL269 stimulated cGMP generation, suppressed plasma angiotensin II, and reduced cardiac filling pressures without lowering blood pressure in the AKI canine model. We also demonstrated that CRRL269 preserved glomerular filtration rate, increased renal blood flow, and promoted diuresis and natriuresis. Further, CRRL269 reduced kidney injury and apoptosis as evidenced by ex vivo histology and tissue apoptosis analysis. We also showed, compared with native pGC-A activators, that CRRL269 is a more potent inhibitor of apoptosis in renal cells and induced less decreases in intracellular Ca2+ concentration in vascular smooth muscle cells. The renal antiapoptotic effects were at least mediated by cGMP/PKG pathway. Further, CRRL269 inhibited proapoptotic genes expression using a polymerase chain reaction gene array. Additionally, we demonstrated that AKI increased uCNP levels. CONCLUSIONS: Our study supports developing CRRL269 as a novel renocardiac protective agent for AKI treatment.
Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/urina , Peptídeo Natriurético Tipo C/urina , Peptídeos Natriuréticos/uso terapêutico , Fármacos Renais/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Angiotensina II/sangue , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/urina , Pressão Sanguínea/fisiologia , GMP Cíclico/biossíntese , Diurese/efeitos dos fármacos , Cães , Taxa de Filtração Glomerular/efeitos dos fármacos , Masculino , Natriurese/efeitos dos fármacos , Peptídeos Natriuréticos/farmacologia , Receptores do Fator Natriurético Atrial/análise , Receptores do Fator Natriurético Atrial/efeitos dos fármacos , Circulação Renal/efeitos dos fármacosRESUMO
BACKGROUND AND AIMS: To evaluate the association between fasting blood glucose (FBG) and salt sensitivity of blood pressure (SSBP). METHODS AND RESULTS: This study is based on the baseline survey of systemic epidemiology of salt sensitivity study. Subjects were classified into salt sensitive (SS) and salt resistant groups according to blood pressure (BP) changes during the modified Sullivan's acute oral saline load and diuresis shrinkage test. Multivariate logistic and linear regression were used to evaluate associations between FBG with SS or BP changes. A total of 2051 participants were included in the analyses with 581 (28.33%) for SS. Multiple analysis showed that for every interquartile range increase in FBG, the OR (95%CI) for SS was 1.140 (1.069, 1.215), ß (95%CI) for mean arterial pressure change (ΔMAP1), systolic and diastolic BP changes during saline load were 0.421 (0.221, 0.622), 0.589 (0.263, 0.914) and 0.340 (0.149, 0.531), respectively. Compared to the lowest FBG quartile (Q1), the OR (95%CI) for SS in Q3 and Q4 were 1.342 (1.014, 1.776) and 1.577 (1.194, 2.084), respectively. Compared to subjects with normal FBG, the ß (95%CI) for ΔMAP1 was 0.973 (0.055, 1.891) in subjects with impaired FBG, and was 1.449 (0.602, 2.296) in patients with diabetes mellitus. Stratified analyses showed significant and stronger associations between FBG with SSBP in youngers, females, hypertensives, non-diabetics, non-current smokers and non-current drinkers. CONCLUSION: Our findings suggest FBG is an independent, dose-dependent associated factor for SSBP, and prevention of SS focusing on controlling FBG elevation in the early stage is important.
Assuntos
Pressão Arterial/efeitos dos fármacos , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus/sangue , Jejum/sangue , Solução Salina/efeitos adversos , Administração Oral , Adulto , Idoso , China/epidemiologia , Estudos Transversais , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Diurese/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco , Solução Salina/administração & dosagemRESUMO
BACKGROUND: In typical cases of Bartter syndrome (BS), assessing response to diuretics (furosemide and thiazide), hereinafter referred to as diuretic loading test, may be used to diagnose the type by detecting which part of the kidney tubule is not functioning correctly. However, the diuretic loading test may not always agree with the results of genetic analyses. CASE PRESENTATION: A 5-year-old boy was admitted due to lower extremity weakness and abnormal gait. He had a recurrent episode of muscle weakness and laboratory results showed severe hypokalemia. The direct genomic sequencing of the case revealed a new mutation in the SLC12A1 gene, which is associated with type I Bartter syndrome. Because there was the difference between the phenotype and genotype, we conducted a diuretic loading test to confirm the diagnosis. However, the results showed a clear increase in urine excretion of Na and Cl. These results were not consistent with typical type I BS, but consistent with the patient's phenotype. CONCLUSION: The diuretic loading test has limited utility for diagnosis especially in atypical cases. On the other hand, this test, which allows assessment of channel function, is useful for better understanding of the genotype-phenotype correlation.
Assuntos
Síndrome de Bartter/diagnóstico , Diurese/efeitos dos fármacos , Diuréticos/farmacologia , Testes Genéticos , Síndrome de Bartter/complicações , Síndrome de Bartter/genética , Pré-Escolar , Furosemida/farmacologia , Genótipo , Humanos , Hipopotassemia/etiologia , Masculino , Inibidores de Simportadores de Cloreto de Sódio/farmacologiaRESUMO
BACKGROUND: The physiologic role of renomedullary interstitial cells, which are uniquely and abundantly found in the renal inner medulla, is largely unknown. Endothelin A receptors regulate multiple aspects of renomedullary interstitial cell function in vitro. METHODS: To assess the effect of targeting renomedullary interstitial cell endothelin A receptors in vivo, we generated a mouse knockout model with inducible disruption of renomedullary interstitial cell endothelin A receptors at 3 months of age. RESULTS: BP and renal function were similar between endothelin A receptor knockout and control mice during normal and reduced sodium or water intake. In contrast, on a high-salt diet, compared with control mice, the knockout mice had reduced BP; increased urinary sodium, potassium, water, and endothelin-1 excretion; increased urinary nitrite/nitrate excretion associated with increased noncollecting duct nitric oxide synthase-1 expression; increased PGE2 excretion associated with increased collecting duct cyclooxygenase-1 expression; and reduced inner medullary epithelial sodium channel expression. Water-loaded endothelin A receptor knockout mice, compared with control mice, had markedly enhanced urine volume and reduced urine osmolality associated with increased urinary endothelin-1 and PGE2 excretion, increased cyclooxygenase-2 protein expression, and decreased inner medullary aquaporin-2 protein content. No evidence of endothelin-1-induced renomedullary interstitial cell contraction was observed. CONCLUSIONS: Disruption of renomedullary interstitial cell endothelin A receptors reduces BP and increases salt and water excretion associated with enhanced production of intrinsic renal natriuretic and diuretic factors. These studies indicate that renomedullary interstitial cells can modulate BP and renal function under physiologic conditions.
Assuntos
Pressão Sanguínea , Medula Renal/fisiologia , Receptor de Endotelina A/fisiologia , Aldosterona/sangue , Animais , Arginina Vasopressina/urina , Cálcio/metabolismo , Diurese/efeitos dos fármacos , Endotelina-1/farmacologia , Endotelina-1/urina , Canais Epiteliais de Sódio/metabolismo , Feminino , Genótipo , Taxa de Filtração Glomerular , Ácido Hialurônico/metabolismo , Medula Renal/citologia , Medula Renal/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Natriurese/efeitos dos fármacos , Nitratos/urina , Nitritos/urina , Potássio/urina , RNA Mensageiro/metabolismo , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Sódio/urina , Cloreto de Sódio na Dieta/administração & dosagem , Tamoxifeno/farmacologia , Água/administração & dosagem , Água/metabolismoRESUMO
Intravenous mineralocorticoid receptor antagonists (MRAs) have been used in some centers for decades to reduce the risk of hypokalemia and boost diuresis in acutely decompensated heart failure (ADHF). We report the well-tolerated use of intravenous MRAs as a rescue procedure in 3 patients admitted for ADHF with important diuretic resistance. Undertaking trials evaluating the effect of this therapeutic strategy in ADHF could represent a promising avenue.
Assuntos
Ácido Canrenoico/farmacologia , Diurese/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Administração Intravenosa , Idoso , Idoso de 80 Anos ou mais , Bumetanida/administração & dosagem , Bumetanida/uso terapêutico , Ácido Canrenoico/administração & dosagem , Ácido Canrenoico/uso terapêutico , Creatinina/sangue , Diuréticos/administração & dosagem , Diuréticos/uso terapêutico , Combinação de Medicamentos , Resistência a Medicamentos , Furosemida/administração & dosagem , Furosemida/uso terapêutico , Humanos , Hidroclorotiazida/administração & dosagem , Hidroclorotiazida/uso terapêutico , Masculino , Antagonistas de Receptores de Mineralocorticoides/administração & dosagem , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Potássio/sangue , Resultado do TratamentoRESUMO
We found an experimental solution to the paradox when the reabsorption of solute-free water increases with a simultaneous increase in diuresis and saluresis in the rat kidney under the oxytocin action. Injection of oxytocin to rats (0.25 nmol/100 g of body weight) increases diuresis from 0.16 ± 0.03 to 0.26 ± 0.02 mL/h, the excretion of solutes from 134 ± 13.7 to 300 ± 16.3 µOsm/h, and the reabsorption of solute-free water, which correlates with the renal excretion of oxytocin (p < 0.001). The mechanism of the effect is that oxytocin decreases the reabsorption of ultrafiltrate in the proximal tubule (the clearance of lithium increases) and increases the fluid flow through the distal segment of the nephron. In vivarium rats, urine osmolality (1010 ± 137 mOsm/kg H2O) and the concentration of vasopressin are high, this causes an increase in the reabsorption of solute-free water. Thus, oxytocin increases saluresis, which, against the background of a high level of endogenous vasopressin, increases the water reabsorption in the collecting ducts.
Assuntos
Absorção Fisico-Química/efeitos dos fármacos , Ocitocina/farmacologia , Sódio/urina , Água/metabolismo , Animais , Diurese/efeitos dos fármacos , Concentração Osmolar , RatosRESUMO
Bumetanide, a sulfamyl loop diuretic, is used for the treatment of edema in association with congestive heart failure. Being a polar, anionic compound at physiologic pH, bumetanide uptake and efflux into different tissues is largely transporter-mediated. Of note, organic anion transporters (SLC22A) have been extensively studied in terms of their importance in transporting bumetanide to its primary site of action in the kidney. The contribution of one of the less-studied bumetanide transporters, monocarboxylate transporter 6 (MCT6; SLC16A5), to bumetanide pharmacokinetics (PK) and pharmacodynamics (PD) has yet to be characterized. The affinity of bumetanide for murine Mct6 was evaluated using Mct6-transfected Xenopus laevis oocytes. Furthermore, bumetanide was intravenously and orally administered to wild-type mice (Mct6+/+) and homozygous Mct6 knockout mice (Mct6-/-) to elucidate the contribution of Mct6 to bumetanide PK/PD in vivo. We demonstrated that murine Mct6 transports bumetanide at a similar affinity compared with human MCT6 (78 and 84 µM, respectively, at pH 7.4). After bumetanide administration, there were no significant differences in plasma PK. Additionally, diuresis was significantly decreased by â¼55% after intravenous bumetanide administration in Mct6-/- mice. Kidney cortex concentrations of bumetanide were decreased, suggesting decreased Mct6-mediated bumetanide transport to its site of action in the kidney. Overall, these results suggest that Mct6 does not play a major role in the plasma PK of bumetanide in mice; however, it significantly contributes to bumetanide's pharmacodynamics due to changes in kidney concentrations. SIGNIFICANCE STATEMENT: Previous evidence suggested that MCT6 transports bumetanide in vitro; however, no studies to date have evaluated the in vivo contribution of this transporter. In vitro studies indicated that mouse and human MCT6 transport bumetanide with similar affinities. Using Mct6 knockout mice, we demonstrated that murine Mct6 does not play a major role in the plasma pharmacokinetics of bumetanide; however, the pharmacodynamic effect of diuresis was attenuated in the knockout mice, likely because of the decreased bumetanide concentrations in the kidney.
Assuntos
Bumetanida/farmacocinética , Diurese/efeitos dos fármacos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Bumetanida/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Masculino , Camundongos , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos/genética , Oócitos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Inibidores de Simportadores de Cloreto de Sódio e Potássio/administração & dosagem , Xenopus laevisRESUMO
BACKGROUND: Glucagon-like peptide-1 (GLP-1) induces diuresis and natriuresis. Previously we have shown that GLP-1 activates afferent renal nerve to increase efferent renal sympathetic nerve activity that negates the diuresis and natriuresis as a negative feedback mechanism in normal rats. However, renal effects of GLP-1 in heart failure (HF) has not been elucidated. The present study was designed to assess GLP-1-induced diuresis and natriuresis in rats with HF and its interactions with renal nerve activity. METHODS: HF was induced in rats by coronary artery ligation. The direct recording of afferent renal nerve activity (ARNA) with intrapelvic injection of GLP-1 and total renal sympathetic nerve activity (RSNA) with intravenous infusion of GLP-1 were performed. GLP-1 receptor expression in renal pelvis, densely innervated by afferent renal nerve, was assessed by real-time PCR and western blot analysis. In separate group of rats after coronary artery ligation selective afferent renal denervation (A-RDN) was performed by periaxonal application of capsaicin, then intravenous infusion of GLP-1-induced diuresis and natriuresis were evaluated. RESULTS: In HF, compared to sham-operated control; (1) response of increase in ARNA to intrapelvic injection of GLP-1 was enhanced (3.7 ± 0.4 vs. 2.0 ± 0.4 µV s), (2) GLP-1 receptor expression was increased in renal pelvis, (3) response of increase in RSNA to intravenous infusion of GLP-1 was enhanced (132 ± 30% vs. 70 ± 16% of the baseline level), and (4) diuretic and natriuretic responses to intravenous infusion of GLP-1 were blunted (urine flow 53.4 ± 4.3 vs. 78.6 ± 4.4 µl/min/gkw, sodium excretion 7.4 ± 0.8 vs. 10.9 ± 1.0 µEq/min/gkw). A-RDN induced significant increases in diuretic and natriuretic responses to GLP-1 in HF (urine flow 96.0 ± 1.9 vs. 53.4 ± 4.3 µl/min/gkw, sodium excretion 13.6 ± 1.4 vs. 7.4 ± 0.8 µEq/min/gkw). CONCLUSIONS: The excessive activation of neural circuitry involving afferent and efferent renal nerves suppresses diuretic and natriuretic responses to GLP-1 in HF. These pathophysiological responses to GLP-1 might be involved in the interaction between incretin-based medicines and established HF condition. RDN restores diuretic and natriuretic effects of GLP-1 and thus has potential beneficial therapeutic implication for diabetic HF patients.
Assuntos
Capsaicina/administração & dosagem , Diurese/efeitos dos fármacos , Diuréticos/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Insuficiência Cardíaca/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/inervação , Natriurese/efeitos dos fármacos , Simpatectomia Química , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/fisiopatologia , Infusões Intravenosas , Masculino , Ratos Sprague-DawleyRESUMO
OBJECTIVE: Administration of diuretics has been shown to assist fluid management and improve clinical outcomes in the critically ill post-shock resolution. Current guidelines have not yet included standardization or guidance for diuretic-based de-resuscitation in critically ill patients. This study aimed to evaluate the impact of a multi-disciplinary protocol for diuresis-guided de-resuscitation in the critically ill. METHODS: This was a pre-post single-center pilot study within the medical intensive care unit (ICU) of a large academic medical center. Adult patients admitted to the Medical ICU receiving mechanical ventilation with either (1) clinical signs of volume overload via chest radiography or physical exam or (2) any cumulative fluid balance ≥ 0 mL since hospital admission were eligible for inclusion. Patients received diuresis per clinician discretion for a 2-year period (historical control) followed by a diuresis protocol for 1 year (intervention). Patients within the intervention group were matched in a 1:3 ratio with those from the historical cohort who met the study inclusion and exclusion criteria. RESULTS: A total of 364 patients were included, 91 in the protocol group and 273 receiving standard care. Protocolized diuresis was associated with a significant decrease in 72-h post-shock cumulative fluid balance [median, IQR - 2257 (- 5676-920) mL vs 265 (- 2283-3025) mL; p < 0.0001]. In-hospital mortality in the intervention group was lower compared to the historical group (5.5% vs 16.1%; p = 0.008) and higher ICU-free days (p = 0.03). However, no statistically significant difference was found in ventilator-free days, and increased rates of hypernatremia and hypokalemia were demonstrated. CONCLUSIONS: This study showed that a protocol for diuresis for de-resuscitation can significantly improve 72-h post-shock fluid balance with potential benefit on clinical outcomes.