Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Cell ; 177(6): 1536-1552.e23, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31150623

RESUMO

Ectopic lipid deposition and altered mitochondrial dynamics contribute to the development of obesity and insulin resistance. However, the mechanistic link between these processes remained unclear. Here we demonstrate that the C16:0 sphingolipid synthesizing ceramide synthases, CerS5 and CerS6, affect distinct sphingolipid pools and that abrogation of CerS6 but not of CerS5 protects from obesity and insulin resistance. We identify proteins that specifically interact with C16:0 sphingolipids derived from CerS5 or CerS6. Here, only CerS6-derived C16:0 sphingolipids bind the mitochondrial fission factor (Mff). CerS6 and Mff deficiency protect from fatty acid-induced mitochondrial fragmentation in vitro, and the two proteins genetically interact in vivo in obesity-induced mitochondrial fragmentation and development of insulin resistance. Our experiments reveal an unprecedented specificity of sphingolipid signaling depending on specific synthesizing enzymes, provide a mechanistic link between hepatic lipid deposition and mitochondrial fragmentation in obesity, and define the CerS6-derived sphingolipid/Mff interaction as a therapeutic target for metabolic diseases.


Assuntos
Proteínas de Membrana/metabolismo , Obesidade/metabolismo , Esfingolipídeos/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Animais , Apoptose , Linhagem Celular , Células HeLa , Humanos , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Obesidade/fisiopatologia , Esfingolipídeos/fisiologia , Esfingosina N-Aciltransferase/fisiologia
2.
Nat Rev Mol Cell Biol ; 19(3): 175-191, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29165427

RESUMO

Studies of bioactive lipids in general and sphingolipids in particular have intensified over the past several years, revealing an unprecedented and unanticipated complexity of the lipidome and its many functions, which rivals, if not exceeds, that of the genome or proteome. These results highlight critical roles for bioactive sphingolipids in most, if not all, major cell biological responses, including all major cell signalling pathways, and they link sphingolipid metabolism to key human diseases. Nevertheless, the fairly nascent field of bioactive sphingolipids still faces challenges in its biochemical and molecular underpinnings, including defining the molecular mechanisms of pathway and enzyme regulation, the study of lipid-protein interactions and the development of cellular probes, suitable biomarkers and therapeutic approaches.


Assuntos
Esfingolipídeos/metabolismo , Envelhecimento/metabolismo , Animais , Apoptose , Autofagia , Transporte Biológico Ativo , Adesão Celular , Compartimento Celular , Movimento Celular , Dano ao DNA , Enzimas/metabolismo , Humanos , Sistema Imunitário/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Neoplasias/metabolismo , Transdução de Sinais , Esfingolipídeos/química , Esfingolipídeos/fisiologia
3.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163211

RESUMO

The sphingolipid sphingosine-1-phosphate (S1P) promotes tumor development through a variety of mechanisms including promoting proliferation, survival, and migration of cancer cells. Moreover, S1P emerged as an important regulator of tumor microenvironmental cell function by modulating, among other mechanisms, tumor angiogenesis. Therefore, S1P was proposed as a target for anti-tumor therapy. The clinical success of current cancer immunotherapy suggests that future anti-tumor therapy needs to consider its impact on the tumor-associated immune system. Hereby, S1P may have divergent effects. On the one hand, S1P gradients control leukocyte trafficking throughout the body, which is clinically exploited to suppress auto-immune reactions. On the other hand, S1P promotes pro-tumor activation of a diverse range of immune cells. In this review, we summarize the current literature describing the role of S1P in tumor-associated immunity, and we discuss strategies for how to target S1P for anti-tumor therapy without causing immune paralysis.


Assuntos
Lisofosfolipídeos/imunologia , Lisofosfolipídeos/metabolismo , Neoplasias/imunologia , Esfingosina/análogos & derivados , Animais , Humanos , Sistema Imunitário/metabolismo , Inflamação/imunologia , Neoplasias/metabolismo , Neovascularização Patológica/imunologia , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo , Esfingolipídeos/fisiologia , Esfingosina/imunologia , Esfingosina/metabolismo , Microambiente Tumoral/fisiologia
4.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35163176

RESUMO

Premature infants are born with developing lungs burdened by surfactant deficiency and a dearth of antioxidant defense systems. Survival rate of such infants has significantly improved due to advances in care involving mechanical ventilation and oxygen supplementation. However, a significant subset of such survivors develops the chronic lung disease, Bronchopulmonary dysplasia (BPD), characterized by enlarged, simplified alveoli and deformed airways. Among a host of factors contributing to the pathogenesis is oxidative damage induced by exposure of the developing lungs to hyperoxia. Recent data indicate that hyperoxia induces aberrant sphingolipid signaling, leading to mitochondrial dysfunction and abnormal reactive oxygen species (ROS) formation (ROS). The role of sphingolipids such as ceramides and sphingosine 1-phosphate (S1P), in the development of BPD emerged in the last decade. Both ceramide and S1P are elevated in tracheal aspirates of premature infants of <32 weeks gestational age developing BPD. This was faithfully reflected in the murine models of hyperoxia and BPD, where there is an increased expression of sphingolipid metabolites both in lung tissue and bronchoalveolar lavage. Treatment of neonatal pups with a sphingosine kinase1 specific inhibitor, PF543, resulted in protection against BPD as neonates, accompanied by improved lung function and reduced airway remodeling as adults. This was accompanied by reduced mitochondrial ROS formation. S1P receptor1 induced by hyperoxia also aggravates BPD, revealing another potential druggable target in this pathway for BPD. In this review we aim to provide a detailed description on the role played by sphingolipid signaling in hyperoxia induced lung injury and BPD.


Assuntos
Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Lesão Pulmonar/metabolismo , Esfingolipídeos/fisiologia , Remodelação das Vias Aéreas , Animais , Animais Recém-Nascidos , Ceramidas/metabolismo , Modelos Animais de Doenças , Humanos , Hiperóxia/metabolismo , Hiperóxia/fisiopatologia , Lactente , Recém-Nascido , Pulmão/patologia , Lesão Pulmonar/patologia , Lisofosfolipídeos/metabolismo , Metanol/farmacologia , Camundongos , Estresse Oxidativo/fisiologia , Alvéolos Pulmonares/metabolismo , Pirrolidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Sulfonas/farmacologia
5.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298977

RESUMO

For decades, lipids were confined to the field of structural biology and energetics as they were considered only structural constituents of cellular membranes and efficient sources of energy production. However, with advances in our understanding in lipidomics and improvements in the technological approaches, astounding discoveries have been made in exploring the role of lipids as signaling molecules, termed bioactive lipids. Among these bioactive lipids, sphingolipids have emerged as distinctive mediators of various cellular processes, ranging from cell growth and proliferation to cellular apoptosis, executing immune responses to regulating inflammation. Recent studies have made it clear that sphingolipids, their metabolic intermediates (ceramide, sphingosine-1-phosphate, and N-acetyl sphingosine), and enzyme systems (cyclooxygenases, sphingosine kinases, and sphingomyelinase) harbor diverse yet interconnected signaling pathways in the central nervous system (CNS), orchestrate CNS physiological processes, and participate in a plethora of neuroinflammatory and neurodegenerative disorders. Considering the unequivocal importance of sphingolipids in CNS, we review the recent discoveries detailing the major enzymes involved in sphingolipid metabolism (particularly sphingosine kinase 1), novel metabolic intermediates (N-acetyl sphingosine), and their complex interactions in CNS physiology, disruption of their functionality in neurodegenerative disorders, and therapeutic strategies targeting sphingolipids for improved drug approaches.


Assuntos
Sistema Nervoso Central/fisiopatologia , Inflamação/fisiopatologia , Lipídeos de Membrana/fisiologia , Modelos Biológicos , Degeneração Neural/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Esfingolipídeos/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Ceramidas/fisiologia , Eicosanoides/fisiologia , Previsões , Homeostase , Humanos , Inflamação/patologia , Lipoxigenase/fisiologia , Lisofosfolipídeos/fisiologia , Degeneração Neural/patologia , Doenças Neurodegenerativas/patologia , Neuroglia/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Prostaglandina-Endoperóxido Sintases/fisiologia , Esfingosina/análogos & derivados , Esfingosina/fisiologia
6.
Clin Sci (Lond) ; 133(6): 763-776, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30890654

RESUMO

Sphingolipids, such as sphingomyelins, ceramides, glycosphingolipids, and sphingosine-1-phosphates (S1P) are a large group of structurally and functionally diverse molecules. Some specific species are found associated with atherogenesis and provide novel therapeutic targets. Herein, we briefly review how sphingolipids are implicated in the progression of atherosclerosis and related diseases, and then we discuss the potential therapy options by targetting several key enzymes in sphingolipid metabolism.


Assuntos
Aterosclerose/metabolismo , Terapia de Alvo Molecular/métodos , Esfingolipídeos/fisiologia , Aterosclerose/tratamento farmacológico , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Ceramidas/metabolismo , Humanos , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/fisiologia , Esfingomielinas/metabolismo
7.
J Dairy Sci ; 102(9): 7619-7639, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31301829

RESUMO

The physiological control of lactation through coordinated adaptations is of fundamental importance for mammalian neonatal life. The putative actions of reduced insulin sensitivity and responsiveness and enhanced adipose tissue lipolysis spare glucose for the mammary synthesis of milk. However, severe insulin antagonism and body fat mobilization may jeopardize hepatic health and lactation in dairy cattle. Interestingly, lipolysis- and dietary-derived fatty acids may impair insulin sensitivity in cows. The mechanisms are undefined yet have major implications for the development of postpartum fatty liver disease. In nonruminants, the sphingolipid ceramide is a potent mediator of saturated fat-induced insulin resistance that defines in part the mechanisms of type 2 diabetes mellitus and nonalcoholic fatty liver disease. In ruminants including the lactating dairy cow, the functions of ceramide had remained virtually undescribed. Through a series of hypothesis-centered studies, ceramide has emerged as a potential antagonist of insulin-stimulated glucose utilization by adipose and skeletal muscle tissues in dairy cattle. Importantly, bovine data suggest that the ability of ceramide to inhibit insulin action likely depends on the lipolysis-dependent hepatic synthesis and secretion of ceramide during early lactation. Although these mechanisms appear to fade as lactation advances beyond peak milk production, early evidence suggests that palmitic acid feeding is a means to augment ceramide supply. Herein, we review a body of work that focuses on sphingolipid biology and the role of ceramide in the dairy cow within the framework of hepatic and fatty acid metabolism, insulin function, and lactation. The potential involvement of ceramide within the endocrine control of lactation is also considered.


Assuntos
Bovinos/fisiologia , Ceramidas/fisiologia , Esfingolipídeos/fisiologia , Animais , Indústria de Laticínios , Dieta/veterinária , Ácidos Graxos/metabolismo , Feminino , Insulina/fisiologia , Lactação/fisiologia , Fígado/metabolismo , Leite/metabolismo
8.
Exp Eye Res ; 156: 87-94, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27039707

RESUMO

How the lens ages successfully is a lesson in biological adaption and the emergent properties of its complement of cells and proteins. This living tissue contains some of the oldest proteins in our bodies and yet they remain functional for decades, despite exposure to UV light, to reactive oxygen species and all the other hazards to protein function. This remarkable feat is achieved by a shrewd investment in very stable proteins as lens crystallins, by providing a reservoir of ATP-independent protein chaperones unequalled by any other tissue and by an oxidation-resistant environment. In addition, glutathione, a free radical scavenger, is present in mM concentrations and the plasma membranes contain oxidation-resistant sphingolipids what compromises lens function as it ages? In this review, we examine the role of small molecules in the prevention or causation of cataracts, including those associated with diet, metabolic pathways and drug therapy (steroids).


Assuntos
Catarata/etiologia , Catarata/prevenção & controle , Cristalinas/fisiologia , Dieta , Glutationa/fisiologia , Cristalino/metabolismo , Esfingolipídeos/fisiologia , Envelhecimento/fisiologia , Animais , Antioxidantes/fisiologia , Glucocorticoides/efeitos adversos , Humanos , Redes e Vias Metabólicas , Vitaminas/fisiologia
9.
Subcell Biochem ; 86: 249-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27023239

RESUMO

Sphingolipids, a once overlooked class of lipids in plants, are now recognized as abundant and essential components of plasma membrane and other endomembranes of plant cells. In addition to providing structural integrity to plant membranes, sphingolipids contribute to Golgi trafficking and protein organizational domains in the plasma membrane. Sphingolipid metabolites have also been linked to the regulation of cellular processes, including programmed cell death. Advances in mass spectrometry-based sphingolipid profiling and analyses of Arabidopsis mutants have enabled fundamental discoveries in sphingolipid structural diversity, metabolism, and function that are reviewed here. These discoveries are laying the groundwork for the tailoring of sphingolipid biosynthesis and catabolism for improved tolerance of plants to biotic and abiotic stresses.


Assuntos
Plantas/metabolismo , Esfingolipídeos/metabolismo , Membrana Celular/metabolismo , Estrutura Molecular , Fosforilação , Esfingolipídeos/biossíntese , Esfingolipídeos/química , Esfingolipídeos/fisiologia
10.
J Neurochem ; 137(4): 485-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26990419

RESUMO

This Editorial highlights a study by Müller et al. in which the authors suggest a new sphingolipid-dependent mechanism for behavioral extinction. Their study should be considered in the broad perspective of sphingolipid metabolic pathways and traffic (depicted in the graphic). Read the highlighted article 'A sphingolipid mechanism for behavioral extinction' on page 589.


Assuntos
Encéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Esfingolipídeos/fisiologia , Animais , Humanos , Redes e Vias Metabólicas/fisiologia
11.
J Pediatr ; 173 Suppl: S53-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27234412

RESUMO

Sphingomyelin (SM), glycosphingolipids, and gangliosides are important polar lipids in the milk fat globule membrane but are not found in standard milk replacement formulas. Because digestion and absorption of SM and glycosphingolipids generate the bioactive metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P), and because intact gangliosides may have beneficial effects in the gut, this may be important for gut integrity and immune maturation in the neonate. The brush border enzymes that hydrolyze milk SM, alkaline sphingomyelinase (nucleotide phosphodiesterase pyrophosphatase 7), and neutral ceramidase are expressed at birth in both term and preterm infants. Released sphingosine is absorbed, phosphorylated to S1P, and converted to palmitic acid via S1P-lyase in the gut mucosa. Hypothetically, S1P also may be released from absorptive cells and exert important paracrine actions favoring epithelial integrity and renewal, as well as immune function, including secretory IgA production and migration of T lymphocyte subpopulations. Gluco-, galacto-, and lactosylceramide are hydrolyzed to ceramide by lactase-phlorizin hydrolase, which also hydrolyzes lactose. Gangliosides may adhere to the brush border and is internalized, modified, and possibly transported into blood, and may exert protective functions by their interactions with bacteria, bacterial toxins, and the brush border.


Assuntos
Trato Gastrointestinal/imunologia , Fenômenos Fisiológicos da Nutrição do Lactente/imunologia , Leite Humano/imunologia , Esfingolipídeos/imunologia , Trato Gastrointestinal/fisiologia , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente/fisiologia , Recém-Nascido , Lipólise/fisiologia , Leite Humano/química , Leite Humano/fisiologia , Esfingolipídeos/fisiologia
12.
Curr Allergy Asthma Rep ; 16(7): 48, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27333777

RESUMO

Bioactive lipids are critical regulators of inflammation. Over the last 75 years, these diverse compounds have emerged as clinically-relevant mediators of allergic disease pathophysiology. Animal and human studies have demonstrated the importance of lipid mediators in the development of asthma, allergic rhinitis, urticaria, anaphylaxis, atopic dermatitis, and food allergy. Lipids are critical participants in cell signaling events which influence key physiologic (bronchoconstriction) and immune phenomena (degranulation, chemotaxis, sensitization). Lipid-mediated cellular mechanisms including: (1) formation of structural support platforms (lipid rafts) for receptor signaling complexes, (2) activation of a diverse family of G-protein coupled receptors, and (3) mediating intracellular signaling cascades by acting as second messengers. Here, we review four classes of bioactive lipids (platelet activating factor, the leukotrienes, the prostanoids, and the sphingolipids) with special emphasis on lipid synthesis pathways and signaling, atopic disease pathology, and the ongoing development of atopy treatments targeting lipid mediator pathways.


Assuntos
Hipersensibilidade/metabolismo , Animais , Eicosanoides/fisiologia , Humanos , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/imunologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Leucotrienos/fisiologia , Metabolismo dos Lipídeos , Terapia de Alvo Molecular , Fator de Ativação de Plaquetas/fisiologia , Transdução de Sinais , Esfingolipídeos/fisiologia
13.
Apoptosis ; 20(5): 645-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25697338

RESUMO

Apoptosis and autophagy are two evolutionary conserved processes that exert a critical role in the maintenance of tissue homeostasis. While apoptosis is a tightly regulated cell program implicated in the removal of damaged or unwanted cells, autophagy is a cellular catabolic pathway that is involved in the lysosomal degradation and recycling of proteins and organelles, and is thereby considered an important cytoprotection mechanism. Sphingolipids (SLs), which are ubiquitous membrane lipids in eukaryotes, participate in the generation of various membrane structures, including lipid rafts and caveolae, and contribute to a number of cellular functions such as cell proliferation, apoptosis and, as suggested more recently, autophagy. For instance, SLs are hypothesized to be involved in several intracellular processes, including organelle membrane scrambling, whilst at the plasma membrane lipid rafts, acting as catalytic domains, strongly contribute to the ignition of critical signaling pathways determining cell fate. In particular, by targeting several shared regulators, ceramide, sphingosine-1-phosphate, dihydroceramide, sphingomyelin and gangliosides seem able to differentially regulate the autophagic pathway and/or contribute to the autophagosome formation. This review illustrates recent studies on this matter, particularly lipid rafts, briefly underscoring the possible implication of SLs and their alterations in the autophagy disturbances and in the pathogenesis of some human diseases.


Assuntos
Autofagia , Fagossomos/fisiologia , Esfingolipídeos/fisiologia , Animais , Apoptose , Humanos , Morfogênese , Biogênese de Organelas , Transdução de Sinais
14.
Apoptosis ; 20(5): 740-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25753687

RESUMO

Sphingolipids are a diverse class of signaling molecules implicated in many important aspects of cellular biology, including growth, differentiation, apoptosis, and autophagy. Autophagy and apoptosis are fundamental physiological processes essential for the maintenance of cellular and tissue homeostasis. There is great interest into the investigation of sphingolipids and their roles in regulating these key physiological processes as well as the manifestation of several disease states. With what is known to date, the entire scope of sphingolipid signaling is too broad, and a single review would hardly scratch the surface. Therefore, this review attempts to highlight the significance of sphingolipids in determining cell fate (e.g. apoptosis, autophagy, cell survival) in the context of the healthy lung, as well as various respiratory diseases including acute lung injury, acute respiratory distress syndrome, bronchopulmonary dysplasia, asthma, chronic obstructive pulmonary disease, emphysema, and cystic fibrosis. We present an overview of the latest findings related to sphingolipids and their metabolites, provide a short introduction to autophagy and apoptosis, and then briefly highlight the regulatory roles of sphingolipid metabolites in switching between cell survival and cell death. Finally, we describe functions of sphingolipids in autophagy and apoptosis in lung homeostasis, especially in the context of the aforementioned diseases.


Assuntos
Pneumopatias/metabolismo , Pulmão/patologia , Esfingolipídeos/fisiologia , Animais , Apoptose , Autofagia , Sobrevivência Celular , Homeostase , Humanos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pneumopatias/patologia , Transdução de Sinais
15.
Biol Cell ; 106(6): 167-81, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24678717

RESUMO

The heart is the first organ in the embryo to form. Its structural and functional complexity is the result of a thorough developmental program, where sphingolipids play an important role in cardiogenesis, heart maturation, angiogenesis, the regulation of vascular tone and vessel permeability. Sphingolipids are necessary for signal transduction and membrane microdomain formation. In addition, recent evidence suggests that sphingolipid metabolism is directly interconnected to the modulation of oxidative stress. However, cardiovascular development is highly sensitive to excessive reactive species production, and disturbances in sphingolipid metabolism can lead to abnormal development and cardiac disease. Therefore, in this review, we address the molecular link between sphingolipids and oxidative stress, connecting these pathways to cardiovascular development and cardiovascular disease.


Assuntos
Sistema Cardiovascular/embriologia , Espécies Reativas de Oxigênio/metabolismo , Esfingolipídeos/fisiologia , Animais , Humanos , Camundongos , Estresse Oxidativo/fisiologia , Transdução de Sinais
16.
Biochemistry (Mosc) ; 80(1): 104-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25754045

RESUMO

Sphingolipids play an important role in the development of insulin resistance. Ceramides are the most potent inhibitors of insulin signal transduction. Ceramides are generated in response to stress stimuli and in old age. In this work, we studied the possible contribution of different pathways of sphingolipid metabolism in age-dependent insulin resistance development in liver cells. Inhibition of key enzymes of sphingolipid synthesis (serine palmitoyl transferase, ceramide synthase) and degradation (neutral and acidic SMases) by means of specific inhibitors (myriocin, fumonisin B1, imipramine, and GW4869) was followed with the reduction of ceramide level and partly improved insulin regulation of glucose metabolism in "old" hepatocytes. Imipramine and GW4869 decreased significantly the acidic and neutral SMase activities, respectively. Treatment of "old" cells with myriocin or fumonisin B1 reduced the elevated in old age ceramide and SM synthesis. Ceramide and SM levels and glucose metabolism regulation by insulin could be improved with concerted action of all tested inhibitors of sphingolipid turnover on hepatocytes. The data demonstrate that not only newly synthesized ceramide and SM but also neutral and acidic SMase-dependent ceramide accumulation plays an important role in development of age-dependent insulin resistance.


Assuntos
Envelhecimento , Ceramidas/metabolismo , Glicogênio/biossíntese , Hepatócitos/efeitos dos fármacos , Resistência à Insulina , Esfingolipídeos/metabolismo , Compostos de Anilina/farmacologia , Animais , Compostos de Benzilideno/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Fumonisinas/farmacologia , Glucose/metabolismo , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Imipramina/farmacologia , Insulina/farmacologia , Masculino , Oxirredutases/antagonistas & inibidores , Oxirredutases/fisiologia , Ratos , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/fisiologia , Esfingolipídeos/antagonistas & inibidores , Esfingolipídeos/fisiologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/fisiologia
17.
Mediators Inflamm ; 2015: 487508, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26770018

RESUMO

Sphingolipid bioactivities in the respiratory airways and the roles of the proteins that handle them have been extensively investigated. Gas or inhaled particles or microorganisms come into contact with mucus components, epithelial cells, blood barrier, and immune surveillance within the airways. Lung structure and functionality rely on a complex interplay of polar and hydrophobic structures forming the surfactant layer and governing external-internal exchanges, such as glycerol-phospholipids sphingolipids and proteins. Sphingolipids act as important signaling mediators involved in the control of cell survival and stress response, as well as secreted molecules endowed with inflammation-regulatory activities. Most successful respiratory infection and injuries evolve in the alveolar compartment, the critical lung functional unit involved in gas exchange. Sphingolipid altered metabolism in this compartment is closely related to inflammatory reaction and ceramide increase, in particular, favors the switch to pathological hyperinflammation. This short review explores a few mechanisms underlying sphingolipid involvement in the healthy lung (surfactant production and endothelial barrier maintenance) and in a selection of lung pathologies in which the impact of sphingolipid synthesis and metabolism is most apparent, such as acute lung injury, or chronic pathologies such as cystic fibrosis and chronic obstructive pulmonary disease.


Assuntos
Pneumonia/fisiopatologia , Esfingolipídeos/fisiologia , Animais , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Humanos , Camundongos , Pneumonia/etiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
18.
Mediators Inflamm ; 2015: 640540, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26688618

RESUMO

Fungal infections pose a significant risk for the increasing population of individuals who are immunocompromised. Phagocytes play an important role in immune defense against fungal pathogens, but the interactions between host and fungi are still not well understood. Sphingolipids have been shown to play an important role in many cell functions, including the function of phagocytes. In this review, we discuss major findings that relate to the importance of sphingolipids in macrophage and neutrophil function and the role of macrophages and neutrophils in the most common types of fungal infections, as well as studies that have linked these three concepts to show the importance of sphingolipid signaling in immune response to fungal infections.


Assuntos
Micoses/imunologia , Fagocitose , Esfingolipídeos/fisiologia , Aspergilose/imunologia , Candidíase/imunologia , Criptococose/imunologia , Humanos , Macrófagos/fisiologia , Micoses/tratamento farmacológico
19.
Mediators Inflamm ; 2015: 520618, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648664

RESUMO

Nutrient oversupply associated with a high fat diet (HFD) significantly alters cellular metabolism, and specifically including sphingolipid metabolism. Sphingolipids are emerging as bioactive lipids that play key roles in regulating functions, in addition to their traditional roles as membrane structure. HFD enhances de novo sphingolipid synthesis and turnover of sphingolipids via the salvage pathway, resulting in the generation of ceramide, and more specifically long chain ceramide species. Additionally, HFD elevates sphingomyelin and sphingosine-1 phosphate (S1P) levels in several tissues including liver, skeletal muscle, adipose tissue, and cardiovascular tissues. HFD-stimulated sphingolipid generation contributes to systemic insulin resistance, dysregulated lipid accumulation, and cytokine expression and secretion from skeletal muscle and adipose tissues, exacerbating obesity-related conditions. Furthermore, altered sphingolipid levels, particularly ceramide and sphingomyelin, are involved in obesity-induced endothelial dysfunction and atherosclerosis. In this review, HFD-mediated sphingolipid metabolism and its impact on HFD-induced biology and pathobiology will be discussed.


Assuntos
Dieta Hiperlipídica , Obesidade/complicações , Esfingolipídeos/fisiologia , Tecido Adiposo/metabolismo , Sistema Cardiovascular/metabolismo , Humanos , Resistência à Insulina , Fígado/metabolismo , Músculo Esquelético/metabolismo
20.
PLoS Comput Biol ; 9(5): e1003078, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737740

RESUMO

The regulatory roles of sphingolipids in diverse cell functions have been characterized extensively. However, the dynamics and interactions among the different sphingolipid species are difficult to assess, because de novo biosynthesis, metabolic inter-conversions, and the retrieval of sphingolipids from membranes form a complex, highly regulated pathway system. Here we analyze the heat stress response of this system in the yeast Saccharomyces cerevisiae and demonstrate how the cell dynamically adjusts its enzyme profile so that it is appropriate for operation under stress conditions before changes in gene expression become effective. The analysis uses metabolic time series data, a complex mathematical model, and a custom-tailored optimization strategy. The results demonstrate that all enzyme activities rapidly increase in an immediate response to the elevated temperature. After just a few minutes, different functional clusters of enzymes follow distinct activity patterns. Interestingly, starting after about six minutes, both de novo biosynthesis and all exit routes from central sphingolipid metabolism become blocked, and the remaining metabolic activity consists entirely of an internal redistribution among different sphingoid base and ceramide pools. After about 30 minutes, heat stress is still in effect and the enzyme activity profile is still significantly changed. Importantly, however, the metabolites have regained concentrations that are essentially the same as those under optimal conditions.


Assuntos
Resposta ao Choque Térmico/fisiologia , Redes e Vias Metabólicas/fisiologia , Saccharomyces cerevisiae , Esfingolipídeos , Ceramidase Alcalina , Coenzima A Ligases , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Esfingolipídeos/metabolismo , Esfingolipídeos/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa