Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Nat Immunol ; 19(10): 1071-1082, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201994

RESUMO

TLR3 is a sensor of double-stranded RNA that is indispensable for defense against infection with herpes simplex virus type 1 (HSV-1) in the brain. We found here that TLR3 was required for innate immune responses to HSV-1 in neurons and astrocytes. During infection with HSV-1, TLR3 recruited the metabolic checkpoint kinase complex mTORC2, which led to the induction of chemokines and trafficking of TLR3 to the cell periphery. Such trafficking enabled the activation of molecules (including mTORC1) required for the induction of type I interferons. Intracranial infection of mice with HSV-1 was exacerbated by impairment of TLR3 responses with an inhibitor of mTOR and was significantly 'rescued' by potentiation of TLR3 responses with an agonistic antibody to TLR3. These results suggest that the TLR3-mTORC2 axis might be a therapeutic target through which to combat herpes simplex encephalitis.


Assuntos
Encefalite por Herpes Simples/imunologia , Alvo Mecanístico do Complexo 2 de Rapamicina/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Herpesvirus Humano 1 , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células NIH 3T3
2.
Am J Hum Genet ; 108(6): 1012-1025, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34015270

RESUMO

The human genetic dissection of clinical phenotypes is complicated by genetic heterogeneity. Gene burden approaches that detect genetic signals in case-control studies are underpowered in genetically heterogeneous cohorts. We therefore developed a genome-wide computational method, network-based heterogeneity clustering (NHC), to detect physiological homogeneity in the midst of genetic heterogeneity. Simulation studies showed our method to be capable of systematically converging genes in biological proximity on the background biological interaction network, and capturing gene clusters harboring presumably deleterious variants, in an efficient and unbiased manner. We applied NHC to whole-exome sequencing data from a cohort of 122 individuals with herpes simplex encephalitis (HSE), including 13 individuals with previously published monogenic inborn errors of TLR3-dependent IFN-α/ß immunity. The top gene cluster identified by our approach successfully detected and prioritized all causal variants of five TLR3 pathway genes in the 13 previously reported individuals. This approach also suggested candidate variants of three reported genes and four candidate genes from the same pathway in another ten previously unstudied individuals. TLR3 responsiveness was impaired in dermal fibroblasts from four of the five individuals tested, suggesting that the variants detected were causal for HSE. NHC is, therefore, an effective and unbiased approach for unraveling genetic heterogeneity by detecting physiological homogeneity.


Assuntos
Biologia Computacional/métodos , Encefalite por Herpes Simples/genética , Encefalite por Herpes Simples/patologia , Fibroblastos/imunologia , Redes Reguladoras de Genes , Heterogeneidade Genética , Predisposição Genética para Doença , Estudos de Casos e Controles , Encefalite por Herpes Simples/imunologia , Fibroblastos/metabolismo , Humanos , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 3 Toll-Like/metabolismo , Sequenciamento do Exoma
3.
J Virol ; 96(6): e0131121, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35045263

RESUMO

Spread of herpes simplex virus 1 (HSV1) from the periphery to the central nervous system (CNS) can lead to extensive infection and pathological inflammation in the brain, causing herpes simplex encephalitis (HSE). It has been shown that microglia, the CNS-resident macrophages, are involved in early sensing of HSV1 and induction of antiviral responses. In addition, infiltration of peripheral immune cells may contribute to the control of viral infection. In this study, we tested the effect of microglia depletion in a mouse model of HSE. Increased viral titers and increased disease severity were observed in microglia-depleted mice. The effect of microglia depletion was more pronounced in wild-type than in cGas-/- mice, revealing that this immune sensor contributes to the antiviral activity of microglia. Importantly, microglia depletion led to reduced production of type I interferon (IFN), proinflammatory cytokines, and chemokines at early time points after viral entry into the CNS. In line with this, in vitro experiments on murine primary CNS cells demonstrated microglial presence to be essential for IFN RNA induction, and control of HSV1 replication. However, the effect of microglia depletion on the expression of IFNs, and inflammatory cytokines was restricted to the early time point of HSV1 entry into the CNS. There was no major alteration of infiltration of CD45-positive cells in microglia-depleted mice. Collectively, our data demonstrate a key role for microglia in controlling HSV1 replication early after viral entry into the CNS and highlight the importance of a prompt antiviral innate response to reduce the risk of HSE development. IMPORTANCE One of the most devastating and acute neurological conditions is encephalitis, i.e., inflammation of brain tissue. Herpes simplex virus 1 (HSV1) is a highly prevalent pathogen in humans, and the most frequent cause of viral sporadic encephalitis called herpes simplex encephalitis (HSE). HSV1 can infect peripheral neurons and reach the central nervous system (CNS) of humans, where it can be detected by brain resident cells and infiltrating immune cells, leading to protective and damaging immune responses. In this study, we investigated the effects of microglia depletion, the main brain-resident immune cell type. For this purpose, we used a mouse model of HSE. We found that viral levels increased, and disease symptoms worsened in microglia-depleted mice. In addition, mice lacking a major sensor of viral DNA, cGAS, manifested a more pronounced disease than wild-type mice, highlighting the importance of this immune sensor in the activity of microglia. Microglia depletion led to reduced production of many known antiviral factors, most notably type I interferon (IFN). The importance of microglia in the early control of HSV1 spread and the generation of antiviral responses is further demonstrated by experiments on murine mixed glial cell cultures. Interestingly, mice with microglia depletion exhibited an unaltered activation of antiviral responses and recruitment of immune cells from the periphery at later time points of infection, but this did not prevent the development of the disease. Overall, the data highlight the importance of rapid activation of the host defense, with microglia playing a critical role in controlling HSV1 infection, which eventually prevents damage to neurons and brain tissue.


Assuntos
Encefalite por Herpes Simples , Herpesvirus Humano 1 , Imunidade , Interferon Tipo I , Microglia , Internalização do Vírus , Animais , Encéfalo/imunologia , Encéfalo/virologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite por Herpes Simples/imunologia , Encefalite por Herpes Simples/fisiopatologia , Herpesvirus Humano 1/metabolismo , Imunidade/imunologia , Inflamação/patologia , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Microglia/virologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo
4.
PLoS Pathog ; 17(2): e1009285, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524073

RESUMO

Herpes simplex virus encephalitis (HSE) is the most common cause of sporadic viral encephalitis, and despite targeted antiviral therapy, outcomes remain poor. Although the innate immune system is critical for restricting herpes simplex virus type I (HSV-1) in the brain, there is evidence that prolonged neuroinflammation contributes to HSE pathogenesis. In this study, we investigated the contribution of inflammasomes to disease pathogenesis in a murine model of HSE. Inflammasomes are signaling platforms that activate the pro-inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18. We found that mice deficient in the inflammasome adaptor protein, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), had significantly improved survival and lower levels of IL-1ß and IL-18 in the brain. Importantly, this difference in survival was independent of viral replication in the central nervous system (CNS). We found that microglia, the resident macrophages of the CNS, are the primary mediators of the ASC-dependent inflammasome response during infection. Using in vitro glial infections and a murine HSE model, we demonstrate that inflammasome activation contributes to the expression of chemokine (C-C motif) ligand 6 (CCL6), a leukocyte chemoattractant. The lower concentration of CCL6 in the brains of ASC-/- mice correlated with lower numbers of infiltrating macrophages during infection. Together, these data suggest that inflammasomes contribute to pathogenic inflammation in HSE and provide a mechanistic link between glial inflammasome activation and leukocyte infiltration. The contribution of inflammasomes to survival was independent of viral replication in our study, suggesting a promising new target in combating harmful inflammation in HSE.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/imunologia , Encefalite por Herpes Simples/imunologia , Encefalite por Herpes Simples/mortalidade , Inflamassomos/imunologia , Animais , Encéfalo/imunologia , Células Cultivadas , Quimiocinas CC/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/imunologia , Interleucina-1beta/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Células Vero
5.
Clin Microbiol Rev ; 33(2)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32051176

RESUMO

Herpes simplex virus 1 (HSV-1) can be responsible for life-threatening HSV encephalitis (HSE). The mortality rate of patients with HSE who do not receive antiviral treatment is 70%, with most survivors suffering from permanent neurological sequelae. The use of intravenous acyclovir together with improved diagnostic technologies such as PCR and magnetic resonance imaging has resulted in a reduction in the mortality rate to close to 20%. However, 70% of surviving patients still do not recover complete neurological functions. Thus, there is an urgent need to develop more effective treatments for a better clinical outcome. It is well recognized that cerebral damage resulting from HSE is caused by viral replication together with an overzealous inflammatory response. Both of these processes constitute potential targets for the development of innovative therapies against HSE. In this review, we discuss recent progress in therapy that may be used to ameliorate the outcome of patients with HSE, with a particular emphasis on immunomodulatory agents. Ideally, the administration of adjunctive immunomodulatory drugs should be initiated during the rise of the inflammatory response, and its duration should be limited in time to reduce undesired effects. This critical time frame should be optimized by the identification of reliable biomarkers of inflammation.


Assuntos
Encefalite por Herpes Simples/diagnóstico , Encefalite por Herpes Simples/imunologia , Encefalite por Herpes Simples/terapia , Imunomodulação , Aciclovir/uso terapêutico , Corticosteroides/uso terapêutico , Animais , Antivirais/uso terapêutico , Tratamento Farmacológico , Predisposição Genética para Doença , Humanos , Imunidade , Fatores de Risco , Simplexvirus/efeitos dos fármacos , Resultado do Tratamento
6.
PLoS Pathog ; 15(12): e1008168, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31869396

RESUMO

We report here two cases of Herpes simplex virus encephalitis (HSE) in adult patients with very rare, previously uncharacterized, non synonymous heterozygous G634R and R203W substitution in mannan-binding lectin serine protease 2 (MASP2), a gene encoding a key protease of the lectin pathway of the complement system. None of the 2 patients had variants in genes involved in the TLR3-interferon signaling pathway. Both MASP2 variants induced functional defects in vitro, including a reduced (R203W) or abolished (G634R) protein secretion, a lost capability to cleave MASP-2 precursor into its active form (G634R) and an in vivo reduced antiviral activity (G634R). In a murine model of HSE, animals deficient in mannose binding lectins (MBL, the main pattern recognition molecule associated with MASP-2) had a decreased survival rate and an increased brain burden of HSV-1 compared to WT C57BL/6J mice. Altogether, these data suggest that MASP-2 deficiency can increase susceptibility to adult HSE.


Assuntos
Encefalite por Herpes Simples/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/deficiência , Adulto , Animais , Encefalite por Herpes Simples/genética , Encefalite por Herpes Simples/imunologia , Humanos , Imunidade Inata/genética , Lectinas/genética , Lectinas/metabolismo , Masculino , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
J Immunol ; 202(5): 1479-1493, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30683700

RESUMO

Herpes simplex encephalitis (HSE), caused by HSV type 1 (HSV-1) infection, is an acute neuroinflammatory condition of the CNS and remains the most common type of sporadic viral encephalitis worldwide. Studies in humans have shown that susceptibility to HSE depends in part on the genetic make-up of the host, with deleterious mutations in the TLR3/type I IFN axis underlying some cases of childhood HSE. Using an in vivo chemical mutagenesis screen for HSV-1 susceptibility in mice, we identified a susceptible pedigree carrying a causal truncating mutation in the Rel gene (RelC307X ), encoding for the NF-κB transcription factor subunit c-Rel. Like Myd88-/- and Irf3-/- mice, RelC307X mice were susceptible to intranasal HSV-1 infection. Reciprocal bone marrow transfers into lethally irradiated hosts suggested that defects in both hematopoietic and CNS-resident cellular compartments contributed together to HSE susceptibility in RelC307X mice. Although the RelC307X mutation maintained cell-intrinsic antiviral control, it drove increased apoptotic cell death in infected fibroblasts. Moreover, reduced numbers of CD4+CD25+Foxp3+ T regulatory cells, and dysregulated NK cell and CD4+ effector T cell responses in infected RelC307X animals, indicated that protective immunity was also compromised in these mice. In the CNS, moribund RelC307X mice failed to control HSV-1 viral replication in the brainstem and cerebellum, triggering cell death and elevated expression of Ccl2, Il6, and Mmp8 characteristic of HSE neuroinflammation and pathology. In summary, our work implicates c-Rel in both CNS-resident cell survival and lymphocyte responses to HSV-1 infection and as a novel cause of HSE disease susceptibility in mice.


Assuntos
Sistema Nervoso Central/imunologia , Encefalite por Herpes Simples/imunologia , Inflamação/imunologia , Replicação Viral/imunologia , Animais , Chlorocebus aethiops , Encefalite por Herpes Simples/virologia , Inflamação/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Vero
8.
Hum Genet ; 139(6-7): 911-918, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32040615

RESUMO

Herpes simplex virus 1 (HSV-1) encephalitis (HSE) is the most common sporadic viral encephalitis in Western countries. Over the last 15 years, human genetic and immunological studies have provided proof-of-principle that childhood HSE can result from inborn errors of central nervous system (CNS)-specific, cell-intrinsic immunity to HSV-1. HSE-causing mutations of eight genes disrupt known (TLR3-dependent IFN-α/ß immunity) and novel (dependent on DBR1 or snoRNA31) antiviral mechanisms. Monogenic inborn errors confer susceptibility to forebrain (TLR3-IFN or snoRNA31) or brainstem (DBR1) HSE. Most of these disorders display incomplete clinical penetrance, with the possible exception of DBR1 deficiency. They account for a small, but non-negligible proportion of cases (about 7%). These findings pave the way for the gradual definition of the genetic and immunological architecture of childhood HSE, with both biological and clinical implications.


Assuntos
Doenças do Sistema Nervoso Central/genética , Encefalite por Herpes Simples/genética , Predisposição Genética para Doença , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Interações Hospedeiro-Patógeno/genética , Imunidade Celular/imunologia , Doenças do Sistema Nervoso Central/epidemiologia , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/virologia , Criança , Encefalite por Herpes Simples/epidemiologia , Encefalite por Herpes Simples/imunologia , Encefalite por Herpes Simples/virologia , Herpes Simples/complicações , Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mutação
9.
Crit Rev Microbiol ; 45(5-6): 581-594, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31512533

RESUMO

Microglia, as brain-resident macrophages, are the first line of defense against brain invading pathogens. Further, their dysfunction has been recognized to be closely associated with mounting CNS diseases. Of note, chronic HSV-1 infection leads to the persistent activation of microglia, which elicit a comprehensive response by generating certain factors with neurotoxic and neuroprotective effects. CNS infection with HSV-1 results in herpes simplex encephalitis and herpes simplex keratitis. Microglial immune response plays a crucial role in the development of these diseases. Moreover, HSV-1 infection is strongly associated with several CNS diseases, especially Alzheimer's disease and schizophrenia. These CNS diseases can be effectively ameliorated by eliciting an appropriate immune response, such as inhibition of microglial proliferation and activation. Therefore, it is crucial to reassess the positive and negative roles of microglia in HSV-1 CNS infection for a more comprehensive and detailed understanding of the relationship between microglia and CNS diseases. Hence, the present review focuses on the dual roles of microglia in mediating HSV-1 CNS infection, as well as on the strategy of targeting microglia to ameliorate CNS diseases. Further research in this field can help comprehensively elucidate the dual role of the microglial immune response in HSV-1 CNS infection, providing a theoretical basis for identifying therapeutic targets against overactive microglia in CNS diseases and HSV-1 infection.


Assuntos
Encefalite por Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Microglia/imunologia , Animais , Encefalite por Herpes Simples/imunologia , Herpesvirus Humano 1/genética , Humanos , Microglia/virologia
10.
J Neurovirol ; 25(3): 372-383, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30758810

RESUMO

The cerebral immune response induced by herpes simplex virus (HSV) encephalitis (HSE) was evaluated in susceptible BALB/c and resistant C57BL/6 mice. BALB/c and C57BL/6 (named C57BL/6-high) mice were respectively infected intranasally with 1 × 103 and 5 × 105 plaque-forming units (PFUs) of HSV-1. C57BL/6 mice (named C57BL/6-low) infected with a low inoculum (1 × 103 PFUs) of HSV-1 were tested in parallel. Mice were monitored for weight loss, sickness signs, and survival for 21 days. The viral load, infectious titers, cytokine/chemokine levels, and peripheral leukocyte infiltration were determined in brain homogenates on days 0 (non-infected), 4, 6, and 8 post-infection (p.i.) by qPCR, plaque assay, ELISA/Luminex™, and flow cytometry, respectively. Our results showed that the mortality of BALB/c mice (67%) was higher compared to those of C57BL/6-low (0%; P ≤ 0.01) and C57BL/6-high (20%; P ≤ 0.05) animals. This higher mortality was associated with increased infectious titers and cytokine/chemokine levels in the brains of BALB/c compared to C57BL/6 mice. Recruitment of inflammatory monocytes, dendritic cells, natural killer, and natural killer T cells to the brain was higher in C57BL/6-high compared to BALB/c animals on day 4 p.i. Infiltration of inflammatory monocytes and T cells in the brain of BALB/c mice was seen on day 6 p.i. Our data suggest that a rapid, sustained, and coordinated recruitment of peripheral leukocytes to the brain of C57BL/6-high mice results in an effective control of viral replication and inflammation whereas the delayed infiltration of immune cells in the brain of BALB/c mice was associated with an exacerbated inflammatory response during HSE.


Assuntos
Quimiotaxia de Leucócito/imunologia , Resistência à Doença/imunologia , Suscetibilidade a Doenças/imunologia , Encefalite por Herpes Simples/imunologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
11.
Immunity ; 33(3): 400-11, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20832341

RESUMO

Tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) functions downstream of multiple TNF receptors and receptors that induce interferon-α (IFN-α), IFN-ß, and IFN-λ production, including Toll-like receptor 3 (TLR3), which is deficient in some patients with herpes simplex virus-1 encephalitis (HSE). Mice lacking TRAF3 die in the neonatal period, preventing direct investigation of the role of TRAF3 in immune responses and host defenses in vivo. Here, we report autosomal dominant, human TRAF3 deficiency in a young adult with a history of HSE in childhood. The TRAF3 mutant allele is loss-of-expression, loss-of-function, dominant-negative and associated with impaired, but not abolished, TRAF3-dependent responses upon stimulation of both TNF receptors and receptors that induce IFN production. TRAF3 deficiency is associated with a clinical phenotype limited to HSE resulting from the impairment of TLR3-dependent induction of IFN. Thus, TLR3-mediated immunity against primary infection by HSV-1 in the central nervous system is critically dependent on TRAF3.


Assuntos
Encefalite por Herpes Simples/imunologia , Fator 3 Associado a Receptor de TNF/fisiologia , Receptor 3 Toll-Like/fisiologia , Células Cultivadas , Suscetibilidade a Doenças , Humanos , Interferons/fisiologia , Mutação , Receptores do Fator de Necrose Tumoral/fisiologia , Fator 3 Associado a Receptor de TNF/genética
12.
Rev Neurol (Paris) ; 175(7-8): 420-426, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371185

RESUMO

Autoimmune encephalitides are autoimmune neurological disorders characterized by rapidly progressive central nervous system symptoms associated with specific auto-antibodies targeting neuronal cell-surface proteins. The clinical features of encephalitis are frequently preceded by symptoms suggesting an infectious process, and specific pathogens have been detected at the early phase of the disease in some patients, suggesting that it can be triggered by infections. Moreover, recent data have shown an association with specific HLA haplotypes, suggesting a genetic susceptibility to develop at least some subtypes of autoimmune encephalitis. Nonetheless, the immunological mechanisms leading from an adequate response to infection to autoimmunity against neuronal self-antigens remain highly hypothetical. Molecular mimicry, inborn errors of the host immune system, as well as epitope spreading and chronic activation of innate immunity actors, may be involved. Importantly, the frequency of prodromal infectious symptoms and association with HLA haplotypes differ among autoimmune encephalitides, suggesting that depending on the subtype distinct immunopathogenic mechanisms are involved. A direct link between infection and autoimmune encephalitis was recently provided by the demonstration that most of the so-called relapsing neurological symptoms post-herpes simplex virus encephalitis corresponded to viral-induced autoimmune encephalitis with antibodies against NMDA receptors or other, yet unknown, neuronal surface antigens. Although this association has also been demonstrated experimentally in mice, the underlying immunological mechanisms remain unknown. Overall, a body of clinical, epidemiological and experimental data suggests infections are involved in the pathogenesis of autoimmune encephalitides. Further studies, focusing on the interplays between pathogens, genetic determinants of the host immune response, and brain inflammation, are needed to clarify the immunological mechanisms that lead to autoimmune encephalitis after infection.


Assuntos
Encefalite/microbiologia , Doença de Hashimoto/microbiologia , Encefalite/imunologia , Encefalite por Herpes Simples/imunologia , Doença de Hashimoto/imunologia , Humanos
14.
J Neurovirol ; 24(6): 702-711, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30094629

RESUMO

Herpes simplex encephalitis (HSE) is a common cause of viral encephalitis (HSV-1) characterised by pronounced inflammation and elevated intracranial pressure. We have shown in a rat model that HSV-1 infection causes an interaction between complement factors and proteasomes, leading to formation of proteasome/complement complexes (compleasomes). Exposure of the proteasome regulatory subunit antisecretory factor 1 (AF1) leads to a decrease in intracranial pressure. The aim of this study was to evaluate the acute and prolonged formation of compleasomes in cerebrospinal fluid (CSF) from patients with HSE. Cerebrospinal fluid samples (n = 55) from 24 HSE patients were analysed for compleasome complexes. Samples from healthy controls (n = 23) and patient controls (n = 27) served as baseline information. Sandwich enzyme-linked immunosorbent assay (ELISA) for proteasomes and their complex formation with complement factor 3 or 4, and Western blot for C3 activation were performed on CSF samples. Increased compleasome formation, both presenting as an initial formation and showing exposure of subunit AF1 in the compleasomes, was found in CSF samples drawn from patients with HSE compared with samples from the control groups (p < 0.0005). The total protein CSF concentration was equal in all groups. The levels were higher in the acute phase compared with late in the disease course (p < 0.0005). Complement 3 breakdown product iC3b was detected in CSF samples of the HSE patients. The early increased formation of compleasomes in CSF suggests that this complex may be involved in host defence against HSE.


Assuntos
Proteínas do Sistema Complemento/líquido cefalorraquidiano , Encefalite por Herpes Simples/líquido cefalorraquidiano , Complexo de Endopeptidases do Proteassoma/líquido cefalorraquidiano , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas do Sistema Complemento/imunologia , Encefalite por Herpes Simples/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/imunologia
15.
J Neurovirol ; 24(6): 761-768, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30094631

RESUMO

The impact of a deficiency in interferon regulatory factor (IRF)3 and IRF7 was evaluated in an herpes simplex virus encephalitis (HSE) model. Compared to wild type (WT), the mortality rates of infected IRF3-/- and IRF7-/- mice were higher and associated with increased brain viral titers. At a critical time post-infection, IRF7-/- mice exhibited a deficit in IFN-ß production. At a later time point, levels of type I IFNs and cytokines were increased in brains of both deficient mice compared to WT. Our results suggest that IRF3, and especially IRF7, are important for an effective control of inflammatory responses during HSE.


Assuntos
Encefalite por Herpes Simples/imunologia , Inflamação/imunologia , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 7 de Interferon/imunologia , Animais , Encéfalo/imunologia , Encéfalo/virologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
J Immunol ; 197(4): 1262-75, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27357149

RESUMO

HSV type 1 (HSV-1) is one of the leading etiologies of sporadic viral encephalitis. Early antiviral intervention is crucial to the survival of herpes simplex encephalitis patients; however, many survivors suffer from long-term neurologic deficits. It is currently understood that HSV-1 establishes a latent infection within sensory peripheral neurons throughout the life of the host. However, the tissue residence of latent virus, other than in sensory neurons, and the potential pathogenic consequences of latency remain enigmatic. In the current study, we characterized the lytic and latent infection of HSV-1 in the CNS in comparison with the peripheral nervous system following ocular infection in mice. We used RT-PCR to detect latency-associated transcripts and HSV-1 lytic cycle genes within the brain stem, the ependyma (EP), containing the limbic and cortical areas, which also harbor neural progenitor cells, in comparison with the trigeminal ganglia. Unexpectedly, HSV-1 lytic genes, usually identified during acute infection, are uniquely expressed in the EP 60 d postinfection when animals are no longer suffering from encephalitis. An inflammatory response was also mounted in the EP by the maintenance of resident memory T cells. However, EP T cells were incapable of controlling HSV-1 infection ex vivo and secreted less IFN-γ, which correlated with expression of a variety of exhaustion-related inhibitory markers. Collectively, our data suggest that the persistent viral lytic gene expression during latency is the cause of the chronic inflammatory response leading to the exhaustion of the resident T cells in the EP.


Assuntos
Encefalite por Herpes Simples/virologia , Epêndima/virologia , Herpes Simples/imunologia , Linfócitos T/imunologia , Latência Viral/fisiologia , Animais , Modelos Animais de Doenças , Encefalite por Herpes Simples/imunologia , Epêndima/imunologia , Citometria de Fluxo , Herpesvirus Humano 1/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real
17.
Nature ; 491(7426): 769-73, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23103873

RESUMO

In the course of primary infection with herpes simplex virus 1 (HSV-1), children with inborn errors of toll-like receptor 3 (TLR3) immunity are prone to HSV-1 encephalitis (HSE). We tested the hypothesis that the pathogenesis of HSE involves non-haematopoietic CNS-resident cells. We derived induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of TLR3- and UNC-93B-deficient patients and from controls. These iPSCs were differentiated into highly purified populations of neural stem cells (NSCs), neurons, astrocytes and oligodendrocytes. The induction of interferon-ß (IFN-ß) and/or IFN-λ1 in response to stimulation by the dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) was dependent on TLR3 and UNC-93B in all cells tested. However, the induction of IFN-ß and IFN-λ1 in response to HSV-1 infection was impaired selectively in UNC-93B-deficient neurons and oligodendrocytes. These cells were also much more susceptible to HSV-1 infection than control cells, whereas UNC-93B-deficient NSCs and astrocytes were not. TLR3-deficient neurons were also found to be susceptible to HSV-1 infection. The rescue of UNC-93B- and TLR3-deficient cells with the corresponding wild-type allele showed that the genetic defect was the cause of the poly(I:C) and HSV-1 phenotypes. The viral infection phenotype was rescued further by treatment with exogenous IFN-α or IFN-ß ( IFN-α/ß) but not IFN-λ1. Thus, impaired TLR3- and UNC-93B-dependent IFN-α/ß intrinsic immunity to HSV-1 in the CNS, in neurons and oligodendrocytes in particular, may underlie the pathogenesis of HSE in children with TLR3-pathway deficiencies.


Assuntos
Sistema Nervoso Central/patologia , Herpesvirus Humano 1/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Receptor 3 Toll-Like/deficiência , Astrócitos/imunologia , Astrócitos/virologia , Biomarcadores , Diferenciação Celular , Linhagem da Célula , Separação Celular , Células Cultivadas , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Criança , Suscetibilidade a Doenças , Encefalite por Herpes Simples/imunologia , Encefalite por Herpes Simples/metabolismo , Encefalite por Herpes Simples/patologia , Encefalite por Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Humanos , Imunidade Inata , Células-Tronco Pluripotentes Induzidas/virologia , Interferons/imunologia , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/virologia , Neurônios/imunologia , Neurônios/patologia , Neurônios/virologia , Oligodendroglia/imunologia , Oligodendroglia/patologia , Oligodendroglia/virologia , Receptor 3 Toll-Like/genética
18.
Proc Natl Acad Sci U S A ; 112(51): E7128-37, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26621750

RESUMO

This paper reviews the developments that have occurred in the field of human genetics of infectious diseases from the second half of the 20th century onward. In particular, it stresses and explains the importance of the recently described monogenic inborn errors of immunity underlying resistance or susceptibility to specific infections. The monogenic component of the genetic theory provides a plausible explanation for the occurrence of severe infectious diseases during primary infection. Over the last 20 y, increasing numbers of life-threatening infectious diseases striking otherwise healthy children, adolescents, and even young adults have been attributed to single-gene inborn errors of immunity. These studies were inspired by seminal but neglected findings in plant and animal infections. Infectious diseases typically manifest as sporadic traits because human genotypes often display incomplete penetrance (most genetically predisposed individuals remain healthy) and variable expressivity (different infections can be allelic at the same locus). Infectious diseases of childhood, once thought to be archetypal environmental diseases, actually may be among the most genetically determined conditions of mankind. This nascent and testable notion has interesting medical and biological implications.


Assuntos
Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/imunologia , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Infecções/genética , Infecções/imunologia , Adolescente , Candidíase Mucocutânea Crônica/genética , Candidíase Mucocutânea Crônica/imunologia , Criança , Proteínas do Sistema Complemento/genética , Encefalite por Herpes Simples/genética , Encefalite por Herpes Simples/imunologia , Epidermodisplasia Verruciforme/genética , Epidermodisplasia Verruciforme/imunologia , Predisposição Genética para Doença , Humanos , Influenza Humana/genética , Influenza Humana/imunologia , Interferon gama/genética , Interferon gama/imunologia , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/imunologia , Malária/genética , Malária/imunologia , Modelos Genéticos , Modelos Imunológicos , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/imunologia , Neisseria/imunologia , Neisseria/patogenicidade , Infecções Pneumocócicas/genética , Infecções Pneumocócicas/imunologia , Tinha/genética , Tinha/imunologia , Adulto Jovem
19.
J Gen Virol ; 98(3): 447-460, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27902351

RESUMO

CX3CR1 is an important chemokine receptor expressed on the surface of microglia and blood leukocytes, including monocytes. Signalling through this receptor influences the immune activity of microglia and monocyte trafficking into the central nervous system (CNS) in several neurological diseases. During experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE), CX3CR1 deficiency has been reported to exacerbate the outcome of the disease. However, the precise contribution of CX3CR1 expressed in resident cells of the CNS or peripheral monocytes in protection against HSE remains unclear. To dissect the role of CX3CR1 during HSE, we reconstituted irradiated C57BL/6 WT and CX3CR1-/- mice with CX3CR1-/- (CX3CR1-/-→WT) and WT (WT→CX3CR1-/-) bone marrow cells, respectively. Our results showed that following intranasal infection with 1.2×106 p.f.u. of HSV-1, mortality rates were significantly higher in CX3CR1-/- (61.7 %) and WT→CX3CR1-/- (66.2 %) compared to WT (16.6 %; P=0.012 and P=0.016, respectively) and CX3CR1-/-→WT animals (20 %; P=0.013 and P=0.011, respectively). Higher mortality rates in CX3CR1-/- and WT→CX3CR1-/- mice were associated with increased infectious viral titres and wider HSV dissemination in brains, as well as an overproduction of inflammatory cytokines and chemokines including IL-1ß, IL-6, IFN-γ, C-C motif ligand 2 and C-C motif ligand 5. Furthermore, CX3CR1 deficiency in resident cells of the CNS resulted in excessive and sustained Ly6Chi inflammatory monocyte and neutrophil infiltration into the brain. These data suggest that CX3CR1 deficiency in resident cells of the CNS affects mouse survival, HSV-1 replication control and cerebral inflammatory response whereas its deficiency in the haematopoietic system does not appear to influence the outcome of HSE.


Assuntos
Encéfalo/imunologia , Encefalite por Herpes Simples/imunologia , Herpesvirus Humano 1 , Receptores de Quimiocinas/fisiologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/virologia , Encéfalo/virologia , Receptor 1 de Quimiocina CX3C , Movimento Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microglia/imunologia , Microglia/virologia , Receptores de Quimiocinas/genética , Transdução de Sinais
20.
J Neurovirol ; 23(3): 394-403, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28116674

RESUMO

Herpes simplex virus type 1 (HSV-1) encephalitis (HSE) is the most common fatal sporadic encephalitis in developed countries. There is evidence from HSE animal models that not only direct virus-mediated damage caused but also the host's immune response contributes to the high mortality of the disease. Chemokines modulate and orchestrate this immune response. Previous experimental studies in HSE models identified the chemokine receptor CXCR3 and its ligands as molecules with a high impact on the course of HSE in mouse models. In this study, the role of the chemokine receptor CXCR3 was evaluated after intranasal infection with the encephalitogenic HSV-1 strain 17 syn+ using CXCR3-deficient mice (CXCR3-/-) and wild-type controls. We demonstrated a neurotropic viral spread into the CNS of after intranasal infection. Although viral load and histological distribution of infected neurons were independent from CXCR3 signaling early after infection, CXCR3-deficient mice cleared HSV-1 more efficiently 14 days after infection. Furthermore, CXCR3 deficiency led to a decreased weight loss in mice after HSV-1 infection. T cell infiltration and microglial activation was prominently reduced by inhibition of CXCR3 signaling. Quantitative PCR of proinflammatory cytokines and chemokines confirmed the reduced neuroinflammatory response in CXCR3-deficient mice during HSE. Our results demonstrate that the recruitment of peripheral immune cells into the CNS, induction of neuroinflammation, and consecutive weight loss during herpes encephalitis is modulated by CXCR3 signaling. Interruption of the CXCR3 pathway ameliorates the detrimental host immune response and in turn, leads paradoxically to an enhanced viral clearance after intranasal infection. Our data gives further insight into the role of CXCR3 during HSE after intranasal infection.


Assuntos
Encéfalo/imunologia , Resistência à Doença/genética , Encefalite por Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Receptores CXCR3/deficiência , Administração Intranasal , Animais , Encéfalo/virologia , Movimento Celular , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , DNA Viral/genética , DNA Viral/imunologia , Modelos Animais de Doenças , Encefalite por Herpes Simples/patologia , Encefalite por Herpes Simples/virologia , Regulação da Expressão Gênica , Herpesvirus Humano 1/crescimento & desenvolvimento , Humanos , Interferon gama/genética , Interferon gama/imunologia , Leucócitos/imunologia , Leucócitos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/imunologia , Microglia/virologia , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Carga Viral , Redução de Peso/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa