RESUMO
Pathogen epidemics are key threats to human and wildlife health. Across systems, host protection from pathogens following initial exposure is often incomplete, resulting in recurrent epidemics through partially-immune hosts. Variation in population-level protection has important consequences for epidemic dynamics, but how acquired protection influences inter-individual heterogeneity in susceptibility and its epidemiological consequences remains understudied. We experimentally investigated whether prior exposure (none, low-dose, or high-dose) to a bacterial pathogen alters host heterogeneity in susceptibility among songbirds. Hosts with no prior pathogen exposure had little variation in protection, but heterogeneity in susceptibility was significantly augmented by prior pathogen exposure, with the highest variability detected in hosts given high-dose prior exposure. An epidemiological model parameterized with experimental data found that heterogeneity in susceptibility from prior exposure more than halved epidemic sizes compared with a homogeneous population with identical mean protection. However, because infection-induced mortality was also greatly reduced in hosts with prior pathogen exposure, reductions in epidemic size were smaller than expected in hosts with prior exposure. These results highlight the importance of variable protection from prior exposure and/or vaccination in driving population-level heterogeneity and epidemiological dynamics.
Assuntos
Doenças das Aves , Animais , Suscetibilidade a Doenças , Doenças das Aves/epidemiologia , Doenças das Aves/microbiologia , Interações Hospedeiro-Patógeno , Modelos EpidemiológicosRESUMO
West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related flaviviruses that can cause encephalitis in humans and related diseases in animals. In nature, both are transmitted by Culex, with wild birds, including jays, sparrows, and robins, serving as vertebrate hosts. WNV and SLEV circulate in the same environments and have recently caused concurrent disease outbreaks in humans. The extent that coinfection of mosquitoes or birds may alter transmission dynamics, however, is not well characterized. We therefore sought to determine if coinfection alters infection kinetics and virus levels in birds and infection rates in mosquitoes. Accordingly, American robins (Turdus migratorius), two species of mosquitoes, and vertebrate and invertebrate cells were infected with WNV and/or SLEV to assess how simultaneous exposure may alter infection outcomes. There was variable impact of coinfection in vertebrate cells, with some evidence that SLEV can suppress WNV replication. However, robins had comparable viremia and antibody responses regardless of coinfection. Conversely, in Culex cells and mosquitoes, we saw a minimal impact of simultaneous exposure to both viruses on replication, with comparable infection, dissemination, and transmission rates in singly infected and coinfected mosquitoes. Importantly, while WNV and SLEV levels in coinfected mosquito midguts were positively correlated, we saw no correlation between them in salivary glands and saliva. These results reveal that while coinfection can occur in both avian and mosquito hosts, the viruses minimally impact one another. The potential for coinfection to alter virus population structure or the likelihood of rare genotypes emerging remains unknown.IMPORTANCEWest Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related viruses that are transmitted by the same mosquitoes and infect the same birds in nature. Both viruses circulate in the same regions and have caused concurrent outbreaks in humans. It is possible that mosquitoes, birds, and/or humans could be infected with both WNV and SLEV simultaneously, as has been observed with Zika, chikungunya, and dengue viruses. To study the impact of coinfection, we experimentally infected vertebrate and invertebrate cells, American robins, and two Culex species with WNV and/or SLEV. Robins were efficiently coinfected, with no impact of coinfection on virus levels or immune response. Similarly, in mosquitoes, coinfection did not impact infection rates, and mosquitoes could transmit both WNV and SLEV together. These results reveal that WNV and SLEV coinfection in birds and mosquitoes can occur in nature, which may impact public health and human disease risk.
Assuntos
Anticorpos Antivirais , Doenças das Aves , Coinfecção , Culex , Vírus da Encefalite de St. Louis , Mosquitos Vetores , Viremia , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Vírus do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/virologia , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/veterinária , Febre do Nilo Ocidental/imunologia , Coinfecção/virologia , Coinfecção/imunologia , Culex/virologia , Mosquitos Vetores/virologia , Viremia/virologia , Vírus da Encefalite de St. Louis/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Doenças das Aves/virologia , Doenças das Aves/transmissão , Doenças das Aves/imunologia , Encefalite de St. Louis/virologia , Encefalite de St. Louis/transmissão , Replicação Viral , Aves Canoras/virologia , Formação de Anticorpos , Aves/virologiaRESUMO
Animal hosts can adapt to emerging infectious disease through both disease resistance, which decreases pathogen numbers, and disease tolerance, which limits damage during infection without limiting pathogen replication. Both resistance and tolerance mechanisms can drive pathogen transmission dynamics. However, it is not well understood how quickly host tolerance evolves in response to novel pathogens or what physiological mechanisms underlie this defense. Using natural populations of house finches (Haemorhous mexicanus) across the temporal invasion gradient of a recently emerged bacterial pathogen (Mycoplasma gallisepticum), we find rapid evolution of tolerance (<25 years). In particular, populations with a longer history of MG endemism have less pathology but similar pathogen loads compared with populations with a shorter history of MG endemism. Further, gene expression data reveal that more-targeted immune responses early in infection are associated with tolerance. These results suggest an important role for tolerance in host adaptation to emerging infectious diseases, a phenomenon with broad implications for pathogen spread and evolution.
Assuntos
Doenças das Aves , Doenças Transmissíveis Emergentes , Tentilhões , Mycoplasma gallisepticum , Animais , Tentilhões/microbiologia , Tolerância Imunológica , Mycoplasma gallisepticum/genéticaRESUMO
Disease transmission prediction across wildlife is crucial for risk assessment of emerging infectious diseases. Susceptibility of host species to pathogens is influenced by the geographic, environmental, and phylogenetic context of the specific system under study. We used machine learning to analyze how such variables influence pathogen incidence for multihost pathogen assemblages, including one of direct transmission (coronaviruses and bats) and two vector-borne systems (West Nile Virus [WNV] and birds, and malaria and birds). Here we show that this methodology is able to provide reliable global spatial susceptibility predictions for the studied host-pathogen systems, even when using a small amount of incidence information (i.e., [Formula: see text] of information in a database). We found that avian malaria was mostly affected by environmental factors and by an interaction between phylogeny and geography, and WNV susceptibility was mostly influenced by phylogeny and by the interaction between geographic and environmental distances, whereas coronavirus susceptibility was mostly affected by geography. This approach will help to direct surveillance and field efforts providing cost-effective decisions on where to invest limited resources.
Assuntos
Animais Selvagens , Doenças Transmissíveis Emergentes , Suscetibilidade a Doenças , Animais , Animais Selvagens/parasitologia , Animais Selvagens/virologia , Doenças das Aves/epidemiologia , Doenças das Aves/transmissão , Quirópteros/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/veterinária , Coronavirus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Bases de Dados Factuais , Meio Ambiente , Monitoramento Epidemiológico , Geografia , Interações Hospedeiro-Patógeno , Incidência , Aprendizado de Máquina , Malária/epidemiologia , Malária/transmissão , Malária/veterinária , Filogenia , Medição de Risco , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/veterinária , Vírus do Nilo OcidentalRESUMO
BACKGROUND: Pigeon circovirus infections in pigeons (Columba livia domestica) have been reported worldwide. Pigeons should be PiCV-free when utilized as qualified experimental animals. However, pigeons can be freely purchased as experimental animals without any clear guidelines to follow. Herein, we investigated the status quo of PiCV infections on a pigeon farm in Beijing, China, which provides pigeons for experimental use. RESULTS: PiCV infection was verified in at least three types of tissues in all forty pigeons tested. A total of 29 full-length genomes were obtained and deposited in GenBank. The whole genome sequence comparison among the 29 identified PiCV strains revealed nucleotide homologies of 85.8-100%, and these sequences exhibited nucleotide homologies of 82.7-98.9% as compared with those of the reference sequences. The cap gene displayed genetic diversity, with a wide range of amino acid homologies ranging from 64.5% to 100%. Phylogenetic analysis of the 29 full-genome sequences revealed that the PiCV strains in this study could be further divided into four clades: A (17.2%), B (10.4%), C (37.9%) and D (34.5%). Thirteen recombination events were also detected in 18 out of the 29 PiCV genomes obtained in this study. Phylogenetic research using the rep and cap genes verified the recombination events, which occurred between clades A/F, A/B, C/D, and B/D among the 18 PiCV strains studied. CONCLUSIONS: In conclusion, PiCV infection, which is highly genetically varied, is extremely widespread on pigeon farms in Beijing. These findings indicate that if pigeons are to be used as experimental animals, it is necessary to evaluate the impact of PiCV infection on the results.
Assuntos
Doenças das Aves , Infecções por Circoviridae , Circovirus , Animais , Columbidae , Filogenia , Fazendas , Circovirus/genética , Infecções por Circoviridae/veterinária , NucleotídeosRESUMO
Males and females often differ in ecology, behaviour and lifestyle, and these differences are expected to lead to sex differences in parasite susceptibility. However, neither the sex differences in parasite prevalence, nor their ecological and evolutionary drivers have been investigated across a broad range of taxa using phylogenetically corrected analyses. Using the most extensive dataset yet that includes 755 prevalence estimates from 151 wild bird species in a meta-analytic framework, here we compare sex differences in blood and gastrointestinal parasites. We show that despite sex differences in parasite infection being frequently reported in the literature, only Haemoproteus infections were more prevalent in females than in males. Notably, only seasonality was strongly associated with the sex-specific parasite prevalence of both Leucocytozoon and Haemoproteus, where birds showed greater female bias in prevalence during breeding periods compared to the non-breeding period. No other ecological or sexual selection variables were associated with sex-specific prevalence of parasite prevalence. We suggest that much of the variation in sex-biased prevalence could be idiosyncratic, and driven by local ecology and behavioural differences of the parasite and the host. Therefore, breeding ecology and sexual selection may only have a modest influence on sex-different parasite prevalence across wild birds.
Assuntos
Evolução Biológica , Doenças das Aves , Aves , Animais , Aves/parasitologia , Feminino , Doenças das Aves/parasitologia , Doenças das Aves/epidemiologia , Masculino , Prevalência , Haemosporida/fisiologia , Fatores Sexuais , Caracteres Sexuais , Animais Selvagens/parasitologia , Estações do Ano , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologiaRESUMO
Viruses can utilize host splicing machinery to enable the expression of multiple genes from a limited-sized genome. Orthobornaviruses use alternative splicing to regulate the expression level of viral proteins and achieve efficient viral replication in the nucleus. Although more than 20 orthobornaviruses have been identified belonging to eight different viral species, virus-specific splicing has not been demonstrated. Here, we demonstrate that the glycoprotein (G) transcript of parrot bornavirus 4 (PaBV-4; species Orthobornavirus alphapsittaciforme), a highly virulent virus in psittacines, undergoes mRNA splicing and expresses a soluble isoform termed sGP. Interestingly, the splicing donor for sGP is not conserved in other orthobornaviruses, including those belonging to the same orthobornavirus species, suggesting that this splicing has evolved as a PaBV-4-specific event. We have also shown that exogenous expression of sGP does not affect PaBV-4 replication or de novo virion infectivity. In this study, to investigate the role of sGP in viral replication, we established a reverse genetics system for PaBV-4 by using avian cell lines and generated a recombinant virus lacking the spliced mRNA for sGP. Using the recombinant viruses, we show that the replication of the sGP-deficient virus is significantly slower than that of the wild-type virus and that the exogenous expression of sGP cannot restore its propagation efficiency. These results suggest that autologous or controlled expression of sGP by splicing may be important for PaBV-4 propagation. The reverse genetics system for avian bornaviruses developed here will be a powerful tool for understanding the replication strategies and pathogenesis of avian orthobornaviruses. IMPORTANCE Parrot bornavirus 4 (PaBV-4) is the dominant cause of proventricular dilatation disease, a severe gastrointestinal and central nervous system disease among avian bornaviruses. In this study, we discovered that PaBV-4 expresses a soluble isoform of glycoprotein (G), called sGP, through alternative splicing of the G mRNA, which is unique to this virus. To understand the role of sGP in viral replication, we generated recombinant PaBV-4 lacking the newly identified splicing donor site for sGP using a reverse genetics system and found that its propagation was significantly slower than that of the wild-type virus, suggesting that sGP plays an essential role in PaBV-4 infection. Our results provide important insights not only into the replication strategy but also into the pathogenesis of PaBV-4, which is the most prevalent bornavirus in captive psittacines worldwide.
Assuntos
Doenças das Aves , Bornaviridae , Infecções por Mononegavirales , Papagaios , Animais , Bornaviridae/genética , Glicoproteínas/genética , Infecções por Mononegavirales/patologia , Infecções por Mononegavirales/virologia , Papagaios/genética , Isoformas de Proteínas/genética , Genética Reversa , RNA MensageiroRESUMO
Sexual differences in pathogen prevalence in wildlife often arise from varying susceptibility influenced by factors such as sex hormones and exposure to pathogens. In the case of vector-borne pathogens, host selection by insect vectors determines the exposure of hosts to infections, largely affecting the transmission of these infectious diseases. We identify the blood-feeding patterns of insect vectors in Blue Tit (Cyanistes caeruleus) nestlings in a 3-year study. Blood from both nestlings and insect vectors (Culicoides spp. and Simuliidae) captured inside nest-boxes were used to molecularly determine the sex of the host. We then compared the sex-ratios of the nestlings that had been bitten and those of the complete brood in each nest. We found that males were bitten more frequently than females in 2021, when males weighed less in comparison to other years. Additionally, we molecularly identified bitten nestlings individually by genotyping the DNA of blood obtained from both, the vector's abdomen and nestlings of each brood in 2022. Nestlings more frequently bitten by vectors were males, weighed less and were closest to the nest entrance. To our knowledge this is the first study identifying the nestling selection by insect vectors in bird nests under natural conditions. These results contribute to understanding the mechanisms of host selection by insect vectors, shedding light on pathogen transmission and offering insights into the observed sex-biased infections in wildlife populations.
Assuntos
Insetos Vetores , Comportamento de Nidação , Animais , Masculino , Feminino , Insetos Vetores/genética , Ceratopogonidae/genética , Passeriformes/genética , Doenças das Aves/transmissão , Doenças das Aves/parasitologia , Razão de Masculinidade , GenótipoRESUMO
Chewing lice are hosts to endosymbiotic bacteria as well as themselves being permanent parasites. This offers a unique opportunity to examine the cophylogenetic relationships between three ecologically interconnected organismal groups: birds, chewing lice, and bacteria. Here, we examine the cophylogenetic relationships between lice in the genus Guimaraesiella Eichler, 1949, their endosymbiotic Sodalis-allied bacteria, and a range of bird species from across South China. Both event and distance-based cophylogenetic analyses were explored to compare phylogenies of the three organismal groups. Pair-wise comparisons between lice-endosymbionts and bird-endosymbionts indicated that their evolutionary histories are not independent. However, comparisons between lice and birds, showed mixed results; the distance-based method of ParaFit indicated that their evolutionary histories are not independent, while the event-based method of Jane indicated that their phylogenies were no more congruent than expected by chance. Notably, louse host-switching does not seem to have affected bacterial strains, as conspecific lice sampled from distantly related hosts share bacteria belonging to the same clade.
Assuntos
Doenças das Aves , Gammaproteobacteria , Iscnóceros , Passeriformes , Ftirápteros , Animais , Filogenia , Evolução Biológica , Ftirápteros/genética , Doenças das Aves/parasitologiaRESUMO
Birds are known to act as the parasite reservoir and can transmit them to other organisms through food chains. This study aims to report the molecular prevalence and phylogenetic evaluation of various blood borne pathogens (Toxoplasma gondii, Isospora spp., Plasmodium spp., Haemoproteus spp., Leucocytozoan spp. and Neospora caninum) in blood samples of common Myna (Acridotheres tristis: N = 80) collected from four region (Jhang, Khanewal, Multan and Muzaffargarh) in Punjab Pakistan. Effect of pathogens on the complete blood count of the host was also determined. Results revealed by 2/80 Myna (2.5 %) amplified ITS-1 gene of Toxoplasma (T.) gondii (confirmed by DNA sequencing) while 2/80 (2.5 %) birds amplified 18S rDNA gene and Isospora spp. Phylogenetic analysis of both pathogens showed that Pakistani isolates were clustered together and were closely related to isolates that were reported from worldwide countries. Risk factor analysis revealed that prevalence of both pathogens was not restricted to a particular sampling site or a particular bird sex (P > 0.05). T. gondii infected birds had elevated red cell distribution width while Isospora sp. infected birds had elevated % monocytes and platelet distribution width while decreased mean cell hemoglobin, mean corpuscular hemoglobin concentration and platelets hematocrit than their respective uninfected birds. In conclusion, we are reporting the presence of T. gondii and Isospora sp. among Pakistani common Myna that had disturbed the complete blood count parameters that may have affected their normal physiology.
Assuntos
Filogenia , Animais , Paquistão/epidemiologia , Toxoplasma/genética , Toxoplasma/isolamento & purificação , Toxoplasma/classificação , Doenças das Aves/parasitologia , Doenças das Aves/epidemiologia , Prevalência , Aves/parasitologia , RNA Ribossômico 18S/genética , Masculino , Feminino , DNA de Protozoário/genética , Análise de Sequência de DNARESUMO
Wild waterfowl serve as a reservoir of some astroviruses. Fecal samples from wild waterfowl collected at Hong Kong's Marshes were tested using pan-astrovirus reverse transcription-PCR. Positive samples underwent subsequent host identification using DNA barcoding. Based on deduced partial sequences, noteworthy samples from three astrovirus groups (mammalian, avian and unclassified astroviruses) were further analyzed by next-generation sequencing. One sample of Avastrovirus 4 clade, MP22-196, had a nearly complete genome identified. The results of ORF2 phylogenetic analysis and genetic distance analysis indicate that Avastrovirus 4 is classified as a distinct subclade within Avastrovirus. MP22-196 has typical astrovirus genome characteristics. The unique characteristics and potential differences of this genome, compared to other avian astrovirus sequences, involve the identification of a modified sgRNA sequence situated near the ORF2 start codon, which precedes the ORF1b stop codon. Additionally, the 3' UTR of MP22-196 is shorter than other avian astroviruses. This study expands our understanding of the Avastrovirus 4 clade.
Assuntos
Infecções por Astroviridae , Aves , Fezes , Variação Genética , Genoma Viral , Filogenia , Animais , Hong Kong , Aves/virologia , Fezes/virologia , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Animais Selvagens/virologia , Doenças das Aves/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Avastrovirus/genética , Avastrovirus/classificação , Avastrovirus/isolamento & purificação , RNA Viral/genética , Fases de Leitura Aberta , Astroviridae/genética , Astroviridae/isolamento & purificação , Astroviridae/classificaçãoRESUMO
BACKGROUND: Avian malaria is caused by diverse parasite species of the genus Plasmodium, and it affects various bird species. The occurrence of this disease in some wild bird species is sparsely documented due to the scarce availability of samples. Hence the pathogenicity in some hosts is not completely known. In addition, feral birds may act as reservoirs bridging the transmission cycle from wild migratory birds to domestic and zoo-kept bird species. CASE PRESENTATION: An owner of pigeons adopted a feral pigeon (Columba livia forma domestica) and housed it together with his other pet-pigeons. The bird died unexpectedly a few weeks after a surgical procedure and necropsy revealed a severely anaemic carcass, with pale organs and hydropericardium. Histopathologic analysis revealed inflammatory infiltrates in the lung and liver, and monocytes and Kupffer cells contained haemozoin pigment indicative of phagocytosis of Plasmodium-infected erythrocytes. A high erythrocytic infection rate of 18% was evident in tissues and blood vessels in various organs. Furthermore, the thyroid had masses classified as thyroid carcinomas. Immunohistochemistry with anti- Plasmodium falciparum HSP70 antibody revealed positive signals in erythrocytes and intravascular leucocytes. Further microscopy analysis using a Hemacolor-stained impression smear revealed a high parasitaemia with an asynchronous infection showing all erythrocytic stages. Molecular diagnosis by PCR identified Plasmodium relictum, lineage GRW11 as the aetiological agent. The bird presented died most likely due to an acute infection as evidenced by the high blood parasitaemia, leading to major erythrocyte destruction. Further analyses of feral pigeons (n = 22) did not reveal any additional cases of Plasmodium infections. CONCLUSION: This study reports the first mortality associated with P. relictum lineage GRW11. The study supports previous studies, suggesting that Plasmodium infections are not frequent in pigeons. Host conditions like immunosuppression due to the tumour may have influenced the infection outcome in this fatal case. Use of anti-P. falciparum HSP70 antibody for detection of P. relictum antigens for immune assays in blood and tissue samples will be a useful tool for future studies.
Assuntos
Columbidae , Malária Aviária , Plasmodium , Animais , Columbidae/parasitologia , Malária Aviária/parasitologia , Malária Aviária/diagnóstico , Plasmodium/isolamento & purificação , Plasmodium/classificação , Masculino , Evolução Fatal , Animais de Estimação/parasitologia , Doenças das Aves/parasitologia , Doenças das Aves/patologiaRESUMO
Research Highlight: del Mar Labrador, M., Serrano, D., Doña, J., Aguilera, E., Arroyo, J. L., Atiénzar, F., Barba, E., Bermejo, A., Blanco, G., Borràs, A., Calleja, J. A., Cantó, J. L., Cortés, V., de la Puente, J., de Palacio, D., Fernández-González, S., Figuerola, J., Frías, Ó., Fuertes-Marcos, B. Garamszegi, L. Z., Gordo, Ó., Gurpegui, M., Kovács, I., Martínez, J. L., Meléndez, L., Mestre, A., Møller, A. P., Monrós, J. S., Moreno-Opo, R., Navarro, C., Pap, P. L., Pérez-Tris, J., Piculo, R., Ponce, C., Proctor, H., Rodríguez, R., Sallent, Á., Senar, J., Tella, J. L., Vágási, C. I., Vögeli, M., & Jovani, R. (2023). Host space, not energy or symbiont size, constrains feather mite abundance across passerine bird species. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.14032. Symbionts represent crucial links between species in ecosystems. Consequently, understanding their patterns of abundance is a major goal in the study of symbioses. However, multiple biotic and abiotic factors may regulate symbionts, and disentangling the mechanisms that drive variation in their abundance across host species is challenging. One promising strategy to approach this challenge is to incorporate biologically relevant data into theoretical models. In a recent study, Labrador et al. (2023) used this strategy to investigate the poorly understood symbiosis between feather mites and their avian hosts. They integrate a remarkable amount of empirical data with models based on the metabolic theory of ecology to determine what factors limit feather mite abundance across European passerines. Their quantitative analyses indicate that the number of feather barbs limits mite abundance across host species, suggesting that mite populations are spatially, but not energetically, constrained. These findings not only reveal mechanisms that may drive the variation in feather mite abundances across hosts, but also advance our understanding of the ecology of interspecific interactions more generally.
Assuntos
Doenças das Aves , Ácaros , Animais , Ácaros/fisiologia , Ecossistema , Ecologia , SimbioseRESUMO
Host sex is an important source of heterogeneity in the severity of epidemics. Pinpointing the mechanisms causing this heterogeneity can be difficult because differences in behaviour among sexes (e.g. greater territorial aggression in males) can bias exposure risk, obfuscating the role of immune function, which can lead to differences in pathology, in driving differential susceptibility between sexes. Thus, sex-biased transmission driven by differences in immune function independent of behaviour is poorly understood, especially in non-mammalian systems. Here we examine the previously unexplored potential for male-biased pathology to affect transmission using an avian host-pathogen system. We employ a sex-dependent multistate transmission model parameterized with isolated, individual-based experimental exposures of domestic canaries and experimental transmission data of house finches. The experiment revealed that male birds have shorter incubation periods, longer recovery periods, higher pathogen burdens and greater disease pathology than females. Our model revealed that male-biased pathology led to epidemic size rapidly increasing with the proportion of male birds, with a nearly 10-fold increase in total epidemic size from an all-female to an all-male simulation. Our results demonstrate that female-biased resistance, independent of male behaviour, can drive sex-dependent transmission in wildlife, indicating that sex-based differences in immune function, not just differences in exposure risk, can shape epidemic dynamics.
Assuntos
Doenças das Aves , Tentilhões , Infecções por Mycoplasma , Mycoplasma gallisepticum , Animais , Masculino , Feminino , Doenças das Aves/epidemiologia , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/veterinária , Animais SelvagensRESUMO
Comprehending symbiont abundance among host species is a major ecological endeavour, and the metabolic theory of ecology has been proposed to understand what constrains symbiont populations. We parameterized metabolic theory equations to investigate how bird species' body size and the body size of their feather mites relate to mite abundance according to four potential energy (uropygial gland size) and space constraints (wing area, total length of barbs and number of feather barbs). Predictions were compared with the empirical scaling of feather mite abundance across 106 passerine bird species (26,604 individual birds sampled), using phylogenetic modelling and quantile regression. Feather mite abundance was strongly constrained by host space (number of feather barbs) but not by energy. Moreover, feather mite species' body size was unrelated to the body size of their host species. We discuss the implications of our results for our understanding of the bird-feather mite system and for symbiont abundance in general.
Assuntos
Doenças das Aves , Infestações por Ácaros , Ácaros , Passeriformes , Animais , Filogenia , Tamanho Corporal , Infestações por Ácaros/veterináriaRESUMO
Gyroviruses are small single-stranded DNA (ssDNA) viruses that are largely associated with birds. Chicken anemia virus is the most extensively studied gyrovirus due to its disease impact on the poultry industry. However, we know much less about gyroviruses infecting other avian species. To investigate gyroviruses infecting waterfowl, we determined six complete genome sequences that fall into three gyrovirus groups, referred to as waterfowl gyrovirus 1 (n = 3), 2 (n = 2), and 3 (n = 1), in organs from hunter-harvested waterfowl from Arizona (USA). The waterfowl gyrovirus 1 variants were identified in multiple organs of a single American wigeon and represent a tentative new species. The waterfowl gyrovirus 2 variants were identified in the livers of two American wigeons and share >70% VP1 nucleotide sequence identity with gyrovirus 9, previously identified in the spleen of a Brazilian Pekin duck (MT318123) and a human fecal sample (KP742975). Waterfowl gyrovirus 3 was identified in a northern pintail spleen sample, and it shares >73% VP1 nucleotide sequence identity with two gyrovirus 13 sequences previously identified in Brazilian Pekin duck spleens (MT318125 and MT318127). These gyroviruses are the first to be identified in waterfowl in North America, as well as in American wigeons and northern pintails.
Assuntos
Doenças das Aves , Infecções por Circoviridae , Genoma Viral , Gyrovirus , Filogenia , Animais , Arizona , Genoma Viral/genética , Gyrovirus/genética , Gyrovirus/classificação , Gyrovirus/isolamento & purificação , Doenças das Aves/virologia , Infecções por Circoviridae/virologia , Infecções por Circoviridae/veterinária , Anseriformes/virologia , Patos/virologia , DNA Viral/genéticaRESUMO
Psittacine beak and feather disease virus (PBFDV) and budgerigar fledgling disease virus (BFDV) are significant avian pathogens that threaten both captive and wild birds, particularly parrots, which are common hosts. This study involved sampling and testing of 516 captive birds from households, pet shops, and an animal clinic in Hong Kong for PBFDV and BFDV. The results showed that PBFDV and BFDV were present in 7.17% and 0.58% of the samples, respectively. These rates were lower than those reported in most parts of Asia. Notably, the infection rates of PBFDV in pet shops were significantly higher compared to other sources, while no BFDV-positive samples were found in pet shops. Most of the positive samples came from parrots, but PBFDV was also detected in two non-parrot species, including Swinhoe's white-eyes (Zosterops simplex), which had not been reported previously. The ability of PBFDV to infect both psittacine and passerine birds is concerning, especially in densely populated urban areas such as Hong Kong, where captive flocks come into close contact with wildlife. Phylogenetic analysis of the Cap and Rep genes of PBFDV revealed that the strains found in Hong Kong were closely related to those in Europe and other parts of Asia, including mainland China, Thailand, Taiwan, and Saudi Arabia. These findings indicate the presence of both viruses among captive birds in Hong Kong. We recommend implementing regular surveillance for both viruses and adopting measures to prevent contact between captive and wild birds, thereby reducing the transmission of introduced diseases to native species.
Assuntos
Doenças das Aves , Infecções por Circoviridae , Circovirus , Melopsittacus , Papagaios , Infecções por Polyomavirus , Polyomavirus , Animais , Circovirus/genética , Hong Kong/epidemiologia , Prevalência , Filogenia , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/veterinária , Polyomavirus/genética , Animais Selvagens , Genótipo , Doenças das Aves/epidemiologia , Fatores de RiscoRESUMO
In order to study the integration of reticuloendotheliosis virus (REV) in pigeonpox virus (PPV), we collected suspected pigeonpox disease material, amplified the 4b core protein gene of PPV, the gp90 gene of REV, and the integrated sequence fragments from the end of the ORF201 segment of PPV to the beginning of the LTR of REV, and sequenced these genes. The results showed that a 4b core protein fragment of 332 bp was amplified and identified as pigeonpox virus, which was named SX/TY/LTR 01/2023. Sequence analysis showed that the pigeonpox virus isolate belonged to genotype A2, which was the closest to the domestic CVL strain, with a identity of 99.4%. A band of 1191 bp was amplified from the gp90 gene of REV, named SX/TY/PPV-REV01/2023, and sequence analysis indicated that REV belonged to genotype III. The sequence analysis showed that REV belonged to genotype III, and belonged to the same large branch as the domestic isolates JSRD0701 and LNR0801, with 99.3% identity. The integrated sequence fragment was amplified to a band of 637 bp, which determined that the REV sequence was integrated in the PPV rather than a mixed infection of the two viruses. This indicates that REV was integrated in this isolation of PPV, suggesting that pigeon farms need to prevent reticuloendotheliosis at the same time when preventing pigeonpox.
Assuntos
Avipoxvirus , Filogenia , Vírus da Reticuloendoteliose , Animais , Vírus da Reticuloendoteliose/genética , Vírus da Reticuloendoteliose/isolamento & purificação , Avipoxvirus/genética , Avipoxvirus/isolamento & purificação , Avipoxvirus/classificação , Columbidae/virologia , Infecções por Poxviridae/virologia , Infecções por Poxviridae/veterinária , Genótipo , Análise de Sequência de DNA , Doenças das Aves/virologiaRESUMO
BACKGROUND: The Northern bobwhite (Colinus virginianus) is an economically important, and popular game bird in North America. Northern bobwhites have experiencing declines of > 3.5% annually in recent decades due to several factors. The eyeworm Oxyspirura petrowi is a nematode parasite frequently found in the eyes of bobwhites. Although reported frequently in wild bobwhites, there is no research to understand the host-parasite mechanism. Hence, it is important to investigate mechanisms of eyeworm invasion and immune modulation in bobwhite. Cytokine gene expression using RT-PCR is widely used to identify the innate immune response of a host to an infection. METHODOLOGY: In this study, we evaluated ten reference genes (HMBS, RPL19, RPL32, RPS7, RPS8, TATA, SDHA, YWHAZ, GAPDH, and ACTB) for their stability across three tissues (liver, spleen, and caecal tonsils) of control and O. petrowi infected Northern bobwhites. Primer efficiency and reference genes stability were assessed using GeNorm, NormFinder, and BestKeeper. RESULTS: Expression of these reference genes with respect to O. petrowi infection in bobwhites showed RPL32 and HMBS were the most stable genes in the liver, HMBS and SDHA were the most stable genes in the spleen, and HMBS and YWHAZ were equally stable reference genes in the caecal tonsils. CONCLUSION: Based on the geometric mean of all three analyses, our results indicate that the combination of RPL32 and HMBS for the liver, HMBS and SDHA for the spleen, and YWHAZ and HMBS for caecal tonsils might be used as reference genes for normalization in gene expression investigations on Northern bobwhites.
Assuntos
Doenças das Aves , Colinus , Thelazioidea , Animais , Colinus/genética , Doenças das Aves/parasitologia , Thelazioidea/genética , Olho , CitocinasRESUMO
Stable isotope analysis provides valuable insights into the ecology of long-distance migratory birds during periods spent away from a specific study site. In a previous study, Swedish great reed warblers (Acrocephalus arundinaceus) infected with haemosporidian parasites differed in feather isotope ratios compared to non-infected birds, suggesting that infected and non-infected birds spent the non-breeding season in different locations or habitats. Here, we use a novel dataset comprising geolocator data, isotopes, and haemosporidian infection status of 92 individuals from four Eurasian populations to investigate whether parasite transmission varies with geography or habitats. We found that the probability of harbouring Plasmodium and Leucocytozoon parasites was higher in birds moulting in the eastern region of the non-breeding grounds. However, no geographic pattern occurred for Haemoproteus infections or overall infection status. In contrast to the previous study, we did not find any relationship between feather isotope ratios and overall haemosporidian infection for the entire current dataset. Plasmodium-infected birds had lower feather δ15N values indicating that they occupied more mesic habitats. Leucocytozoon-infected birds had higher feather δ34S values suggesting more coastal sites or wetlands with anoxic sulphate reduction. As the composition and prevalence of haemosporidian parasites differed between the old and the current dataset, we suggest that the differences might be a consequence of temporal dynamics of haemosporidian parasites. Our results emphasize the importance of replicating studies conducted on a single population over a restricted time period, as the patterns can become more complex for data from wider geographical areas and different time periods.