Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.510
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Cell ; 187(6): 1440-1459.e24, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490181

RESUMO

Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.


Assuntos
Glicoproteínas da Zona Pelúcida , Humanos , Masculino , Sêmen , Espermatozoides/química , Espermatozoides/metabolismo , Zona Pelúcida/química , Zona Pelúcida/metabolismo , Glicoproteínas da Zona Pelúcida/química , Glicoproteínas da Zona Pelúcida/metabolismo , Óvulo/química , Óvulo/metabolismo , Feminino
2.
Cell ; 186(23): 5041-5053.e19, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37865089

RESUMO

To understand the molecular mechanisms of cellular pathways, contemporary workflows typically require multiple techniques to identify proteins, track their localization, and determine their structures in vitro. Here, we combined cellular cryoelectron tomography (cryo-ET) and AlphaFold2 modeling to address these questions and understand how mammalian sperm are built in situ. Our cellular cryo-ET and subtomogram averaging provided 6.0-Å reconstructions of axonemal microtubule structures. The well-resolved tertiary structures allowed us to unbiasedly match sperm-specific densities with 21,615 AlphaFold2-predicted protein models of the mouse proteome. We identified Tektin 5, CCDC105, and SPACA9 as novel microtubule-associated proteins. These proteins form an extensive interaction network crosslinking the lumen of axonemal doublet microtubules, suggesting their roles in modulating the mechanical properties of the filaments. Indeed, Tekt5 -/- sperm possess more deformed flagella with 180° bends. Together, our studies presented a cellular visual proteomics workflow and shed light on the in vivo functions of Tektin 5.


Assuntos
Proteoma , Espermatozoides , Animais , Masculino , Camundongos , Axonema/química , Microscopia Crioeletrônica/métodos , Flagelos/metabolismo , Microtúbulos/metabolismo , Sêmen , Espermatozoides/química , Proteoma/análise
3.
Cell ; 169(7): 1315-1326.e17, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622512

RESUMO

Recognition between sperm and the egg surface marks the beginning of life in all sexually reproducing organisms. This fundamental biological event depends on the species-specific interaction between rapidly evolving counterpart molecules on the gametes. We report biochemical, crystallographic, and mutational studies of domain repeats 1-3 of invertebrate egg coat protein VERL and their interaction with cognate sperm protein lysin. VERL repeats fold like the functionally essential N-terminal repeat of mammalian sperm receptor ZP2, whose structure is also described here. Whereas sequence-divergent repeat 1 does not bind lysin, repeat 3 binds it non-species specifically via a high-affinity, largely hydrophobic interface. Due to its intermediate binding affinity, repeat 2 selectively interacts with lysin from the same species. Exposure of a highly positively charged surface of VERL-bound lysin suggests that complex formation both disrupts the organization of egg coat filaments and triggers their electrostatic repulsion, thereby opening a hole for sperm penetration and fusion.


Assuntos
Fertilização , Invertebrados/fisiologia , Vertebrados/fisiologia , Sequência de Aminoácidos , Animais , Evolução Biológica , Proteínas do Ovo/química , Proteínas do Ovo/metabolismo , Humanos , Invertebrados/química , Invertebrados/genética , Masculino , Modelos Moleculares , Mucoproteínas/química , Mucoproteínas/metabolismo , Óvulo/química , Óvulo/metabolismo , Alinhamento de Sequência , Especificidade da Espécie , Espermatozoides/química , Espermatozoides/metabolismo , Vertebrados/genética , Difração de Raios X , Glicoproteínas da Zona Pelúcida/química , Glicoproteínas da Zona Pelúcida/metabolismo
4.
Nature ; 623(7985): 202-209, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880361

RESUMO

The newly characterized sperm-specific Na+/H+ exchanger stands out by its unique tripartite domain composition1,2. It unites a classical solute carrier unit with regulatory domains usually found in ion channels, namely, a voltage-sensing domain and a cyclic-nucleotide binding domain1,3, which makes it a mechanistic chimera and a secondary-active transporter activated strictly by membrane voltage. Our structures of the sea urchin SpSLC9C1 in the absence and presence of ligands reveal the overall domain arrangement and new structural coupling elements. They allow us to propose a gating model, where movements in the voltage sensor indirectly cause the release of the exchanging unit from a locked state through long-distance allosteric effects transmitted by the newly characterized coupling helices. We further propose that modulation by its ligand cyclic AMP occurs by means of disruption of the cytosolic dimer interface, which lowers the energy barrier for S4 movements in the voltage-sensing domain. As SLC9C1 members have been shown to be essential for male fertility, including in mammals2,4,5, our structure represents a potential new platform for the development of new on-demand contraceptives.


Assuntos
AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Ouriços-do-Mar , Espermatozoides , Animais , Masculino , Regulação Alostérica , AMP Cíclico/metabolismo , Fertilidade , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ligantes , Domínios Proteicos , Multimerização Proteica , Ouriços-do-Mar/química , Ouriços-do-Mar/metabolismo , Espermatozoides/química , Espermatozoides/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo
5.
Nature ; 623(7985): 193-201, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880360

RESUMO

Voltage-sensing domains control the activation of voltage-gated ion channels, with a few exceptions1. One such exception is the sperm-specific Na+/H+ exchanger SLC9C1, which is the only known transporter to be regulated by voltage-sensing domains2-5. After hyperpolarization of sperm flagella, SLC9C1 becomes active, causing pH alkalinization and CatSper Ca2+ channel activation, which drives chemotaxis2,6. SLC9C1 activation is further regulated by cAMP2,7, which is produced by soluble adenyl cyclase (sAC). SLC9C1 is therefore an essential component of the pH-sAC-cAMP signalling pathway in metazoa8,9, required for sperm motility and fertilization4. Despite its importance, the molecular basis of SLC9C1 voltage activation is unclear. Here we report cryo-electron microscopy (cryo-EM) structures of sea urchin SLC9C1 in detergent and nanodiscs. We show that the voltage-sensing domains are positioned in an unusual configuration, sandwiching each side of the SLC9C1 homodimer. The S4 segment is very long, 90 Å in length, and connects the voltage-sensing domains to the cytoplasmic cyclic-nucleotide-binding domains. The S4 segment is in the up configuration-the inactive state of SLC9C1. Consistently, although a negatively charged cavity is accessible for Na+ to bind to the ion-transporting domains of SLC9C1, an intracellular helix connected to S4 restricts their movement. On the basis of the differences in the cryo-EM structure of SLC9C1 in the presence of cAMP, we propose that, upon hyperpolarization, the S4 segment moves down, removing this constriction and enabling Na+/H+ exchange.


Assuntos
Microscopia Crioeletrônica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Ouriços-do-Mar , Trocadores de Sódio-Hidrogênio , Animais , Masculino , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Concentração de Íons de Hidrogênio , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/ultraestrutura , Potenciais da Membrana , Multimerização Proteica , Ouriços-do-Mar/química , Ouriços-do-Mar/metabolismo , Ouriços-do-Mar/ultraestrutura , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/ultraestrutura , Motilidade dos Espermatozoides , Espermatozoides/química , Espermatozoides/metabolismo , Espermatozoides/ultraestrutura
6.
Biochem Cell Biol ; 102(2): 194-205, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37948675

RESUMO

Increasing evidence of sperm RNA's role in fertilization and embryonic development has provided impetus for its isolation and thorough characterization. Sperm are considered tough-to-lyse cells due to the compact condensed DNA in sperm heads. Lack of consensus among bovine sperm RNA isolation protocols introduces experimental variability in transcriptome studies. Here, we describe an optimized method for total RNA isolation from bovine sperm using the TRIzol reagent. This study critically investigated the effects of various lysis conditions on sperm RNA isolation. Sperm suspended in TRIzol were subjected to a combination of mechanical treatments (sonication and passage through a 30G needle and syringe) and chemical treatments (supplementation with reducing agents 1,4-dithiothreitol and tris(2-carboxyethyl) phosphine hydrochloride (TCEP)). Microscopic evaluation of sperm lysis confirmed preferential sperm tail versus sperm head lysis. Interestingly, only TCEP-supplemented TRIzol (both mechanical treatments) had progressive sperm head lysis and consistently yielded total sperm RNA. Furthermore, RNA integrity was confirmed based on the electrophoresis profile and an absence of genomic DNA and somatic cells (e.g., epithelial cells, spermatids, etc.) with RT-qPCR. Our findings highlighted the importance of sperm lysis, specifically of the sperm head using TCEP with mechanical treatment, in total RNA isolation and presented a bovine-specific sperm RNA isolation method to reduce experimental variabilities.


Assuntos
Guanidinas , Fenóis , Fosfinas , Sêmen , Espermatozoides , Masculino , Animais , Bovinos , Espermatozoides/química , Cabeça do Espermatozoide , RNA/análise , DNA
7.
Analyst ; 149(11): 3078-3084, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38717228

RESUMO

This study is the first to identify bovine blastocysts through in vitro fertilization (IVF) of matured oocytes with a large quantity of high-quality sperm separated from a biomimetic cervix environment. We obtained high-quality sperm in large quantities using an IVF sperm sorting chip (SSC), which could mimic the viscous environment of the bovine cervix during ovulation and facilitates isolation of progressively motile sperm from semen. The viscous environment-on-a-chip was realized by formulating and implementing polyvinylpyrrolidone (PVP)-based solutions for the SSC medium. Sperm separated from the IVF-SSC containing PVP 1.5% showed high motility, normal morphology and high DNA integrity. As a result of IVF, a higher rate of hatching blastocysts, which is the pre-implantation stage, were observed, compared to the conventional swim-up method. Our results may significantly contribute to improving livestock with superior male and female genetic traits, thus overcoming the limitation of artificial insemination based on the superior genetic traits of existing males.


Assuntos
Desenvolvimento Embrionário , Fertilização in vitro , Espermatozoides , Animais , Bovinos , Masculino , Espermatozoides/citologia , Espermatozoides/química , Feminino , Fertilização in vitro/métodos , Desenvolvimento Embrionário/fisiologia , Biomimética/métodos , Colo do Útero/citologia , Povidona/química , Blastocisto/citologia , Motilidade dos Espermatozoides/efeitos dos fármacos
8.
Anal Bioanal Chem ; 416(16): 3717-3735, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38189916

RESUMO

About 18% of reproductive-age adults worldwide are affected by infertility. In vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are widely used assisted reproductive technologies (ARTs) aimed at improving clinical outcomes. Efficient and noninvasive selection and isolation of highly motile sperm with intact DNA are essential for the success of IVF and ICSI and can potentially impact the therapeutic efficacy and the health of the offspring. Compared to traditional methods, microfluidic technology offers significant advantages such as low sample consumption, high efficiency, minimal damage, high integration, similar microenvironment, and high automation, providing a new platform for ARTs. Here, we review the current situation of microfluidic technology in the field of sperm motility screening and evaluation and IVF research. First, we focus on the working principle, structural design, and screening results of sperm selection microfluidic platforms. We then highlight how the multiple steps of the IVF process can be facilitated and integrated into a microfluidic chip, including oocyte capture, sperm collection and isolation, sperm sorting, fertilization, and embryo culture. Ultimately, we summarize how microfluidics can complement and optimize current sperm sorting and IVF protocols, and challenges and possible solutions are discussed.


Assuntos
Fertilização in vitro , Técnicas Analíticas Microfluídicas , Espermatozoides , Humanos , Masculino , Fertilização in vitro/métodos , Espermatozoides/citologia , Espermatozoides/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Feminino , Motilidade dos Espermatozoides , Dispositivos Lab-On-A-Chip
9.
Nucleic Acids Res ; 50(D1): D111-D117, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34387689

RESUMO

Extracellular vesicles (EVs) packing various molecules play vital roles in intercellular communication. Non-coding RNAs (ncRNAs) are important functional molecules and biomarkers in EVs. A comprehensive investigation of ncRNAs expression in EVs under different conditions is a fundamental step for functional discovery and application of EVs. Here, we curated 2030 small RNA-seq datasets for human EVs (1506 sEV and 524 lEV) in 24 conditions and over 40 diseases. We performed a unified reads dynamic assignment algorithm (RDAA) considering mismatch and multi-mapping reads to quantify the expression profiles of seven ncRNA types (miRNA, snoRNA, piRNA, snRNA, rRNA, tRNA and Y RNA). We constructed EVAtlas (http://bioinfo.life.hust.edu.cn/EVAtlas), a comprehensive database for ncRNA expression in EVs with four functional modules: (i) browse and compare the distribution of ncRNAs in EVs from 24 conditions and eight sources (plasma, serum, saliva, urine, sperm, breast milk, primary cell and cell line); (ii) prioritize candidate ncRNAs in condition related tissues based on their expression; (iii) explore the specifically expressed ncRNAs in EVs from 24 conditions; (iv) investigate ncRNA functions, related drugs, target genes and EVs isolation methods. EVAtlas contains the most comprehensive ncRNA expression in EVs and will be a key resource in this field.


Assuntos
Comunicação Celular/genética , Bases de Dados Genéticas , Vesículas Extracelulares/genética , Biomarcadores/sangue , Biomarcadores/urina , Vesículas Extracelulares/química , Vesículas Extracelulares/classificação , Feminino , Humanos , Masculino , MicroRNAs/genética , Leite Humano/química , RNA-Seq , Saliva/química , Espermatozoides/química
10.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088836

RESUMO

We disclose a peculiar rotational propulsion mechanism of Ray sperms enabled by its unusual heterogeneous dual helixes with a rigid spiral head and a soft tail, named Heterogeneous Dual Helixes (HDH) model for short. Different from the conventional beating propulsion of sperm, the propulsion of Ray sperms is from both the rotational motion of the soft helical tail and the rigid spiral head. Such heterogeneous dual helical propulsion style provides the Ray sperm with high adaptability in viscous solutions along with advantages in linearity, straightness, and bidirectional motion. This HDH model is further corroborated by a miniature swimming robot actuated via a rigid spiral head and a soft tail, which demonstrates similar superiorities over conventional ones in terms of adaptability and efficiency under the same power input. Such findings expand our knowledge on microorganisms' motion, motivate further studies on natural fertilization, and inspire engineering designs.


Assuntos
Espermatozoides/fisiologia , Viscosidade , Humanos , Masculino , Modelos Biológicos , Motilidade dos Espermatozoides/fisiologia , Cauda do Espermatozoide/fisiologia , Espermatozoides/química , Espermatozoides/citologia
11.
Anim Biotechnol ; 35(1): 2323592, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38770771

RESUMO

Nucleic acid aptamers have been used in the past for the development of diagnostic methods against a number of targets such as bacteria, pesticides, cancer cells etc. In the present study, six rounds of Cell-SELEX were performed on a ssDNA aptamer library against X-enriched sperm cells from Sahiwal breed cattle. Sequencing was used to examine the aptamer sequences that shown affinity for sperm carrying the X chromosome in order to find any possible X-sperm-specific sequences. Out of 35 identified sequences, 14 were selected based on bioinformatics analysis like G-Score and Mfold structures. Further validation of their specificity was done via fluorescence microscopy. The interaction of biotinylated-aptamer with sperm was also determined by visualizing the binding of streptavidin coated magnetic beads on the head region of the sperm under bright field microscopy. Finally, a real-time experiment was designed for the validation of X-sperm enrichment by synthesized aptamer sequences. Among the studied sequences, aptamer 29a exhibited a higher affinity for X sperm compared to Y sperm in a mixed population of sperm cells. By using aptamer sequence 29a, we obtained an enrichment of 70% for X chromosome bearing sperm cells.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros , Espermatozoides , Cromossomo X , Masculino , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Espermatozoides/química , Bovinos , Cromossomo X/genética , Técnica de Seleção de Aptâmeros/métodos
12.
J Proteome Res ; 22(12): 3833-3842, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37943980

RESUMO

Human semen, consisting of spermatozoa (sperm) and seminal plasma, represents a special clinical sample type in human body fluid. Protein glycosylation in sperm and seminal plasma plays key roles in spermatogenesis, maturation, capacitation, sperm-egg recognition, motility of sperm, and fertilization. In this study, we profiled the most comprehensive O-glycoproteome map of human sperm and seminal plasma using our recently presented Glycoproteomics based on Two Complementary Fragmentation Methods (GlycoTCFM). We showed that sperm and seminal plasma contain many novel and distinctive O-glycoproteins, which are mostly located in the extracellular region (seminal plasma) and sperm membrane, enriched in the biological processes of cell adhesion and angiogenesis, and mainly involved in multiple biological functions including extracellular matrix structural constituents and binding. Based on GlycoTCFM, we created a comprehensive human sperm and seminal plasma O-glycoprotein database that contains 371 intact O-glycopeptides and 202 O-glycosites from 68 O-glycoproteins. Interestingly, 105 manually confirmed O-glycosites from 25 O-glycoproteins were reported for the first time, and they were mainly modified by core 1 O-glycans. We also found that three highly abundant, highly complex, and highly O-glycosylated proteins (semenogelin-1, semenogelin-2, and equatorin) may play important roles in sperm or seminal plasma composition and function. These data deepen our knowledge about O-glycosylation in sperm and seminal plasma and lay the foundation for the functional study of O-glycoproteins in male infertility.


Assuntos
Sêmen , Espermatozoides , Humanos , Masculino , Sêmen/química , Glicosilação , Espermatozoides/química , Glicoproteínas/metabolismo , Espermatogênese
13.
Biochemistry (Mosc) ; 88(5): 655-666, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37331711

RESUMO

This review presents information on biochemical features of spermatozoa bearing X or Y chromosome, enabling production of a sperm fraction with pre-defined sex chromosome. The almost only technology currently used for such separation (called sexing) is based on the fluorescence-activated cell sorting of sperm depending on DNA content. In addition to the applied aspects, this technology made it possible to analyze properties of the isolated populations of spermatozoa bearing X or Y chromosome. In recent years, existence of the differences between these populations at the transcriptome and proteome level have been reported in a number of studies. It is noteworthy that these differences are primarily related to the energy metabolism and flagellar structural proteins. New methods of sperm enrichment with X or Y chromosome cells are based on the differences in motility between the spermatozoa with different sex chromosomes. Sperm sexing is a part of the widespread protocol of artificial insemination of cows with cryopreserved semen, it allows to increase proportion of the offspring with the required sex. In addition, advances in the separation of X and Y spermatozoa may allow this approach to be applied in clinical practice to avoid sex-linked diseases.


Assuntos
Sêmen , Cromossomo X , Feminino , Masculino , Bovinos , Animais , Pré-Seleção do Sexo/métodos , Pré-Seleção do Sexo/veterinária , Citometria de Fluxo/métodos , Citometria de Fluxo/veterinária , Cromossomo Y , Espermatozoides/química
14.
Proc Natl Acad Sci U S A ; 117(29): 17094-17103, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32611817

RESUMO

Declining ejaculate performance with male age is taxonomically widespread and has broad fitness consequences. Ejaculate success requires fully functional germline (sperm) and soma (seminal fluid) components. However, some aging theories predict that resources should be preferentially diverted to the germline at the expense of the soma, suggesting differential impacts of aging on sperm and seminal fluid and trade-offs between them or, more broadly, between reproduction and lifespan. While harmful effects of male age on sperm are well known, we do not know how much seminal fluid deteriorates in comparison. Moreover, given the predicted trade-offs, it remains unclear whether systemic lifespan-extending interventions could ameliorate the declining performance of the ejaculate as a whole. Here, we address these problems using Drosophila melanogaster. We demonstrate that seminal fluid deterioration contributes to male reproductive decline via mating-dependent mechanisms that include posttranslational modifications to seminal proteins and altered seminal proteome composition and transfer. Additionally, we find that sperm production declines chronologically with age, invariant to mating activity such that older multiply mated males become infertile principally via reduced sperm transfer and viability. Our data, therefore, support the idea that both germline and soma components of the ejaculate contribute to male reproductive aging but reveal a mismatch in their aging patterns. Our data do not generally support the idea that the germline is prioritized over soma, at least, within the ejaculate. Moreover, we find that lifespan-extending systemic down-regulation of insulin signaling results in improved late-life ejaculate performance, indicating simultaneous amelioration of both somatic and reproductive aging.


Assuntos
Envelhecimento , Drosophila melanogaster , Proteínas de Plasma Seminal , Espermatozoides , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Infertilidade Masculina/genética , Infertilidade Masculina/fisiopatologia , Masculino , Proteoma/análise , Proteoma/genética , Proteoma/fisiologia , Proteínas de Plasma Seminal/análise , Proteínas de Plasma Seminal/fisiologia , Comportamento Sexual Animal/fisiologia , Espermatozoides/química , Espermatozoides/fisiologia
15.
Ann Ig ; 35(6): 660-669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796470

RESUMO

Background: The aim of the present systematic review was to evaluate the correlation between the exposure to environmental and/or occupational pollutants and possible alteration of semen quality, focalizing the attention on the studies performed using a biomonitoring approach. Methods: The review was conducted from inception to May 11 2023, according to the PRISMA Statement 2020 and using the following databases: Scopus, Pubmed and Web of Science. The protocol was registered on PROSPERO (CRD42023405607). Studies were considered eligible if they reported data about the association between exposure to environmental pollutants and alteration of semen quality using human biomonitoring. The quality assessment was carried out by the use of the Newcastle-Ottawa Quality Assessment Scale. Results: In total, 21 articles were included, conducted in several countries. The main matrices used for biomonitoring were urine and blood and the most sought-after contaminants were bisphenols, phthalates, pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, heavy metals and other inorganic trace elements. The results of the studies demonstrated a significant positive correlation between the increase of the pollutants' levels in the biological matrices examined and some alterations of the semen quality indicators, such as a decrease in motility, concentration and morphology of the spermatozoa. Conclusions: Male fertility can be negatively affected by the exposure to environmental and/or occupational pollutants. Human biomonitoring programs may be considered a useful tool for specific surveillance programs devoted to early highlight subjects who are more exposed to environmental pollutants in order to reduce risk exposure.


Assuntos
Poluentes Ambientais , Exposição Ocupacional , Humanos , Masculino , Poluentes Ambientais/efeitos adversos , Poluentes Ambientais/análise , Análise do Sêmen , Exposição Ocupacional/efeitos adversos , Sêmen/química , Espermatozoides/química , Exposição Ambiental , Monitoramento Ambiental/métodos
16.
FASEB J ; 35(3): e21397, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33565176

RESUMO

Sperm develop from puberty in the seminiferous tubules, inside the blood-testis barrier to prevent their recognition as "non-self" by the immune system, and it is widely assumed that human sperm-specific proteins cannot access the circulatory or immune systems. Sperm-specific proteins aberrantly expressed in cancer, known as cancer-testis antigens (CTAs), are often pursued as cancer biomarkers and therapeutic targets based on the assumption they are neoantigens absent from the circulation in healthy men. Here, we identify a wide range of germ cell-derived and sperm-specific proteins, including multiple CTAs, that are selectively deposited by the Sertoli cells of the adult mouse and human seminiferous tubules into testicular interstitial fluid (TIF) that is "outside" the blood-testis barrier. From TIF, the proteins can access the circulatory- and immune systems. Disruption of spermatogenesis decreases the abundance of these proteins in mouse TIF, and a sperm-specific CTA is significantly decreased in TIF from infertile men, suggesting that exposure of certain CTAs to the immune system could depend on fertility status. The results provide a rationale for the development of blood-based tests useful in the management of male infertility and indicate CTA candidates for cancer immunotherapy and biomarker development that could show sex-specific and male-fertility-related responses.


Assuntos
Antígenos de Neoplasias/análise , Proteínas/análise , Túbulos Seminíferos/metabolismo , Espermatozoides/química , Animais , Barreira Hematotesticular , Líquido Extracelular/química , Humanos , Imunoterapia , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Neoplasias/terapia , Proteoma , Células de Sertoli/fisiologia , Espermatogênese , Testículo/metabolismo
17.
Int J Legal Med ; 136(5): 1201-1210, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35355113

RESUMO

The present research assessed how the physical and chemical changes associated with decomposition affect the detection and identification of blood and semen evidence, as well as subsequent DNA analysis. A feeder pig (postmortem interval (PMI) < 3 h) was placed within the Boston University Outdoor Research Facility for a period of 22 days. Human blood and semen were individually dispensed onto multiple areas of two cotton t-shirts; one layer of fabric was placed above and below the pig and a control. One of each sample type was collected per day for a period of 22 days from each location. It was observed that both sample types when collected from beneath the pig exhibited the greatest decline in enzymatic activity over the course of testing, followed by samples from beneath the control, which can be inferred from the increase in negative screening results compared to the other samples. Spermatozoa were observed in nearly all semen samples, even when all screening results were negative, which lead to the generation of comparable DNA profiles for nearly all semen samples typed. Genetic typing of the blood samples beneath the pig and control rarely yielded comparable data while the samples from above yielded full profiles for all but a few samples tested.


Assuntos
Mudanças Depois da Morte , Sêmen , Animais , DNA/análise , Humanos , Masculino , Sêmen/química , Espermatozoides/química , Suínos
18.
Int J Legal Med ; 136(1): 73-84, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34713334

RESUMO

In alleged sexual assault cases, identification of the presence of spermatozoa at the crime scene, or on items of eventual significance, or associated with the body of the victim, is integral to the forensic investigation to support or refute the proposition that sexual act has occurred. A 3-plex MSRE-PCR (methylation-sensitive restriction enzyme-PCR) system has been developed previously to identify spermatozoa based on the presence or absence of DNA methylation. This assay showed that 0.1 ng of DNA from a semen extract was sufficient to identify the presence of spermatozoa even when there was excessively more DNA isolated from vaginal fluid than DNA from a semen extract (80 ng/0.1 ng) or a mix of the menstrual blood/semen DNA (5 ng/0.1 ng). In this study, we combine spermatozoa detection with co-amplification of 23 Y-STR loci. We perform standard validation steps to present a novel test that saves time and uses the same sample for both DNA typing and spermatozoa detection in the same reaction. The combined assay can identify Y-STR and spermatozoa simultaneously using just 0.1 ng semen DNA, even in the presence of 5 ng of DNA from a female (male/female:1/50). No other body fluid tested, such as saliva, gave a result for the presence of spermatozoa. A total of 9 non-probative forensic samples from 7 sexual assault cases were tested by this co-amplification system. In all cases, the same sperm-positive data were obtained, concordant with our previous study analyzed by only 3-plex MSRE-PCR, and the Y-STR results were also consistent with that analyzed by only PowerPlex® Y23 kit. The co-amplification will be beneficial for the limited samples in many criminal cases.


Assuntos
Impressões Digitais de DNA , Espermatozoides , Cromossomos Humanos Y , DNA/análise , Impressões Digitais de DNA/métodos , Feminino , Humanos , Masculino , Repetições de Microssatélites , Saliva/química , Sêmen/química , Espermatozoides/química
19.
Nature ; 534(7608): 566-9, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27309808

RESUMO

Fertilization is a fundamental process in sexual reproduction, creating a new individual through the combination of male and female gametes. The IZUMO1 sperm membrane protein and its counterpart oocyte receptor JUNO have been identified as essential factors for sperm-oocyte interaction and fusion. However, the mechanism underlying their specific recognition remains poorly defined. Here, we show the crystal structures of human IZUMO1, JUNO and the IZUMO1-JUNO complex, establishing the structural basis for the IZUMO1-JUNO-mediated sperm-oocyte interaction. IZUMO1 exhibits an elongated rod-shaped structure comprised of a helical bundle IZUMO domain and an immunoglobulin-like domain that are each firmly anchored to an intervening ß-hairpin region through conserved disulfide bonds. The central ß-hairpin region of IZUMO1 provides the main platform for JUNO binding, while the surface located behind the putative JUNO ligand binding pocket is involved in IZUMO1 binding. Structure-based mutagenesis analysis confirms the biological importance of the IZUMO1-JUNO interaction. This structure provides a major step towards elucidating an essential phase of fertilization and it will contribute to the development of new therapeutic interventions for fertility, such as contraceptive agents.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Interações Espermatozoide-Óvulo , Sítios de Ligação/genética , Proteínas de Transporte/genética , Cristalografia por Raios X , Proteínas do Ovo , Feminino , Humanos , Imunoglobulinas/genética , Ligantes , Masculino , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Oócitos/química , Oócitos/metabolismo , Ligação Proteica/genética , Estrutura Terciária de Proteína , Receptores de Superfície Celular , Interações Espermatozoide-Óvulo/genética , Espermatozoides/química , Espermatozoides/metabolismo
20.
Nature ; 534(7608): 562-5, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27309818

RESUMO

Fertilization is an essential biological process in sexual reproduction and comprises a series of molecular interactions between the sperm and egg. The fusion of the haploid spermatozoon and oocyte is the culminating event in mammalian fertilization, enabling the creation of a new, genetically distinct diploid organism. The merger of two gametes is achieved through a two-step mechanism in which the sperm protein IZUMO1 on the equatorial segment of the acrosome-reacted sperm recognizes its receptor, JUNO, on the egg surface. This recognition is followed by the fusion of the two plasma membranes. IZUMO1 and JUNO proteins are indispensable for fertilization, as constitutive knockdown of either protein results in mice that are healthy but infertile. Despite their central importance in reproductive medicine, the molecular architectures of these proteins and the details of their functional roles in fertilization are not known. Here we present the crystal structures of human IZUMO1 and JUNO in unbound and bound conformations. The human IZUMO1 structure exhibits a distinct boomerang shape and provides structural insights into the IZUMO family of proteins. Human IZUMO1 forms a high-affinity complex with JUNO and undergoes a major conformational change within its N-terminal domain upon binding to the egg-surface receptor. Our results provide insights into the molecular basis of sperm-egg recognition, cross-species fertilization, and the barrier to polyspermy, thereby promising benefits for the rational development of non-hormonal contraceptives and fertility treatments for humans and other mammals.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Fertilização , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Transporte/genética , Cristalografia por Raios X , Proteínas do Ovo , Feminino , Humanos , Imunoglobulinas/genética , Masculino , Proteínas de Membrana/genética , Modelos Moleculares , Oócitos/química , Ligação Proteica/genética , Conformação Proteica , Receptores de Superfície Celular , Interações Espermatozoide-Óvulo , Espermatozoides/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa