Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 173(5): 1098-1110.e18, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29706541

RESUMO

Bats harbor many viruses asymptomatically, including several notorious for causing extreme virulence in humans. To identify differences between antiviral mechanisms in humans and bats, we sequenced, assembled, and analyzed the genome of Rousettus aegyptiacus, a natural reservoir of Marburg virus and the only known reservoir for any filovirus. We found an expanded and diversified KLRC/KLRD family of natural killer cell receptors, MHC class I genes, and type I interferons, which dramatically differ from their functional counterparts in other mammals. Such concerted evolution of key components of bat immunity is strongly suggestive of novel modes of antiviral defense. An evaluation of the theoretical function of these genes suggests that an inhibitory immune state may exist in bats. Based on our findings, we hypothesize that tolerance of viral infection, rather than enhanced potency of antiviral defenses, may be a key mechanism by which bats asymptomatically host viruses that are pathogenic in humans.


Assuntos
Quirópteros/genética , Genoma , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Quirópteros/classificação , Quirópteros/imunologia , Mapeamento Cromossômico , Reservatórios de Doenças/virologia , Egito , Evolução Molecular , Variação Genética , Antígenos de Histocompatibilidade Classe I/classificação , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Interferon Tipo I/classificação , Interferon Tipo I/genética , Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/patologia , Marburgvirus/fisiologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/química , Subfamília C de Receptores Semelhantes a Lectina de Células NK/classificação , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/química , Subfamília D de Receptores Semelhantes a Lectina de Células NK/classificação , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Filogenia , Alinhamento de Sequência
2.
Cell ; 160(5): 893-903, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723164

RESUMO

The mechanisms by which neutralizing antibodies inhibit Marburg virus (MARV) are not known. We isolated a panel of neutralizing antibodies from a human MARV survivor that bind to MARV glycoprotein (GP) and compete for binding to a single major antigenic site. Remarkably, several of the antibodies also bind to Ebola virus (EBOV) GP. Single-particle EM structures of antibody-GP complexes reveal that all of the neutralizing antibodies bind to MARV GP at or near the predicted region of the receptor-binding site. The presence of the glycan cap or mucin-like domain blocks binding of neutralizing antibodies to EBOV GP, but not to MARV GP. The data suggest that MARV-neutralizing antibodies inhibit virus by binding to infectious virions at the exposed MARV receptor-binding site, revealing a mechanism of filovirus inhibition.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/ultraestrutura , Doença do Vírus de Marburg/imunologia , Marburgvirus/química , Proteínas do Envelope Viral/química , Adulto , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Linfócitos B/imunologia , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Marburgvirus/genética , Marburgvirus/imunologia , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/metabolismo
3.
Cell ; 160(5): 904-912, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723165

RESUMO

The filoviruses, including Marburg and Ebola, express a single glycoprotein on their surface, termed GP, which is responsible for attachment and entry of target cells. Filovirus GPs differ by up to 70% in protein sequence, and no antibodies are yet described that cross-react among them. Here, we present the 3.6 Å crystal structure of Marburg virus GP in complex with a cross-reactive antibody from a human survivor, and a lower resolution structure of the antibody bound to Ebola virus GP. The antibody, MR78, recognizes a GP1 epitope conserved across the filovirus family, which likely represents the binding site of their NPC1 receptor. Indeed, MR78 blocks binding of the essential NPC1 domain C. These structures and additional small-angle X-ray scattering of mucin-containing MARV and EBOV GPs suggest why such antibodies were not previously elicited in studies of Ebola virus, and provide critical templates for development of immunotherapeutics and inhibitors of entry.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Marburgvirus/química , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Complexo Antígeno-Anticorpo/química , Linhagem Celular , Reações Cruzadas , Cristalografia por Raios X , Drosophila , Ebolavirus/química , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Doença do Vírus de Marburg/imunologia , Marburgvirus/genética , Marburgvirus/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Mucinas/química , Alinhamento de Sequência , Proteínas do Envelope Viral/metabolismo
5.
Rev Med Virol ; 33(5): e2461, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37208958

RESUMO

In 1967, the very first case of the Marburgvirus disease (MVD) was detected in Germany and Serbia sequentially. Since then, MVD has been considered one of the most serious and deadly infectious diseases in the world with a case-fatality rate between 23% and 90% and a substantial number of recorded deaths. Marburgvirus belongs to the family of Filoviridae (filoviruses), which causes severe viral hemorrhagic fever (VHF). Some major risk factors for human infections are close contact with African fruit bats, MVD-infected non-human primates, and MVD-infected individuals. Currently, there is no vaccine or specific treatment for MVD, which emphasizes the seriousness of this disease. In July 2022, the World Health Organization reported outbreaks of MVD in Ghana after two suspected VHF cases were detected. This was followed in February and March 2023 with the emergence of the virus in two countries new to the virus: Equatorial Guinea and Tanzania, respectively. In this review, we aim to highlight the characteristics, etiology, epidemiology, and clinical symptoms of MVD, along with the current prevention measures and the possible treatments to control this virus.


Assuntos
Quirópteros , Ebolavirus , Doença pelo Vírus Ebola , Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/prevenção & controle , Doença do Vírus de Marburg/diagnóstico , Surtos de Doenças , Fatores de Risco
6.
BMC Infect Dis ; 24(1): 628, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914946

RESUMO

Marburg viral disease (MVD) is a highly infectious disease with a case fatality rate of up to 90%, particularly impacting resource-limited countries where implementing Infection Prevention and Control (IPC) measures is challenging. This paper shares the experience of how Tanzania has improved its capacity to prevent and control highly infectious diseases, and how this capacity was utilized during the outbreak of the MVD disease that occurred for the first time in the country in 2023.In 2016 and the subsequent years, Tanzania conducted self and external assessments that revealed limited IPC capacity in responding to highly infectious diseases. To address these gaps, initiatives were undertaken, including the enhancement of IPC readiness through the development and dissemination of guidelines, assessments of healthcare facilities, supportive supervision and mentorship, procurement of supplies, and the renovation or construction of environments to bolster IPC implementation.The official confirmation and declaration of MVD on March 21, 2023, came after five patients had already died of the disease. MVD primarily spreads through contact and presents with severe symptoms, which make patient care and prevention challenging, especially in resource-limited settings. However, with the use of a trained workforce; IPC rapid needs assessment was conducted, identifying specific gaps. Based on the results; mentorship programs were carried out, specific policies and guidelines were developed, security measures were enhanced, all burial activities in the area were supervised, and both patients and staff were monitored across all facilities. By the end of the outbreak response on June 1, 2023, a total of 212 contacts had been identified, with the addition of only three deaths. Invasive procedures like dialysis and Manual Vacuum Aspiration prevented some deaths in infected patients, procedures previously discouraged.In summary, this experience underscores the critical importance of strict adherence to IPC practices in controlling highly infectious diseases. Recommendations for low-income countries include motivating healthcare providers and improving working conditions to enhance commitment in challenging environments. This report offers valuable insights and practical interventions for preparing for and addressing highly infectious disease outbreaks through implementation of IPC measures.


Assuntos
Surtos de Doenças , Doença do Vírus de Marburg , Tanzânia/epidemiologia , Humanos , Surtos de Doenças/prevenção & controle , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/prevenção & controle , Controle de Infecções/métodos , Animais , Países em Desenvolvimento
8.
Mol Ther ; 31(1): 269-281, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36114672

RESUMO

Marburg virus (MARV) infection results in severe viral hemorrhagic fever with mortalities up to 90%, and there is a pressing need for effective therapies. Here, we established a small interfering RNA (siRNA) conjugate platform that enabled successful subcutaneous delivery of siRNAs targeting the MARV nucleoprotein. We identified a hexavalent mannose ligand with high affinity to macrophages and dendritic cells, which are key cellular targets of MARV infection. This ligand enabled successful siRNA conjugate delivery to macrophages both in vitro and in vivo. The delivered hexa-mannose-siRNA conjugates rendered substantial target gene silencing in macrophages when supported by a mannose functionalized endosome release polymer. This hexa-mannose-siRNA conjugate was further evaluated alongside our hepatocyte-targeting GalNAc-siRNA conjugate, to expand targeting of infected liver cells. In MARV-Angola-infected guinea pigs, these platforms offered limited survival benefit when used as individual agents. However, in combination, they achieved up to 100% protection when dosed 24 h post infection. This novel approach, using two different ligands to simultaneously deliver siRNA to multiple cell types relevant to infection, provides a convenient subcutaneous route of administration for treating infection by these dangerous pathogens. The mannose conjugate platform has potential application to other diseases involving macrophages and dendritic cells.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Viroses , Animais , Cobaias , RNA Interferente Pequeno/genética , Manose , Ligantes , RNA de Cadeia Dupla , Marburgvirus/genética , Doença do Vírus de Marburg/metabolismo , Doença do Vírus de Marburg/prevenção & controle
9.
Mar Drugs ; 22(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38248659

RESUMO

The Marburg virus (MBV), a deadly pathogen, poses a serious threat to world health due to the lack of effective treatments, calling for an immediate search for targeted and efficient treatments. In this study, we focused on compounds originating from marine fungi in order to identify possible inhibitory compounds against the Marburg virus (MBV) VP35-RNA binding domain (VP35-RBD) using a computational approach. We started with a virtual screening procedure using the Lipinski filter as a guide. Based on their docking scores, 42 potential candidates were found. Four of these compounds-CMNPD17596, CMNPD22144, CMNPD25994, and CMNPD17598-as well as myricetin, the control compound, were chosen for re-docking analysis. Re-docking revealed that these particular compounds had a higher affinity for MBV VP35-RBD in comparison to the control. Analyzing the chemical interactions revealed unique binding properties for every compound, identified by a range of Pi-cation interactions and hydrogen bond types. We were able to learn more about the dynamic behaviors and stability of the protein-ligand complexes through a 200-nanosecond molecular dynamics simulation, as demonstrated by the compounds' consistent RMSD and RMSF values. The multidimensional nature of the data was clarified by the application of principal component analysis, which suggested stable conformations in the complexes with little modification. Further insight into the energy profiles and stability states of these complexes was also obtained by an examination of the free energy landscape. Our findings underscore the effectiveness of computational strategies in identifying and analyzing potential inhibitors for MBV VP35-RBD, offering promising paths for further experimental investigations and possible therapeutic development against the MBV.


Assuntos
Doença do Vírus de Marburg , Animais , Motivos de Ligação ao RNA , Fungos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular
10.
Public Health ; 230: 128-137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537496

RESUMO

OBJECTIVES: Marburg virus, previously referred to as Marburg hemorrhagic fever, is a highly severe and frequently fatal illness that affects humans. This study aimed to develop and validate a French questionnaire to assess knowledge, attitude, and practice toward Marburg virus disease (FKAP-MVD). STUDY DESIGN: An anonymous online survey was used, which was distributed through various platforms and emails. Data were collected from Burkina Faso, Guinea, the Democratic Republic of Congo, and Senegal. METHODS: To conduct the study, an anonymous online survey was used, which was distributed through various platforms such as Facebook, Twitter, WhatsApp, and emails. The survey was uploaded onto a Google form to facilitate data collection. Data were collected from Burkina Faso, Guinea, the Democratic Republic of Congo, and Senegal. RESULTS: Of the total sample of 510 participants, 60.0% were male, their mean age was 28.41 ± 6.32 years, 38.0% were married, 86.6% resided in urban areas and 64.1% had a university education. The questionnaire had good internal consistency; Cronbach's alpha was 0.87. The correlation between knowledge and attitude was 0.002, the correlation between knowledge and practice was 0.204, and the correlation between practice and attitude was relatively weak and negative at -0.060. This indicates the divergent validity of the questionnaire. The KMO value of 0.91 indicates a high level of adequacy, suggesting that the data are suitable for factor analysis. The Bartlett test of Sphericity yielded an approximate χ2 value of 4016.890 with 300 degrees of freedom and a P-value of 0.0001. The confirmatory factor analysis revealed 25 questions in three domains. The normed chi-square value is 1.224. The goodness of Fit Index (GFI) is 0.902, the Comparative Fit Index (CFI) is 0.982, the Root Mean Square Error of Approximation (RMSEA) is 0.033, and the Root Mean Square Residual (RMR) is 0.062. These values indicate a good fit of the model to the data. CONCLUSIONS: In general, the developed questionnaire has significant potential to inform public health initiatives and interventions related to MVD.


Assuntos
Doença do Vírus de Marburg , Animais , Humanos , Masculino , Adulto Jovem , Adulto , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Saúde Pública , Inquéritos e Questionários , Reprodutibilidade dos Testes , África Subsaariana , Psicometria
11.
J Infect Dis ; 228(Suppl 7): S559-S570, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37610176

RESUMO

BACKGROUND: Marburg virus (MARV) has caused numerous sporadic outbreaks of severe hemorrhagic fever in humans. Human case fatality rates of Marburg virus disease (MVD) outbreaks range from 20% to 90%. Viral genotypes of MARV can differ by over 20%, suggesting variable virulence between lineages may accompany this genetic divergence. Comparison of existing animal models of MVD employing different strains of MARV support differences in virulence across MARV genetic lineages; however, there are few systematic comparisons in models that recapitulate human disease available. METHODS: We compared features of disease pathogenesis in uniformly lethal hamster models of MVD made possible through serial adaptation in rodents. RESULTS: No further adaptation from a previously reported guinea pig-adapted (GPA) isolate of MARV-Angola was necessary to achieve uniform lethality in hamsters. Three passages of GPA MARV-Ci67 resulted in uniform lethality, where 4 passages of a GPA Ravn virus was 75% lethal. Hamster-adapted MARV-Ci67 demonstrated delayed time to death, protracted weight loss, lower viral burden, and slower histologic alteration compared to GPA MARV-Angola. CONCLUSIONS: These data suggest isolate-dependent virulence differences are maintained even after serial adaptation in rodents and may serve to guide choice of variant and model used for development of vaccines or therapeutics for MVD.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Cricetinae , Humanos , Cobaias , Animais , Mesocricetus , Virulência , Angola
12.
J Infect Dis ; 228(Suppl 7): S682-S690, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638865

RESUMO

Although there are no approved countermeasures available to prevent or treat disease caused by Marburg virus (MARV), potently neutralizing monoclonal antibodies (mAbs) derived from B cells of human survivors have been identified. One such mAb, MR191, has been shown to provide complete protection against MARV in nonhuman primates. We previously demonstrated that prophylactic administration of an adeno-associated virus (AAV) expressing MR191 protected mice from MARV. Here, we modified the AAV-MR191 coding sequence to enhance efficacy and reevaluated protection in a guinea pig model. Remarkably, 4 different variants of AAV-MR191 provided complete protection against MARV, despite administration 90 days prior to challenge. Based on superior expression kinetics, AAV-MR191-io2, was selected for evaluation in a dose-reduction experiment. The highest dose provided 100% protection, while a lower dose provided ∼88% protection. These data confirm the efficacy of AAV-mediated expression of MR191 and support the further development of this promising MARV countermeasure.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Humanos , Cobaias , Animais , Camundongos , Linfócitos B , Anticorpos Neutralizantes
13.
J Infect Dis ; 228(Suppl 7): S701-S711, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37474248

RESUMO

Marburg virus (MARV) causes a hemorrhagic fever disease in human and nonhuman primates with high levels of morbidity and mortality. Concerns about weaponization of aerosolized MARV have spurred the development of nonhuman primate (NHP) models of aerosol exposure. To address the potential threat of aerosol exposure, a monoclonal antibody that binds MARV glycoprotein was tested, MR186YTE, for its efficacy as a prophylactic. MR186YTE was administered intramuscularly to NHPs at 15 or 5 mg/kg 1 month prior to MARV aerosol challenge. Seventy-five percent (3/4) of the 15 mg/kg dose group and 50% (2/4) of the 5 mg/kg dose group survived. Serum analyses showed that the NHP dosed with 15 mg/kg that succumbed to infection developed an antidrug antibody response and therefore had no detectable MR186YTE at the time of challenge. These results suggest that intramuscular dosing of mAbs may be a clinically useful prophylaxis for MARV aerosol exposure.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Anticorpos Monoclonais , Primatas , Aerossóis
14.
J Infect Dis ; 228(Suppl 7): S594-S603, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37288605

RESUMO

Ebola virus (EBOV) causes lethal disease in ferrets, whereas Marburg virus (MARV) does not. To investigate this difference, we first evaluated viral entry by infecting ferret spleen cells with vesicular stomatitis viruses pseudotyped with either MARV or EBOV glycoprotein (GP). Both viruses were capable of infecting ferret spleen cells, suggesting that lack of disease is not due to a block in MARV entry. Next, we evaluated replication kinetics of authentic MARV and EBOV in ferret cell lines and demonstrated that, unlike EBOV, MARV was only capable of low levels of replication. Finally, we inoculated ferrets with a recombinant EBOV expressing MARV GP in place of EBOV GP. Infection resulted in uniformly lethal disease within 7-9 days postinfection, while MARV-inoculated animals survived until study endpoint. Together these data suggest that the inability of MARV to cause disease in ferrets is not entirely linked to GP.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Doença do Vírus de Marburg , Marburgvirus , Animais , Furões , Linhagem Celular , Glicoproteínas/genética
15.
Rev Med Suisse ; 20(872): 881-885, 2024 May 01.
Artigo em Francês | MEDLINE | ID: mdl-38693801

RESUMO

Marburg virus disease (MVD) is a dreadful but exceptional disease. Formerly mainly identified in Uganda, Angola and the Democratic Republic of Congo, it has recently appeared in the Republic of Guinea, Ghana, Equatorial Guinea and Tanzania, adding West Africa to the affected regions. Humans become infected through exposure to bats Roussettus aegyptiacus or during unprotected care of infected people. Five cases are linked to travellers, the last one dates to 2008 and involved a visit to caves colonized by bats. At present, there is no specific treatment or vaccine. Despite its rarity, adventurous travelers should be aware of the risks of exposure and avoid entering places inhabited by bats.


La maladie à virus Marburg est une maladie redoutable mais exceptionnelle. Autrefois identifiée en Ouganda, Angola et République démocratique du Congo, elle a récemment fait son apparition en République de Guinée, au Ghana, en Guinée équatoriale et en Tanzanie, ajoutant l'Afrique de l'Ouest aux régions touchées. Les humains s'infectent lors d'une exposition avec les chauves-souris roussettes d'Égypte ou lors de la prise en charge sans protection de personnes infectées. Cinq cas sont liés à des voyageurs, le dernier remonte à 2008 et était associé à la visite de grottes colonisées par des roussettes d'Égypte. Actuellement, il n'existe aucun traitement spécifique ni vaccin. Malgré sa rareté, les voyageurs aventureux doivent être informés des risques d'exposition et éviter de pénétrer dans des lieux habités par des chauves-souris.


Assuntos
Marburgvirus , Viagem , Feminino , Humanos , Masculino , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/transmissão , Doença do Vírus de Marburg/virologia , Marburgvirus/isolamento & purificação , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Quirópteros/virologia
16.
Emerg Infect Dis ; 29(11): 2238-2245, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37877537

RESUMO

Marburg virus disease, caused by Marburg and Ravn orthomarburgviruses, emerges sporadically in sub-Saharan Africa and is often fatal in humans. The natural reservoir is the Egyptian rousette bat (ERB), which sheds virus in saliva, urine, and feces. Frugivorous ERBs discard test-bitten and partially eaten fruit, potentially leaving infectious virus behind that could be consumed by other susceptible animals or humans. Historically, 8 of 17 known Marburg virus disease outbreaks have been linked to human encroachment on ERB habitats, but no linkage exists for the other 9 outbreaks, raising the question of how bats and humans might intersect, leading to virus spillover. We used micro‒global positioning systems to identify nightly ERB foraging locations. ERBs from a known Marburg virus‒infected population traveled long distances to feed in cultivated fruit trees near homes. Our results show that ERB foraging behavior represents a Marburg virus spillover risk to humans and plausibly explains the origins of some past outbreaks.


Assuntos
Quirópteros , Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Doença do Vírus de Marburg/epidemiologia , Sistemas de Informação Geográfica , Surtos de Doenças
17.
BMC Med ; 21(1): 439, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964296

RESUMO

BACKGROUND: Marburg virus disease is an acute haemorrhagic fever caused by Marburg virus. Marburg virus is zoonotic, maintained in nature in Egyptian fruit bats, with occasional spillover infections into humans and nonhuman primates. Although rare, sporadic cases and outbreaks occur in Africa, usually associated with exposure to bats in mines or caves, and sometimes with secondary human-to-human transmission. Outbreaks outside of Africa have also occurred due to importation of infected monkeys. Although all previous Marburg virus disease outbreaks have been brought under control without vaccination, there is nevertheless the potential for large outbreaks when implementation of public health measures is not possible or breaks down. Vaccines could thus be an important additional tool, and development of several candidate vaccines is under way. METHODS: We developed a branching process model of Marburg virus transmission and investigated the potential effects of several prophylactic and reactive vaccination strategies in settings driven primarily by multiple spillover events as well as human-to-human transmission. Linelist data from the 15 outbreaks up until 2022, as well as an Approximate Bayesian Computational framework, were used to inform the model parameters. RESULTS: Our results show a low basic reproduction number which varied across outbreaks, from 0.5 [95% CI 0.05-1.8] to 1.2 [95% CI 1.0-1.9] but a high case fatality ratio. Of six vaccination strategies explored, the two prophylactic strategies (mass and targeted vaccination of high-risk groups), as well as a combination of ring and targeted vaccination, were generally most effective, with a probability of potential outbreaks being terminated within 1 year of 0.90 (95% CI 0.90-0.91), 0.89 (95% CI 0.88-0.90), and 0.88 (95% CI 0.87-0.89) compared with 0.68 (0.67-0.69) for no vaccination, especially if the outbreak is driven by zoonotic spillovers and the vaccination campaign initiated as soon as possible after onset of the first case. CONCLUSIONS: Our study shows that various vaccination strategies can be effective in helping to control outbreaks of MVD, with the best approach varying with the particular epidemiologic circumstances of each outbreak.


Assuntos
Quirópteros , Doença do Vírus de Marburg , Marburgvirus , Vacinas , Animais , Humanos , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/prevenção & controle , Teorema de Bayes , Surtos de Doenças/prevenção & controle , Vacinação , Modelos Teóricos
18.
Proc Natl Acad Sci U S A ; 117(49): 31142-31148, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229516

RESUMO

Marburg virus (MARV) disease is lethal, with fatality rates up to 90%. Neutralizing antibodies (Abs) are promising drug candidates to prevent or treat the disease. Current efforts are focused in part on vaccine development to induce such MARV-neutralizing Abs. We analyzed the antibody repertoire from healthy unexposed and previously MARV-infected individuals to assess if naïve repertoires contain suitable precursor antibodies that could become neutralizing with a limited set of somatic mutations. We computationally searched the human Ab variable gene repertoire for predicted structural homologs of the neutralizing Ab MR78 that is specific to the receptor binding site (RBS) of MARV glycoprotein (GP). Eight Ab heavy-chain complementarity determining region 3 (HCDR3) loops from MARV-naïve individuals and one from a previously MARV-infected individual were selected for testing as HCDR3 loop chimeras on the MR78 Ab framework. Three of these chimerized antibodies bound to MARV GP. We then tested a full-length native Ab heavy chain encoding the same 17-residue-long HCDR3 loop that bound to the MARV GP the best among the chimeric Abs tested. Despite only 57% amino acid sequence identity, the Ab from a MARV-naïve donor recognized MARV GP and possessed neutralizing activity against the virus. Crystallization of both chimeric and full-length native heavy chain-containing Abs provided structural insights into the mechanism of binding for these types of Abs. Our work suggests that the MARV GP RBS is a promising candidate for epitope-focused vaccine design to induce neutralizing Abs against MARV.


Assuntos
Anticorpos Antivirais/genética , Regiões Determinantes de Complementaridade/genética , Doença do Vírus de Marburg/imunologia , Marburgvirus/imunologia , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Regiões Determinantes de Complementaridade/imunologia , Epitopos/genética , Epitopos/imunologia , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Doença do Vírus de Marburg/tratamento farmacológico , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/virologia , Marburgvirus/patogenicidade , Mutação/genética , Mutação/imunologia , Proteínas do Envelope Viral , Vacinas Virais/genética , Vacinas Virais/imunologia
19.
J Biol Chem ; 296: 100796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019871

RESUMO

Marburg virus (MARV) is a lipid-enveloped virus harboring a negative-sense RNA genome, which has caused sporadic outbreaks of viral hemorrhagic fever in sub-Saharan Africa. MARV assembles and buds from the host cell plasma membrane where MARV matrix protein (mVP40) dimers associate with anionic lipids at the plasma membrane inner leaflet and undergo a dynamic and extensive self-oligomerization into the structural matrix layer. The MARV matrix layer confers the virion filamentous shape and stability but how host lipids modulate mVP40 oligomerization is mostly unknown. Using in vitro and cellular techniques, we present a mVP40 assembly model highlighting two distinct oligomerization interfaces: the (N-terminal domain [NTD] and C-terminal domain [CTD]) in mVP40. Cellular studies of NTD and CTD oligomerization interface mutants demonstrate the importance of each interface in matrix assembly. The assembly steps include protein trafficking to the plasma membrane, homo-multimerization that induced protein enrichment, plasma membrane fluidity changes, and elongations at the plasma membrane. An ascorbate peroxidase derivative (APEX)-transmission electron microscopy method was employed to closely assess the ultrastructural localization and formation of viral particles for wildtype mVP40 and NTD and CTD oligomerization interface mutants. Taken together, these studies present a mechanistic model of mVP40 oligomerization and assembly at the plasma membrane during virion assembly that requires interactions with phosphatidylserine for NTD-NTD interactions and phosphatidylinositol-4,5-bisphosphate for proper CTD-CTD interactions. These findings have broader implications in understanding budding of lipid-enveloped viruses from the host cell plasma membrane and potential strategies to target protein-protein or lipid-protein interactions to inhibit virus budding.


Assuntos
Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Animais , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Doença do Vírus de Marburg/metabolismo , Marburgvirus/química , Lipídeos de Membrana/química , Modelos Moleculares , Multimerização Proteica , Proteínas da Matriz Viral/química , Vírion/química , Montagem de Vírus
20.
Clin Trials ; 19(6): 647-654, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35866633

RESUMO

BACKGROUND: The threat of a possible Marburg virus disease outbreak in Central and Western Africa is growing. While no Marburg virus vaccines are currently available for use, several candidates are in the pipeline. Building on knowledge and experiences in the designs of vaccine efficacy trials against other pathogens, including SARS-CoV-2, we develop designs of randomized Phase 3 vaccine efficacy trials for Marburg virus vaccines. METHODS: A core protocol approach will be used, allowing multiple vaccine candidates to be tested against controls. The primary objective of the trial will be to evaluate the effect of each vaccine on the rate of virologically confirmed Marburg virus disease, although Marburg infection assessed via seroconversion could be the primary objective in some cases. The overall trial design will be a mixture of individually and cluster-randomized designs, with individual randomization done whenever possible. Clusters will consist of either contacts and contacts of contacts of index cases, that is, ring vaccination, or other transmission units. RESULTS: The primary efficacy endpoint will be analysed as a time-to-event outcome. A vaccine will be considered successful if its estimated efficacy is greater than 50% and has sufficient precision to rule out that true efficacy is less than 30%. This will require approximately 150 total endpoints, that is, cases of confirmed Marburg virus disease, per vaccine/comparator combination. Interim analyses will be conducted after 50 and after 100 events. Statistical analysis of the trial will be blended across the different types of designs. Under the assumption of a 6-month attack rate of 1% of the participants in the placebo arm for both the individually and cluster-randomized populations, the most likely sample size is about 20,000 participants per arm. CONCLUSION: This event-driven design takes into the account the potentially sporadic spread of Marburg virus. The proposed trial design may be applicable for other pathogens against which effective vaccines are not yet available.


Assuntos
COVID-19 , Doenças Transmissíveis Emergentes , Doença do Vírus de Marburg , Marburgvirus , Vacinas , Animais , Humanos , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Doença do Vírus de Marburg/prevenção & controle , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa