Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Virol ; 97(6): e0026223, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37289055

RESUMO

Herpes simplex virus 1 (HSV-1) must overcome epidermal barriers to reach its receptors on keratinocytes and initiate infection in human skin. The cell-adhesion molecule nectin-1, which is expressed in human epidermis, acts as an efficient receptor for HSV-1 but is not within reach of the virus upon exposure of human skin under nonpathological conditions. Atopic dermatitis skin, however, can provide an entry portal for HSV-1 emphasizing the role of impaired barrier functions. Here, we explored how epidermal barriers impact HSV-1 invasion in human epidermis and influence the accessibility of nectin-1 for the virus. Using human epidermal equivalents, we observed a correlation of the number of infected cells with tight-junction formation, suggesting that mature tight junctions prior to formation of the stratum corneum prevent viral access to nectin-1. Consequently, impaired epidermal barriers driven by Th2-inflammatory cytokines interleukin 4 (IL-4) and IL-13 as well as the genetic predisposition of nonlesional atopic dermatitis keratinocytes correlated with enhanced infection supporting the impact of functional tight junctions for preventing infection in human epidermis. Comparable to E-cadherin, nectin-1 was distributed throughout the epidermal layers and localized just underneath the tight-junctions. While nectin-1 was evenly distributed on primary human keratinocytes in culture, the receptor was enriched at lateral surfaces of basal and suprabasal cells during differentiation. Nectin-1 showed no major redistribution in the thickened atopic dermatitis and IL-4/IL-13-treated human epidermis in which HSV-1 can invade. However, nectin-1 localization toward tight junction components changed, suggesting that defective tight-junction barriers make nectin-1 accessible for HSV-1 which enables facilitated viral penetration. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a widely distributed human pathogen which productively infects epithelia. The open question is which barriers of the highly protected epithelia must the virus overcome to reach its receptor nectin-1. Here, we used human epidermal equivalents to understand how physical barrier formation and nectin-1 distribution contribute to successful viral invasion. Inflammation-induced barrier defects led to facilitated viral penetration strengthening the role of functional tight-junctions in hindering viral access to nectin-1 that is localized just underneath tight junctions and distributed throughout all layers. We also found nectin-1 ubiquitously localized in the epidermis of atopic dermatitis and IL-4/IL-13-treated human skin implying that impaired tight-junctions in combination with a defective cornified layer allow the accessibility of nectin-1 to HSV-1. Our results support that successful invasion of HSV-1 in human skin relies on defective epidermal barriers, which not only include a dysfunctional cornified layer but also depend on impaired tight junctions.


Assuntos
Dermatite Atópica , Herpes Simples , Herpesvirus Humano 1 , Nectinas , Junções Íntimas , Humanos , Dermatite Atópica/virologia , Epiderme/virologia , Herpesvirus Humano 1/fisiologia , Interleucina-13 , Interleucina-4
2.
J Virol ; 96(17): e0086422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35969080

RESUMO

To infect its human host, herpes simplex virus 1 (HSV-1) must overcome the protective barriers of skin and mucosa. Here, we addressed whether pathological skin conditions can facilitate viral entry via the skin surface and used ex vivo infection studies to explore viral invasion in atopic dermatitis (AD) skin characterized by disturbed barrier functions. Our focus was on the visualization of the onset of infection in single cells to determine the primary entry portals in the epidermis. After ex vivo infection of lesional AD skin, we observed infected cells in suprabasal layers indicating successful invasion in the epidermis via the skin surface which was never detected in control skin where only sample edges allowed viral access. The redistribution of filaggrin, loricrin, and tight-junction components in the lesional skin samples suggested multiple defective mechanical barriers. To dissect the parameters that contribute to HSV-1 invasion, we induced an AD-like phenotype by adding the Th2 cytokines interleukin 4 (IL-4) and IL-13 to healthy human skin samples. Strikingly, we detected infected cells in the epidermis, implying that the IL-4/IL-13-driven inflammation is sufficient to induce modifications allowing HSV-1 to penetrate the skin surface. In summary, not only did lesional AD skin facilitate HSV-1 penetration but IL-4/IL-13 responses alone allowed virus invasion. Our results suggest that the defective epidermal barriers of AD skin and the inflammation-induced altered barriers in healthy skin can make receptors accessible for HSV-1. IMPORTANCE Herpes simplex virus 1 (HSV-1) can target skin to establish primary infection in the epithelium. While the human skin provides effective barriers against viral invasion under healthy conditions, a prominent example of successful invasion is the disseminated HSV-1 infection in the skin of atopic dermatitis (AD) patients. AD is characterized by impaired epidermal barrier functions, chronic inflammation, and dysbiosis of skin microbiota. We addressed the initial invasion process of HSV-1 in atopic dermatitis skin to understand whether the physical barrier functions are sufficiently disturbed to allow the virus to invade skin and reach its receptors on skin cells. Our results demonstrate that HSV-1 can indeed penetrate and initiate infection in atopic dermatitis skin. Since treatment of skin with IL-4 and IL-13 already resulted in successful invasion, we assume that inflammation-induced barrier defects play an important role for the facilitated access of HSV-1 to its target cells.


Assuntos
Dermatite Atópica , Epiderme , Herpes Simples , Herpesvirus Humano 1 , Dermatopatias , Epiderme/patologia , Epiderme/virologia , Herpes Simples/patologia , Herpesvirus Humano 1/fisiologia , Humanos , Inflamação , Interleucina-13 , Interleucina-4 , Pele/patologia , Pele/virologia , Dermatopatias/virologia , Técnicas de Cultura de Tecidos
3.
PLoS Pathog ; 17(4): e1009536, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33905459

RESUMO

Skin mononuclear phagocytes (MNPs) provide the first interactions of invading viruses with the immune system. In addition to Langerhans cells (LCs), we recently described a second epidermal MNP population, Epi-cDC2s, in human anogenital epidermis that is closely related to dermal conventional dendritic cells type 2 (cDC2) and can be preferentially infected by HIV. Here we show that in epidermal explants topically infected with herpes simplex virus (HSV-1), both LCs and Epi-cDC2s interact with HSV-1 particles and infected keratinocytes. Isolated Epi-cDC2s support higher levels of infection than LCs in vitro, inhibited by acyclovir, but both MNP subtypes express similar levels of the HSV entry receptors nectin-1 and HVEM, and show similar levels of initial uptake. Using inhibitors of endosomal acidification, actin and cholesterol, we found that HSV-1 utilises different entry pathways in each cell type. HSV-1 predominantly infects LCs, and monocyte-derived MNPs, via a pH-dependent pathway. In contrast, Epi-cDC2s are mainly infected via a pH-independent pathway which may contribute to the enhanced infection of Epi-cDC2s. Both cells underwent apoptosis suggesting that Epi-cDC2s may follow the same dermal migration and uptake by dermal MNPs that we have previously shown for LCs. Thus, we hypothesize that the uptake of HSV and infection of Epi-cDC2s will stimulate immune responses via a different pathway to LCs, which in future may help guide HSV vaccine development and adjuvant targeting.


Assuntos
Herpesvirus Humano 1/fisiologia , Células de Langerhans/virologia , Internalização do Vírus , Adolescente , Animais , Células Cultivadas , Criança , Pré-Escolar , Chlorocebus aethiops , Epiderme/patologia , Epiderme/virologia , Células HaCaT , Células HeLa , Herpes Simples/patologia , Herpes Simples/virologia , Humanos , Lactente , Transdução de Sinais/fisiologia , Células Vero
4.
J Virol ; 95(21): e0133821, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34379501

RESUMO

Herpes simplex virus 1 (HSV-1) enters its human host via the skin and mucosa. The open question is how the virus invades this highly protective tissue in vivo to approach its receptors in the epidermis and initiate infection. Here, we performed ex vivo infection studies in human skin to investigate how susceptible the epidermis and dermis are to HSV-1 and whether wounding facilitates viral invasion. Upon ex vivo infection of complete skin, only sample edges with integrity loss demonstrated infected cells. After removal of the dermis, HSV-1 efficiently invaded the basal layer of the epidermis and, from there, gained access to suprabasal layers. This finding supports a high susceptibility of all epidermal layers which correlated with the surface expression of the receptors nectin-1 and herpesvirus entry mediator (HVEM). In contrast, only single infected cells were detected in the separated dermis, where minor expression of the receptors was found. Interestingly, after wounding, nearly no infection of the epidermis was observed via the skin surface. However, if the wounding of the skin samples led to breaks through the dermis, HSV-1 infected mainly keratinocytes via the damaged dermal layer. The application of latex beads revealed only occasional entry via the wounded dermis; however, it facilitated penetration via the wounded skin surface. Thus, we suggest that although the wounded human skin surface allows particle penetration, the skin still provides barriers that prevent HSV-1 from reaching its receptors. IMPORTANCE The human pathogen herpes simplex virus 1 (HSV-1) invades its host via the skin and mucosa, which leads to primary infection of the epithelium. As the various epithelial barriers effectively protect the tissue against viral invasion, successful infection most likely depends on tissue damage. We addressed the initial invasion process in human skin by ex vivo infection to understand how HSV-1 overcomes physical skin barriers and reaches its receptors to enter skin cells. Our results demonstrate that intact skin samples allow viral access only from the edges, while the epidermis is highly susceptible once the basal epidermal layer serves as an initial entry portal. Surprisingly, mechanical wounding did not facilitate HSV-1 entry via the skin surface, although latex beads still penetrated via the lesions. Our results imply that successful invasion of HSV-1 depends on how well the virus can reach its receptors, which was not accomplished by skin lesions under ex vivo conditions.


Assuntos
Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Nectinas/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Pele/virologia , Internalização do Vírus , Infecção dos Ferimentos/virologia , Derme/virologia , Epiderme/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Queratinócitos/virologia
5.
PLoS Pathog ; 16(10): e1008253, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33031460

RESUMO

Measles is characterized by fever and a maculopapular skin rash, which is accompanied by immune clearance of measles virus (MV)-infected cells. Histopathological analyses of skin biopsies from humans and non-human primates (NHPs) with measles rash have identified MV-infected keratinocytes and mononuclear cells in the epidermis, around hair follicles and near sebaceous glands. Here, we address the pathogenesis of measles skin rash by combining data from experimentally infected NHPs, ex vivo infection of human skin sheets and in vitro infection of primary human keratinocytes. Analysis of NHP skin samples collected at different time points following MV inoculation demonstrated that infection in the skin precedes onset of rash by several days. MV infection was detected in lymphoid and myeloid cells in the dermis before dissemination to the epidermal leukocytes and keratinocytes. These data were in good concordance with ex vivo MV infections of human skin sheets, in which dermal cells were more targeted than the epidermal cells. To address viral dissemination to the epidermis and to determine whether the dissemination is receptor-dependent, we performed experimental infections of primary keratinocytes collected from healthy donors. These experiments demonstrated that MV infection of keratinocytes is mainly nectin-4-dependent, and differentiated keratinocytes, which express higher levels of nectin-4, are more susceptible to MV infection than proliferating keratinocytes. Based on these data, we propose a model to explain measles skin rash: migrating MV-infected lymphocytes initiate the infection of dermal skin-resident CD150+ immune cells. The infection is subsequently disseminated from the dermal papillae to nectin-4+ keratinocytes in the basal epidermis. Lateral spread of MV infection is observed in the superficial epidermis, most likely due to the higher level of nectin-4 expression on differentiated keratinocytes. Finally, MV-infected cells are cleared by infiltrating immune cells, causing hyperemia and edema, which give the appearance of morbilliform skin rash.


Assuntos
Derme/virologia , Epiderme/virologia , Queratinócitos/virologia , Linfócitos/virologia , Sarampo/virologia , Células Mieloides/virologia , Pele/virologia , Animais , Células Cultivadas , Derme/patologia , Epiderme/patologia , Humanos , Queratinócitos/patologia , Linfócitos/patologia , Macaca fascicularis , Sarampo/patologia , Vírus do Sarampo/isolamento & purificação , Células Mieloides/patologia , Pele/patologia
6.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31826998

RESUMO

Skin is a major target tissue of herpes simplex virus 1 (HSV-1), and we are only beginning to understand how individual receptors contribute to the initiation of infection in tissue. We recently demonstrated the impact of the receptors nectin-1 and herpesvirus entry mediator (HVEM) for entry of HSV-1 into murine epidermis. Here, we focus on viral invasion into the dermis, a further critical target tissue in vivo In principle, murine dermal fibroblasts are highly susceptible to HSV-1, and we previously showed that nectin-1 and HVEM can act as alternative receptors. To characterize their contribution as receptors in dermal tissue, we established an ex vivo infection assay of murine dermis. Only after separation of the epidermis from the dermis, we observed single infected cells in the upper dermis from juvenile mice at 5 h postinfection with increasing numbers of infected cells at later times. While nectin-1-expressing cells were less frequently detected, we found HVEM expressed on most cells of juvenile dermis. The comparison of infection efficiency during aging revealed a strong delay in the onset of infection in the dermis from aged mice. This observation correlated with a decrease in nectin-1-expressing fibroblasts during aging while the number of HVEM-expressing cells remained stable. Accordingly, aged nectin-1-deficient dermis was less susceptible to HSV-1 than the dermis from control mice. Thus, we conclude that the reduced availability of nectin-1 in aged dermis is a key contributor to a decrease in infection efficiency during aging.IMPORTANCE HSV-1 is a prevalent human pathogen which invades skin and mucocutaneous linings. So far, the underlying mechanisms of how the virus invades tissue, reaches its receptors, and initiates infection are still unresolved. To unravel the mechanical prerequisites that limit or favor viral invasion into tissue, we need to understand the contribution of the receptors that are involved in viral internalization. Here, we investigated the invasion process into murine dermis with the focus on receptor availability and found that infection efficiency decreases in aging mice. Based on studies of the expression of the receptors nectin-1 and HVEM, we suggest that the decreasing number of nectin-1-expressing fibroblasts leads to a delayed onset of infection in the dermis from aged compared to juvenile mice. Our results imply that the level of infection efficiency in murine dermis is closely linked to the availability of the receptor nectin-1 and can change during aging.


Assuntos
Envelhecimento/patologia , Derme/virologia , Herpesvirus Humano 1/metabolismo , Nectinas/metabolismo , Receptores de Superfície Celular/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Derme/metabolismo , Derme/patologia , Modelos Animais de Doenças , Epiderme/metabolismo , Epiderme/virologia , Herpes Simples/patologia , Herpes Simples/virologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nectinas/genética , Pele/metabolismo , Pele/virologia , Internalização do Vírus
7.
Proc Natl Acad Sci U S A ; 114(43): E9056-E9065, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073102

RESUMO

It has been shown that γδ T cells protect against the formation of squamous cell carcinoma (SCC) in several models. However, the role of γδ T cells in human papillomavirus (HPV)-associated uterine cervical SCC, the third-leading cause of death by cancer in women, is unknown. Here, we investigated the impact of γδ T cells in a transgenic mouse model of carcinogenesis induced by HPV16 oncoproteins. Surprisingly, γδ T cells promoted the development of HPV16 oncoprotein-induced lesions. HPV16 oncoproteins induced a decrease in epidermal Skint1 expression and the associated antitumor Vγ5+ γδ T cells, which were replaced by γδ T-cell subsets (mainly Vγ6+ γδlowCCR2+CCR6-) actively producing IL-17A. Consistent with a proangiogenic role, γδ T cells promoted the formation of blood vessels in the dermis underlying the HPV-induced lesions. In human cervical biopsies, IL-17A+ γδ T cells could only be observed at the cancer stage (SCC), where HPV oncoproteins are highly expressed, supporting the clinical relevance of our observations in mice. Overall, our results suggest that HPV16 oncoproteins induce a reorganization of the local epithelial-associated γδ T-cell subpopulations, thereby promoting angiogenesis and cancer development.


Assuntos
Linfócitos Intraepiteliais/patologia , Linfócitos Intraepiteliais/virologia , Neoplasias de Células Escamosas/virologia , Infecções por Papillomavirus/patologia , Neoplasias do Colo do Útero/virologia , Animais , Colo do Útero , Epiderme/patologia , Epiderme/virologia , Feminino , Humanos , Imunoglobulinas/metabolismo , Interleucina-17/metabolismo , Camundongos Transgênicos , Neoplasias de Células Escamosas/patologia , Neovascularização Patológica , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Receptores CCR2/metabolismo , Receptores CCR6/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero/patologia
8.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769337

RESUMO

To enter host cells, herpes simplex virus 1 (HSV-1) initially attaches to cell surface glycosaminoglycans, followed by the requisite binding to one of several cellular receptors, leading to viral internalization. Although virus-receptor interactions have been studied in various cell lines, the contributions of individual receptors to uptake into target tissues such as mucosa, skin, and cornea are not well understood. We demonstrated that nectin-1 acts as a major receptor for HSV-1 entry into murine epidermis, while herpesvirus entry mediator (HVEM) can serve as an alternative receptor. Recently, the macrophage receptor with collagenous structure (MARCO) has been described to mediate adsorption of HSV-1 to epithelial cells. Here, we investigated the impact of MARCO on the entry process of HSV-1 into the two major cell types of skin, keratinocytes in the epidermis and fibroblasts in the underlying dermis. Using ex vivo infection of murine epidermis, we showed that HSV-1 entered basal keratinocytes of MARCO-/- epidermis as efficiently as those of control epidermis. In addition, entry into dermal fibroblasts was not impaired in the absence of MARCO. When we treated epidermis, primary keratinocytes, or fibroblasts with poly(I), a ligand for class A scavenger receptors, HSV-1 entry was strongly reduced. As we also observed reducing effects of poly(I) in the absence of both MARCO and scavenger receptor A1, we concluded that the inhibitory effects of poly(I) on HSV-1 infection are not directly linked to class A scavenger receptors. Overall, our results support that HSV-1 entry into skin cells is independent of MARCO.IMPORTANCE During entry into its host cells, the human pathogen herpes simplex virus (HSV) interacts with various cellular receptors. Initially, receptor interaction can mediate cellular adsorption, followed by receptor binding that triggers viral internalization. The intriguing question is which receptors are responsible for the various steps during entry into the natural target tissues of HSV? Previously, we demonstrated the role of nectin-1 as a major receptor and that of HVEM as an alternative receptor for HSV-1 to invade murine epidermis. As MARCO has been described to promote infection in skin, we explored the predicted role of MARCO as a receptor that mediates adsorption to epithelial cells. Our infection studies of murine skin cells indicate that the absence of MARCO does not interfere with the efficiency of HSV-1 entry and that the inhibitory effect on viral adsorption by poly(I), a ligand of MARCO, is independent of MARCO.


Assuntos
Derme/metabolismo , Epiderme/metabolismo , Fibroblastos/metabolismo , Herpesvirus Humano 1/metabolismo , Receptores Imunológicos/metabolismo , Internalização do Vírus , Animais , Derme/virologia , Epiderme/virologia , Fibroblastos/virologia , Herpesvirus Humano 1/genética , Humanos , Queratinócitos/metabolismo , Queratinócitos/virologia , Camundongos , Camundongos Knockout , Receptores Imunológicos/genética
9.
Emerg Infect Dis ; 24(6): 1069-1072, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29774837

RESUMO

Northern pygmy mice from 2 localities in East Central Texas, USA, had proliferative epidermal lesions on the tail and feet. Electron microscopy of lesion tissue revealed poxvirus. Phylogenetic analyses indicated the virus differed 35% from its closest relatives, the Chordopoxvirinae. Future research is needed to determine whether this virus could affect human health.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Infecções por Poxviridae/veterinária , Poxviridae/classificação , Poxviridae/fisiologia , Roedores , Doenças dos Animais/diagnóstico , Animais , Epiderme/patologia , Epiderme/ultraestrutura , Epiderme/virologia , Genes Virais , Masculino , Camundongos , Filogenia , Texas/epidemiologia , Zoonoses
10.
J Fish Dis ; 41(9): 1331-1338, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30003544

RESUMO

A continuous cell line consisting mostly of epithelioid cells was established from the caudal fin of marbled eels (Anguilla marmorata) and designated as marbled eel caudal fin (MECF)-1. The cells multiplied well in Leibovitz's L-15 medium containing 2% to 15% foetal bovine serum at temperatures of 20°C to 35°C and were subcultured for >90 passages during a 5-year period from 2012 to 2017. Transcripts of ictacalcin, keratin 13, cd146, nestin, ncam1 and myod1 were demonstrated in the cells using reverse transcription polymerase chain reaction. The results indicated that MECF-1 was composed of epidermal and mesenchyme stem and progenitor cells including myoblasts. MECF-1 was susceptible to Japanese eel herpesvirus HVA980811, marbled eel polyoma-like virus (MEPyV), aquabirnavirus MEIPNV1310 and aquareovirus CSV. By contrast, MECF-1 was noted refractory to megalocytiviruses RSIV-Ku and GSIV-K1 infection. Moreover, the cells were resistant to betanodavirus infection. In conclusion, MECF-1 derived from marbled eel is suitable for studies on anguillid viruses and interaction with host cells.


Assuntos
Anguilla/anatomia & histologia , Anguilla/virologia , Nadadeiras de Animais/citologia , Nadadeiras de Animais/virologia , Linhagem Celular/virologia , Técnicas de Cultura de Tecidos , Animais , Técnicas de Cultura de Células/veterinária , Linhagem Celular/citologia , Meios de Cultura/química , Suscetibilidade a Doenças , Células Epidérmicas , Epiderme/virologia , Doenças dos Peixes/virologia , Herpesviridae/fisiologia , Mioblastos/virologia , Polyomavirus/fisiologia , Reoviridae/fisiologia
11.
J Virol ; 90(22): 10379-10389, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27630229

RESUMO

Herpes simplex virus 1 (HSV-1) infects humans through stratified epithelia that are composed primarily of keratinocytes. The route of HSV-1 entry into keratinocytes has been the subject of limited investigation, but it is proposed to involve pH-dependent endocytosis, requiring the gD-binding receptor nectin-1. Here, we have utilized the nTERT human keratinocyte cell line as a new model for dissecting the mechanism of HSV-1 entry into the host. Although immortalized, these cells nonetheless retain normal growth and differentiation properties of primary cells. Using short interfering RNA (siRNA) depletion studies, we confirm that, despite nTERT cells expressing high levels of the alternative gD receptor HVEM, HSV-1 requires nectin-1, not HVEM, to enter these cells. Strikingly, virus entry into nTERT cells occurred with unusual rapidity, such that maximum penetration was achieved within 5 min. Moreover, HSV-1 was able to enter keratinocytes but not other cell types at temperatures as low as 7°C, conditions where endocytosis was shown to be completely inhibited. Transmission electron microscopy of early entry events at both 37°C and 7°C identified numerous examples of naked virus capsids located immediately beneath the plasma membrane, with no evidence of virions in cytoplasmic vesicles. Taken together, these results imply that HSV-1 uses the nectin-1 receptor to enter human keratinocyte cells via a previously uncharacterized rapid plasma membrane fusion pathway that functions at low temperature. These studies have important implications for current understanding of the relationship between HSV-1 and its relevant in vivo target cell. IMPORTANCE: The gold standard of antiviral treatment for any human virus infection is the prevention of virus entry into the host cell. In the case of HSV-1, primary infection in the human begins in the epidermis of the skin or the oral mucosa, where the virus infects keratinocytes, and it is therefore important to understand the molecular events involved in HSV-1 entry into this cell type. Nonetheless, few studies have looked specifically at entry into these relevant human cells. Our results reveal a new route for virus entry that is specific to keratinocytes, involves rapid entry, and functions at low temperatures. This may reflect the environmental conditions encountered by HSV-1 when entering its host through the skin and emphasizes the importance of studying virus-host interactions in physiologically relevant cells.


Assuntos
Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virologia , Herpesvirus Humano 1/metabolismo , Queratinócitos/metabolismo , Queratinócitos/virologia , Fusão de Membrana/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Endocitose/fisiologia , Epiderme/metabolismo , Epiderme/virologia , Células HeLa , Humanos , Nectinas , Receptores Virais/metabolismo , Temperatura , Células Vero , Proteínas do Envelope Viral , Vírion/metabolismo , Internalização do Vírus
12.
J Immunol ; 195(11): 5285-95, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26525288

RESUMO

It is well established how effector T cells exit the vasculature to enter the peripheral tissues in which an infection is ongoing. However, less is known regarding how CTLs migrate toward infected cells after entry into peripheral organs. Recently, it was shown that the chemokine receptor CXCR3 on T cells has an important role in their ability to localize infected cells and to control vaccinia virus infection. However, the search strategy of T cells for virus-infected targets has not been investigated in detail and could involve chemotaxis toward infected cells, chemokinesis (i.e., increased motility) combined with CTL arrest when targets are detected, or both. In this study, we describe and analyze the migration of CTLs within HSV-1-infected epidermis in vivo. We demonstrate that activated T cells display a subtle distance-dependent chemotaxis toward clusters of infected cells and confirm that this is mediated by CXCR3 and its ligands. Although the chemotactic migration is weak, computer simulations based on short-term experimental data, combined with subsequent long-term imaging indicate that this behavior is crucial for efficient target localization and T cell accumulation at effector sites. Thus, chemotactic migration of effector T cells within peripheral tissue forms an important factor in the speed with which T cells are able to arrive at sites of infection.


Assuntos
Quimiotaxia de Leucócito/imunologia , Epiderme/imunologia , Herpes Simples/imunologia , Receptores CXCR3/imunologia , Linfócitos T Citotóxicos/imunologia , Transferência Adotiva , Animais , Simulação por Computador , Epiderme/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
13.
J Biol Chem ; 290(21): 13354-71, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25878250

RESUMO

In order to identify cellular factors that regulate human papillomavirus type 16 (HPV16) gene expression, cervical cancer cells permissive for HPV16 late gene expression were identified and characterized. These cells either contained a novel spliced variant of the L1 mRNAs that bypassed the suppressed HPV16 late, 5'-splice site SD3632; produced elevated levels of RNA-binding proteins SRSF1 (ASF/SF2), SRSF9 (SRp30c), and HuR that are known to regulate HPV16 late gene expression; or were shown by a gene expression array analysis to overexpress the RALYL RNA-binding protein of the heterogeneous nuclear ribonucleoprotein C (hnRNP C) family. Overexpression of RALYL or hnRNP C1 induced HPV16 late gene expression from HPV16 subgenomic plasmids and from episomal forms of the full-length HPV16 genome. This induction was dependent on the HPV16 early untranslated region. Binding of hnRNP C1 to the HPV16 early, untranslated region activated HPV16 late 5'-splice site SD3632 and resulted in production of HPV16 L1 mRNAs. Our results suggested that hnRNP C1 controls HPV16 late gene expression.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas do Capsídeo/metabolismo , Regulação Viral da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Splicing de RNA/genética , RNA Mensageiro/genética , Neoplasias do Colo do Útero/metabolismo , Western Blotting , Proteínas do Capsídeo/genética , Células Epidérmicas , Epiderme/metabolismo , Epiderme/virologia , Feminino , Imunofluorescência , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Papillomavirus Humano 16/fisiologia , Humanos , Imunoprecipitação , Queratinócitos/citologia , Queratinócitos/metabolismo , Queratinócitos/virologia , Análise em Microsséries , Proteínas Oncogênicas Virais/genética , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
14.
J Virol ; 89(18): 9407-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26136572

RESUMO

UNLABELLED: The cellular proteins nectin-1 and herpesvirus entry mediator (HVEM) can both mediate the entry of herpes simplex virus 1 (HSV-1). We have recently shown how these receptors contribute to infection of skin by investigating HSV-1 entry into murine epidermis. Ex vivo infection studies reveal nectin-1 as the primary receptor in epidermis, whereas HVEM has a more limited role. Although the epidermis represents the outermost layer of skin, the contribution of nectin-1 and HVEM in the underlying dermis is still open. Here, we analyzed the role of each receptor during HSV-1 entry in murine dermal fibroblasts that were deficient in expression of either nectin-1 or HVEM or both receptors. Because infection was not prevented by the absence of either nectin-1 or HVEM, we conclude that they can act as alternative receptors. Although HVEM was found to be highly expressed on fibroblasts, entry was delayed in nectin-1-deficient cells, suggesting that nectin-1 acts as the more efficient receptor. In the absence of both receptors, entry was strongly delayed leading to a much reduced viral spread and virus production. These results suggest an unidentified cellular component that acts as alternate but inefficient receptor for HSV-1 on dermal fibroblasts. Characterization of the cellular entry mechanism suggests that HSV-1 can enter dermal fibroblasts both by direct fusion with the plasma membrane and via endocytic vesicles and that this is not dependent on the presence or absence of nectin-1. Entry was also shown to require dynamin and cholesterol, suggesting comparable entry pathways in keratinocytes and dermal fibroblasts. IMPORTANCE: Herpes simplex virus (HSV) is a human pathogen which infects its host via mucosal surfaces or abraded skin. To understand how HSV-1 overcomes the protective barrier of mucosa or skin and reaches its receptors in tissue, it is essential to know which receptors contribute to the entry into individual skin cells. Previously, we have explored the contribution of nectin-1 and herpesvirus entry mediator (HVEM) as receptors for HSV-1 entry into murine epidermis, where keratinocytes form the major cell type. Since the underlying dermis consists primarily of fibroblasts, we have now extended our study of HSV-1 entry to dermal fibroblasts isolated from nectin-1- or HVEM-deficient mice or from mice deficient in both receptors. Our results demonstrate a role for both nectin-1 and HVEM as receptors and suggest a further receptor which appears much less efficient.


Assuntos
Moléculas de Adesão Celular/metabolismo , Fibroblastos/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Internalização do Vírus , Animais , Moléculas de Adesão Celular/genética , Células Cultivadas , Derme/metabolismo , Derme/patologia , Derme/virologia , Epiderme/metabolismo , Epiderme/patologia , Epiderme/virologia , Fibroblastos/patologia , Fibroblastos/virologia , Herpes Simples/genética , Herpes Simples/patologia , Humanos , Camundongos , Camundongos Knockout , Nectinas , Membro 14 de Receptores do Fator de Necrose Tumoral/genética
15.
PLoS Pathog ; 10(12): e1004541, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474197

RESUMO

Dengue virus (DENV) causes the most prevalent arthropod-borne viral disease in humans. Although Aedes mosquitoes transmit DENV when probing for blood in the skin, no information exists on DENV infection and immune response in the dermis, where the blood vessels are found. DENV suppresses the interferon response, replicates, and causes disease in humans but not wild-type mice. Here, we used mice lacking the interferon-α/ß receptor (Ifnar(-/-)), which had normal cell populations in the skin and were susceptible to intradermal DENV infection, to investigate the dynamics of early DENV infection of immune cells in the skin. CD103(+) classical dendritic cells (cDCs), Ly6C(-) CD11b(+) cDCs, and macrophages in the steady-state dermis were initial targets of DENV infection 12-24 hours post-inoculation but then decreased in frequency. We demonstrated recruitment of adoptively-transferred Ly6C(high) monocytes from wild-type and Ifnar(-/-) origin to the DENV-infected dermis and differentiation to Ly6C(+) CD11b(+) monocyte-derived DCs (moDCs), which became DENV-infected after 48 hours, and were then the major targets for virus replication. Ly6C(high) monocytes that entered the DENV-infected dermis expressed chemokine receptor CCR2, likely mediating recruitment. Further, we show that ∼ 100-fold more hematopoietic cells in the dermis were DENV-infected compared to Langerhans cells in the epidermis. Overall, these results identify the dermis as the main site of early DENV replication and show that DENV infection in the skin occurs in two waves: initial infection of resident cDCs and macrophages, followed by infection of monocytes and moDCs that are recruited to the dermis. Our study reveals a novel viral strategy of exploiting monocyte recruitment to increase the number of targets for infection at the site of invasion in the skin and highlights the skin as a potential site for therapeutic action or intradermal vaccination.


Assuntos
Diferenciação Celular/imunologia , Vírus da Dengue/fisiologia , Dengue/imunologia , Derme/imunologia , Células de Langerhans/imunologia , Monócitos/imunologia , Replicação Viral/imunologia , Animais , Diferenciação Celular/genética , Dengue/genética , Dengue/patologia , Dengue/prevenção & controle , Derme/patologia , Derme/virologia , Epiderme/imunologia , Epiderme/patologia , Epiderme/virologia , Células de Langerhans/patologia , Células de Langerhans/virologia , Camundongos , Camundongos Knockout , Monócitos/patologia , Monócitos/virologia , Receptor de Interferon alfa e beta , Vacinação
16.
Acta Derm Venereol ; 96(3): 319-22, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26390894

RESUMO

The role of transient receptor potential vanilloid-1 (TRPV1) in the initiation of neurogenic inflammation and transduction of pain is well established. In this study 33 patients with herpes zoster (HZ) were recruited from a single centre and underwent a questionnaire interview at their first visit. Punch biopsies from the HZ lesions and the contralateral unaffected skin were performed to localize and quantify the expression of TRPV1. Immunofluorescent staining for TRPV1 was most prominent in the epidermal keratinocytes. Both TRPV1 mRNA and protein levels were significantly higher in the HZ epidermis than in control epidermis (relative ratio 1.62 ± 0.27, p = 0.033 and 2.55 ± 0.51, p = 0.005, respectively). Protein TRPV1 ratio (HZ lesion/control) correlated with the degree of pain (measured on a visual analogue scale; VAS) (p = 0.017) and was significantly lower in patients who had taken either HZ medication or painkillers prior to their visit. These results suggest that non-neuronal TRPV1 may contribute to acute pain in herpes zoster.


Assuntos
Dor Aguda/metabolismo , Epiderme/química , Herpes Zoster/metabolismo , Queratinócitos/química , Canais de Cátion TRPV/análise , Dor Aguda/diagnóstico , Dor Aguda/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Estudos de Casos e Controles , Epiderme/virologia , Feminino , Imunofluorescência , Herpes Zoster/diagnóstico , Herpes Zoster/genética , Herpes Zoster/virologia , Humanos , Queratinócitos/virologia , Masculino , Pessoa de Meia-Idade , Medição da Dor , RNA Mensageiro/genética , Índice de Gravidade de Doença , Inquéritos e Questionários , Canais de Cátion TRPV/genética , Adulto Jovem
17.
PLoS Pathog ; 8(7): e1002833, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22911498

RESUMO

Infection with genus beta human papillomaviruses (HPV) is implicated in the development of non-melanoma skin cancer. This was first evidenced for HPV5 and 8 in patients with epidermodysplasia verruciformis (EV), a genetic skin disease. So far, it has been unknown how these viruses overcome cutaneous immune control allowing their persistence in lesional epidermis of these patients. Here we demonstrate that Langerhans cells, essential for skin immunosurveillance, are strongly reduced in HPV8-positive lesional epidermis from EV patients. Interestingly, the same lesions were largely devoid of the important Langerhans cells chemoattractant protein CCL20. Applying bioinformatic tools, chromatin immunoprecipitation assays and functional studies we identified the differentiation-associated transcription factor CCAAT/enhancer binding protein ß (C/EBPß) as a critical regulator of CCL20 gene expression in normal human keratinocytes. The physiological relevance of this finding is supported by our in vivo studies showing that the expression patterns of CCL20 and nuclear C/EBPß converge spatially in the most differentiated layers of human epidermis. Our analyses further identified C/EBPß as a novel target of the HPV8 E7 oncoprotein, which co-localizes with C/EBPß in the nucleus, co-precipitates with it and interferes with its binding to the CCL20 promoter in vivo. As a consequence, the HPV8 E7 but not E6 oncoprotein suppressed C/EBPß-inducible and constitutive CCL20 gene expression as well as Langerhans cell migration. In conclusion, our study unraveled a novel molecular mechanism central to cutaneous host defense. Interference of the HPV8 E7 oncoprotein with this regulatory pathway allows the virus to disrupt the immune barrier, a major prerequisite for its epithelial persistence and procarcinogenic activity.


Assuntos
Betapapillomavirus/patogenicidade , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Queratinócitos/metabolismo , Células de Langerhans/fisiologia , Infecções por Papillomavirus/imunologia , Neoplasias Cutâneas/virologia , Betapapillomavirus/imunologia , Betapapillomavirus/metabolismo , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Movimento Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Epiderme/metabolismo , Epiderme/virologia , Epidermodisplasia Verruciforme/virologia , Humanos , Queratinócitos/imunologia , Proteínas Oncogênicas Virais/metabolismo , Regiões Promotoras Genéticas
18.
J Theor Biol ; 350: 98-109, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24412334

RESUMO

The controversy over whether vaccine-targeted HPV types will be replaced by other oncogenic, non-vaccine-targeted types remains unresolved. This is in part because little is known about the ecology of HPV types. Patient data has been interpreted to suggest independence or facilitative interactions between types and therefore replacement is believed to be unlikely. With a novel mathematical model, we investigated which HPV type interactions and their immune responses gave qualitatively similar patterns frequently observed in patients. To assess the possibility of type replacement, vaccination was added to see if non-vaccine-targeted types increased their 'niche'. Our model predicts that independence and facilitation are not necessary for the coexistence of types inside hosts, especially given the patchy nature of HPV infection. In fact, independence and facilitation inadequately represented co-infected patients. We found that some form of competition is likely in natural co-infections. Hence, non-vaccine-targeted types that are not cross-reactive with the vaccine could spread to more patches and can increase their viral load in vaccinated hosts. The degree to which this happens will depend on replication and patch colonization rates. Our results suggest that independence between types could be a fallacy, and so without conclusively untangling HPV within-host ecology, type replacement remains theoretically viable. More ecological thinking is needed in future studies.


Assuntos
Fenômenos Ecológicos e Ambientais , Papillomaviridae/classificação , Papillomaviridae/fisiologia , Coinfecção/imunologia , Coinfecção/virologia , Epiderme/patologia , Epiderme/virologia , Humanos , Imunidade Inata/imunologia , Papillomaviridae/imunologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Vacinas contra Papillomavirus/imunologia , Fatores de Tempo , Carga Viral
19.
Vet Res ; 45: 100, 2014 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-25281322

RESUMO

Cyprinid herpesvirus 3 (CyHV-3) causes a lethal disease in common and koi carp (Cyprinus carpio). The present study investigated the ability of CyHV-3 to infect common carp during the early stages of its development (from embryos to fingerlings) after inoculation by immersion in water containing the virus. Fish were inoculated at different times after hatching with a pathogenic recombinant CyHV-3 strain expressing luciferase. The sensitivity and permissivity of carp to CyHV-3 were investigated using in vivo bioluminescence imaging. The susceptibility of carp to CyHV-3 disease was investigated by measuring the survival rate. Carp were sensitive and permissive to CyHV-3 infection and susceptible to CyHV-3 disease at all stages of development, but the sensitivity of the two early developmental stages (embryo and larval stages) was limited compared to later stages. The lower sensitivity observed for the early developmental stages was due to stronger inhibition of viral entry into the host by epidermal mucus. In addition, independent of the developmental stage at which inoculation was performed, the localization of light emission suggested that the skin is the portal of CyHV-3 entry. Taken together, the results of the present study demonstrate that carp are sensitive and permissive to CyHV-3 at all stages of development and confirm that the skin is the major portal of entry after inoculation by immersion in infectious water. The results also stress the role of epidermal mucus as an innate immune barrier against pathogens even and especially at the early stages of development.


Assuntos
Carpas/imunologia , Carpas/virologia , Infecções por Vírus de DNA/veterinária , Vírus de DNA/fisiologia , Epiderme/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata , Animais , Carpas/crescimento & desenvolvimento , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/veterinária , Suscetibilidade a Doenças/virologia , Epiderme/virologia , Doenças dos Peixes/virologia , Muco/imunologia , Muco/virologia
20.
Fish Shellfish Immunol ; 38(2): 406-11, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24746936

RESUMO

Lymphocystis disease virus (LCDV) is the causative agent of lymphocystis disease (LCD). In this study, we investigated the mechanisms of lymphocystis cell (LCC) formation from the viewpoint of gene expression changes in the infected fish. LCC occurrence and virus titers in the experimentally infected Japanese flounder, Paralichthys olivaceus were monitored by visual confirmation and real-time PCR, respectively. The gene expression changes in the fish fin were investigated by microarray experiments. LCCs firstly appeared in the fish at 21 days post infection (dpi). LCD incidence increased with time and reached 92.9% at 62 dpi. LCDV genome was firstly detected from dorsal fins at 14 dpi, and the relative amount of the genome gradually-increased until 56 dpi. Since the occurrence of LCC was approximately synchronized with increasing of the virus genome, virus replication might play important roles for LCC formation. The microarray detected a few gene expression changes until 28 dpi. However, the number of expression changed genes dramatically increased between 28 and 42 dpi in which LCCs formation was active. From the microarray data analyses, apoptosis and cell division related genes were down-regulated, whereas cell fusion and collagen related genes were up-regulated at 42 dpi. Together with the observation of morphological changes of LCCs in previous reports, it is suggested that the following steps are involved in LCC formation: the virus infected cells were (1) inhibited apoptotic death and (2) cell division before enlargement, (3) hypertrophied by cell fusion, and (4) surrounded by a hyaline capsule associated with the alteration of collagen fibers.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/imunologia , Linguados , Regulação da Expressão Gênica , Iridoviridae/imunologia , Nadadeiras de Animais/virologia , Animais , Apoptose , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Epiderme/virologia , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Análise Serial de Proteínas , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Dermatopatias/genética , Dermatopatias/imunologia , Dermatopatias/veterinária , Dermatopatias/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa