Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 583
Filtrar
1.
Nature ; 625(7996): 743-749, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233522

RESUMO

Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder1. Threat-induced behaviours, including freezing and flight, are controlled by neuronal circuits in the central amygdala (CeA)2; however, the source of neuronal excitation of the CeA that contributes to high-intensity defensive responses is unknown. Here we used a combination of neuroanatomical mapping, in vivo calcium imaging, functional manipulations and electrophysiology to characterize a previously unknown projection from the dorsal peduncular (DP) prefrontal cortex to the CeA. DP-to-CeA neurons are glutamatergic and specifically target the medial CeA, the main amygdalar output nucleus mediating conditioned responses to threat. Using a behavioural paradigm that elicits both conditioned freezing and flight, we found that CeA-projecting DP neurons are activated by high-intensity threats in a context-dependent manner. Functional manipulations revealed that the DP-to-CeA pathway is necessary and sufficient for both avoidance behaviour and flight. Furthermore, we found that DP neurons synapse onto neurons within the medial CeA that project to midbrain flight centres. These results elucidate a non-canonical top-down pathway regulating defensive responses.


Assuntos
Aprendizagem da Esquiva , Núcleo Central da Amígdala , Vias Neurais , Neurônios , Aprendizagem da Esquiva/fisiologia , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Vias Neurais/fisiologia , Cálcio/análise , Eletrofisiologia , Ponte/citologia , Ponte/fisiologia
2.
Glia ; 70(1): 173-195, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34661306

RESUMO

Microglia cells are active players in regulating synaptic development and plasticity in the brain. However, how they influence the normal functioning of synapses is largely unknown. In this study, we characterized the effects of pharmacological microglia depletion, achieved by administration of PLX5622, on hippocampal CA3-CA1 synapses of adult wild type mice. Following microglial depletion, we observed a reduction of spontaneous and evoked glutamatergic activity associated with a decrease of dendritic spine density. We also observed the appearance of immature synaptic features and higher levels of plasticity. Microglia depleted mice showed a deficit in the acquisition of the Novel Object Recognition task. These events were accompanied by hippocampal astrogliosis, although in the absence ofneuroinflammatory condition. PLX-induced synaptic changes were absent in Cx3cr1-/- mice, highlighting the role of CX3CL1/CX3CR1 axis in microglia control of synaptic functioning. Remarkably, microglia repopulation after PLX5622 withdrawal was associated with the recovery of hippocampal synapses and learning functions. Altogether, these data demonstrate that microglia contribute to normal synaptic functioning in the adult brain and that their removal induces reversible changes in organization and activity of glutamatergic synapses.


Assuntos
Microglia , Neurônios , Animais , Encéfalo , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Hipocampo , Camundongos , Compostos Orgânicos/farmacologia , Sinapses/fisiologia
3.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540803

RESUMO

Distinct from ovarian estradiol, the steroid hormone 17ß-estradiol (E2) is produced in the brain and is involved in numerous functions, particularly acting as a neurosteroid. However, the physiological role of E2 and the mechanism of its effects are not well known. In hippocampal slices, 17ß-estradiol has been found to cause a modest increase in fast glutamatergic transmission; because some of these effects are rapid and acute, they might be mediated by membrane-associated receptors via nongenomic action. Moreover, activation of membrane estrogen receptors can rapidly modulate neuron function in a sex-specific manner. To further investigate the neurological role of E2, we examined the effect of E2, as an estrogen receptor (ER) agonist, on synaptic transmission in slices of the prefrontal cortex (PFC) and hippocampus in both male and female mice. Whole-cell recordings of spontaneous excitatory postsynaptic currents (sEPSC) in the PFC showed that E2 acts as a neuromodulator in glutamatergic transmission in the PFC in both sexes, but often in a cell-specific manner. The sEPSC amplitude and/or frequency responded to E2 in three ways, namely by significantly increasing, decreasing or having no response. Additional experiments using an agonist selective for ERß, diarylpropionitrile (DPN) showed that in males the sEPSC and spontaneous inhibitory postsynaptic currents sIPSC responses were similar to their E2 responses, but in females the estrogen receptor ß (ERß) agonist DPN did not influence excitatory transmission in the PFC. In contrast, in the hippocampus of both sexes E2 potentiated the gluatmatergic synaptic transmission in a subset of hippocampal cells. These data indicate that activation of E2 targeting probably a estrogen subtypes or different downstream signaling affect synaptic transmission in the brain PFC and hippocampus between males versus females mice.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/fisiologia , Hipocampo/metabolismo , Córtex Pré-Frontal/metabolismo , Transmissão Sináptica/fisiologia , Animais , Receptor alfa de Estrogênio/agonistas , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , GABAérgicos/farmacologia , Hipocampo/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitrilas/farmacologia , Técnicas de Patch-Clamp , Córtex Pré-Frontal/efeitos dos fármacos , Propionatos/farmacologia , Caracteres Sexuais , Transmissão Sináptica/efeitos dos fármacos
4.
Synapse ; 74(3): e22137, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31584700

RESUMO

We examined effects of Group I metabotropic glutamate receptors on the excitability of mouse medial nucleus of the trapezoid body (MNTB) neurons. The selective agonist, S-3,5-dihydroxyphenylglycine (DHPG), evoked a dose-dependent depolarization of the resting potential, increased membrane resistance, increased sag depolarization, and promoted rebound action potential firing. Under voltage-clamp, DHPG evoked an inward current, referred to as IDHPG , which was developmentally stable through postnatal day P56. IDHPG had low temperature dependence in the range 25-34°C, consistent with a channel mechanism. However, the I-V relationship took the form of an inverted U that did not reverse at the calculated Nernst potential for K+ or Cl- . Thus, it is likely that more than one ion type contributes to IDHPG and the mix may be voltage dependent. IDHPG was resistant to the Na+ channel blockers tetrodotoxin and amiloride, and to inhibitors of iGluR (CNQX and MK801). IDHPG was inhibited 21% by Ba2+ (500 µM), 60% by ZD7288 (100 µM) and 73% when the two antagonists were applied together, suggesting that KIR channels and HCN channels contribute to the current. Voltage clamp measurements of IH indicated a small (6%) increase in Gmax by DHPG with no change in the voltage dependence. DHPG reduced action potential rheobase and reduced the number of post-synaptic AP failures during high frequency stimulation of the calyx of Held. Thus, activation of post-synaptic Group I mGlu receptors modifies the excitability of MNTB neurons and contributes to the reliability of high frequency firing in this auditory relay nucleus.


Assuntos
Potenciais de Ação , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Potenciais Sinápticos , Corpo Trapezoide/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Amilorida/farmacologia , Animais , Maleato de Dizocilpina/farmacologia , Feminino , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Pirimidinas/farmacologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Corpo Trapezoide/citologia , Corpo Trapezoide/efeitos dos fármacos , Corpo Trapezoide/fisiologia
5.
Nano Lett ; 19(5): 2858-2870, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30983361

RESUMO

Synapses compute and transmit information to connect neural circuits and are at the basis of brain operations. Alterations in their function contribute to a vast range of neuropsychiatric and neurodegenerative disorders and synapse-based therapeutic intervention, such as selective inhibition of synaptic transmission, may significantly help against serious pathologies. Graphene is a two-dimensional nanomaterial largely exploited in multiple domains of science and technology, including biomedical applications. In hippocampal neurons in culture, small graphene oxide nanosheets (s-GO) selectively depress glutamatergic activity without altering cell viability. Glutamate is the main excitatory neurotransmitter in the central nervous system and growing evidence suggests its involvement in neuropsychiatric disorders. Here we demonstrate that s-GO directly targets the release of presynaptic vesicle. We propose that s-GO flakes reduce the availability of transmitter, via promoting its fast release and subsequent depletion, leading to a decline ofglutamatergic neurotransmission. We injected s-GO in the hippocampus in vivo, and 48 h after surgery ex vivo patch-clamp recordings from brain slices show a significant reduction in glutamatergic synaptic activity in respect to saline injections.


Assuntos
Grafite/farmacologia , Nanoestruturas/química , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Fármacos Atuantes sobre Aminoácidos Excitatórios/síntese química , Fármacos Atuantes sobre Aminoácidos Excitatórios/química , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Grafite/síntese química , Grafite/química , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Nanoestruturas/uso terapêutico , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Cultura Primária de Células , Pontos Quânticos/química , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos
6.
Mol Pain ; 15: 1744806918824243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799694

RESUMO

To reveal cellular mechanisms for antinociception produced by clinically used tramadol, we investigated the effect of its metabolite O-desmethyltramadol (M1) on glutamatergic excitatory transmission in spinal dorsal horn lamina II (substantia gelatinosa; SG) neurons. The whole-cell patch-clamp technique was applied at a holding potential of -70 mV to SG neurons of an adult rat spinal cord slice with an attached dorsal root. Under the condition where a postsynaptic action of M1 was inhibited, M1 superfused for 2 min reduced the frequency of spontaneous excitatory postsynaptic current in a manner sensitive to a µ-opioid receptor antagonist CTAP; its amplitude and also a response of SG neurons to bath-applied AMPA were hardly affected. The presynaptic effect of M1 was different from that of noradrenaline or serotonin which was examined in the same neuron. M1 also reduced by almost the same extent the peak amplitudes of monosynaptic primary-afferent Aδ-fiber and C-fiber excitatory postsynaptic currents evoked by stimulating the dorsal root. These actions of M1 persisted for >10 min after its washout. These results indicate that M1 inhibits the quantal release of L-glutamate from nerve terminals by activating µ-opioid but not noradrenaline and serotonin receptors; this inhibition is comparable in extent between monosynaptic primary-afferent Aδ-fiber and C-fiber transmissions. Considering that the SG plays a pivotal role in regulating nociceptive transmission, the present findings could contribute to at least a part of the inhibitory action of tramadol on nociceptive transmission together with its hyperpolarizing effect as reported previously.


Assuntos
Analgésicos Opioides/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Neurônios/efeitos dos fármacos , Substância Gelatinosa/citologia , Tramadol/análogos & derivados , Animais , Interações Medicamentosas , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Masculino , Antagonistas de Entorpecentes/farmacologia , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Neurônios/fisiologia , Norepinefrina/farmacologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Ratos , Serotonina/farmacologia , Tramadol/farmacologia
7.
Cell Tissue Res ; 377(1): 107-113, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30627806

RESUMO

Major depressive disorder is a severe, disabling disorder that affects around 4.7% of the population worldwide. Based on the monoaminergic hypothesis of depression, monoamine reuptake inhibitors have been developed as antidepressants and nowadays, they are used widely in clinical practice. However, these drugs have a limited efficacy and a slow onset of therapeutic action. Several strategies have been implemented to overcome these limitations, including switching to other drugs or introducing combined or augmentation therapies. In clinical practice, the most often used augmenting drugs are lithium, triiodothyronine, atypical antipsychotics, buspirone, and pindolol, although some others are in the pipeline. Moreover, multitarget antidepressants have been developed to improve efficacy. Despite the enormous effort exerted to improve these monoaminergic drugs, they still fail to produce a rapid and sustained antidepressant response in a substantial proportion of depressed patients. Recently, new compounds that target other neurotransmission system, such as the glutamatergic system, have become the focus of research into fast-acting antidepressant agents. These promising alternatives could represent a new pharmacological trend in the management of depression.


Assuntos
Antidepressivos/farmacologia , Monoaminas Biogênicas/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Antipsicóticos/farmacologia , Buspirona/farmacologia , Sinergismo Farmacológico , Humanos , Lítio/farmacologia , Pindolol/farmacologia , Tri-Iodotironina/farmacologia
8.
Mol Psychiatry ; 23(10): 2066-2077, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29158578

RESUMO

Low doses of ketamine trigger rapid and lasting antidepressant effects after one injection in treatment-resistant patients with major depressive disorder. Modulation of AMPA receptors (AMPARs) in the hippocampus and prefrontal cortex is suggested to mediate the antidepressant action of ketamine and of one of its metabolites (2R,6R)-hydroxynorketamine ((2R,6R)-HNK). We have examined whether ketamine and (2R,6R)-HNK affect glutamatergic transmission and plasticity in the mesolimbic system, brain regions known to have key roles in reward-motivated behaviors, mood and hedonic drive. We found that one day after the injection of a low dose of ketamine, long-term potentiation (LTP) in the nucleus accumbens (NAc) was impaired. Loss of LTP was maintained for 7 days and was not associated with an altered basal synaptic transmission mediated by AMPARs and N-methyl-D-aspartate receptors (NMDARs). Inhibition of mammalian target of rapamycin signaling with rapamycin did not prevent the ketamine-induced loss of LTP but inhibited LTP in saline-treated mice. However, ketamine blunted the increase in the phosphorylation of the GluA1 subunit of AMPARs at a calcium/calmodulin-dependent protein kinase II/protein kinase C site induced by an LTP induction protocol. Moreover, ketamine caused a persistent increased phosphorylation of GluA1 at a protein kinase A site. (2R,6R)-HNK also impaired LTP in the NAc. In dopaminergic neurons of the ventral tegmental area from ketamine- or (2R,6R)-HNK-treated mice, AMPAR-mediated responses were depressed, while those mediated by NMDARs were unaltered, which resulted in a reduced AMPA/NMDA ratio, a measure of long-term synaptic depression. These results demonstrate that a single injection of ketamine or (2R,6R)-HNK induces enduring alterations in the function of AMPARs and synaptic plasticity in brain regions involved in reward-related behaviors.


Assuntos
Ketamina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Encéfalo/metabolismo , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Receptores de AMPA/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
9.
Cereb Cortex ; 28(3): 974-987, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28108498

RESUMO

The newly evolved circuits in layer III of primate dorsolateral prefrontal cortex (dlPFC) generate the neural representations that subserve working memory. These circuits are weakened by increased cAMP-K+ channel signaling, and are a focus of pathology in schizophrenia, aging, and Alzheimer's disease. Cognitive deficits in these disorders are increasingly associated with insults to mGluR3 metabotropic glutamate receptors, while reductions in mGluR2 appear protective. This has been perplexing, as mGluR3 has been considered glial receptors, and mGluR2 and mGluR3 have been thought to have similar functions, reducing glutamate transmission. We have discovered that, in addition to their astrocytic expression, mGluR3 is concentrated postsynaptically in spine synapses of layer III dlPFC, positioned to strengthen connectivity by inhibiting postsynaptic cAMP-K+ channel actions. In contrast, mGluR2 is principally presynaptic as expected, with only a minor postsynaptic component. Functionally, increase in the endogenous mGluR3 agonist, N-acetylaspartylglutamate, markedly enhanced dlPFC Delay cell firing during a working memory task via inhibition of cAMP signaling, while the mGluR2 positive allosteric modulator, BINA, produced an inverted-U dose-response on dlPFC Delay cell firing and working memory performance. These data illuminate why insults to mGluR3 would erode cognitive abilities, and support mGluR3 as a novel therapeutic target for higher cognitive disorders.


Assuntos
Memória de Curto Prazo/fisiologia , Neurônios/citologia , Densidade Pós-Sináptica/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Movimentos Oculares/efeitos dos fármacos , Movimentos Oculares/fisiologia , Feminino , Processamento de Imagem Assistida por Computador , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Neurônios/metabolismo , Densidade Pós-Sináptica/ultraestrutura , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/ultraestrutura , Ratos , Receptores de Glutamato Metabotrópico/ultraestrutura , Aprendizagem Espacial/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos
10.
Learn Mem ; 25(1): 1-7, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29246976

RESUMO

Capsaicin has been shown to modulate synaptic plasticity in various brain regions including the amygdala. Whereas in the lateral amygdala the modulatory effect of capsaicin on long-term potentiation (LA-LTP) is mediated by TRPV1 channels, we have recently shown that capsaicin-induced enhancement of long term depression (LA-LTD) is mediated by TRPM1 receptors. However, the underlying mechanism by which capsaicin modulates synaptic plasticity is poorly understood. In the present study, we investigate the modulatory effect of capsaicin on synaptic plasticity in mice lacking the AMPAR subunit GluA1. Capsaicin reduced the magnitude of LA-LTP in slices derived from wild-type mice as previously described, whereas this capsaicin-induced suppression was absent in GluA1-deficient mice. In contrast, neither LA-LTD nor the capsaicin-mediated enhancement of LA-LTD was changed in GluA1 knockout mice. Our data indicate that capsaicin-induced modulation of LA-LTP via TRPV1 involves GluA1-containing AMPARs whereas capsaicin-induced modulation of LA-LTD via TRPM1 is independent of the expression of the AMPAR GluA1 subunit.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Capsaicina/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Receptores de AMPA/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Estimulação Elétrica , Feminino , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos Knockout , Microeletrodos , Nootrópicos/farmacologia , Receptores de AMPA/deficiência , Receptores de AMPA/genética , Técnicas de Cultura de Tecidos
11.
J Neurosci ; 37(7): 1950-1964, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28093473

RESUMO

Behavioral, physiological, and anatomical evidence indicates that the dorsal and ventral zones of the hippocampus have distinct roles in cognition. How the unique functions of these zones might depend on differences in synaptic and neuronal function arising from the strikingly different gene expression profiles exhibited by dorsal and ventral CA1 pyramidal cells is unclear. To begin to address this question, we investigated the mechanisms underlying differences in synaptic transmission and plasticity at dorsal and ventral Schaffer collateral (SC) synapses in the mouse hippocampus. We find that, although basal synaptic transmission is similar, SC synapses in the dorsal and ventral hippocampus exhibit markedly different responses to θ frequency patterns of stimulation. In contrast to dorsal hippocampus, θ frequency stimulation fails to elicit postsynaptic complex-spike bursting and does not induce LTP at ventral SC synapses. Moreover, EPSP-spike coupling, a process that strongly influences information transfer at synapses, is weaker in ventral pyramidal cells. Our results indicate that all these differences in postsynaptic function are due to an enhanced activation of SK-type K+ channels that suppresses NMDAR-dependent EPSP amplification at ventral SC synapses. Consistent with this, mRNA levels for the SK3 subunit of SK channels are significantly higher in ventral CA1 pyramidal cells. Together, our findings indicate that a dorsal-ventral difference in SK channel regulation of NMDAR activation has a profound effect on the transmission, processing, and storage of information at SC synapses and thus likely contributes to the distinct roles of the dorsal and ventral hippocampus in different behaviors.SIGNIFICANCE STATEMENT Differences in short- and long-term plasticity at Schaffer collateral (SC) synapses in the dorsal and ventral hippocampus likely contribute importantly to the distinct roles of these regions in cognition and behavior. Although dorsal and ventral CA1 pyramidal cells exhibit markedly different gene expression profiles, how these differences influence plasticity at SC synapses is unclear. Here we report that increased mRNA levels for the SK3 subunit of SK-type K+ channels in ventral pyramidal cells is associated with an enhanced activation of SK channels that strongly suppresses NMDAR activation at ventral SC synapses. This leads to striking differences in multiple aspects of synaptic transmission at dorsal and ventral SC synapses and underlies the reduced ability of ventral SC synapses to undergo LTP.


Assuntos
Encéfalo/citologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Sinaptotagminas/metabolismo , Animais , Estimulação Elétrica , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Neurônios/ultraestrutura , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Sinaptotagminas/genética
12.
J Neurosci ; 37(7): 1785-1796, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087766

RESUMO

The serotonin (5-HT) system and the amygdala are key regulators of emotional behavior. Several lines of evidence suggest that 5-HT transmission in the amygdala is implicated in the susceptibility and drug treatment of mood disorders. Therefore, elucidating the physiological mechanisms through which midbrain 5-HT neurons modulate amygdala circuits could be pivotal in understanding emotional regulation in health and disease. To shed light on these mechanisms, we performed patch-clamp recordings from basal amygdala (BA) neurons in brain slices from mice with channelrhodopsin genetically targeted to 5-HT neurons. Optical stimulation of 5-HT terminals at low frequencies (≤1 Hz) evoked a short-latency excitation of BA interneurons (INs) that was depressed at higher frequencies. Pharmacological analysis revealed that this effect was mediated by glutamate and not 5-HT because it was abolished by ionotropic glutamate receptor antagonists. Optical stimulation of 5-HT terminals at higher frequencies (10-20 Hz) evoked both slow excitation and slow inhibition of INs. These effects were mediated by 5-HT because they were blocked by antagonists of 5-HT2A and 5-HT1A receptors, respectively. These fast glutamate- and slow 5-HT-mediated responses often coexisted in the same neuron. Interestingly, fast-spiking and non-fast-spiking INs displayed differential modulation by glutamate and 5-HT. Furthermore, optical stimulation of 5-HT terminals did not evoke glutamate release onto BA principal neurons, but inhibited these cells directly via activation of 5-HT1A receptors and indirectly via enhanced GABA release. Collectively, these findings suggest that 5-HT neurons exert a frequency-dependent, cell-type-specific control over BA circuitry via 5-HT and glutamate co-release to inhibit the BA output.SIGNIFICANCE STATEMENT The modulation of the amygdala by serotonin (5-HT) is important for emotional regulation and is implicated in the pathogenesis and treatment of affective disorders. Therefore, it is essential to determine the physiological mechanisms through which 5-HT neurons in the dorsal raphe nuclei modulate amygdala circuits. Here, we combined optogenetic, electrophysiological, and pharmacological approaches to study the effects of activation of 5-HT axons in the basal nucleus of the amygdala (BA). We found that 5-HT neurons co-release 5-HT and glutamate onto BA neurons in a cell-type-specific and frequency-dependent manner. Therefore, we suggest that theories on the contribution of 5-HT neurons to amygdala function should be revised to incorporate the concept of 5-HT/glutamate cotransmission.


Assuntos
Tonsila do Cerebelo/citologia , Ácido Glutâmico/metabolismo , Rede Nervosa/fisiologia , Neurônios/metabolismo , Serotonina/metabolismo , Animais , Animais Recém-Nascidos , Channelrhodopsins , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas GABAérgicos/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Piperazinas/farmacologia , Piridinas/farmacologia , Receptores de Serotonina/metabolismo , Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
13.
Mol Pharmacol ; 93(2): 141-156, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242355

RESUMO

N-methyl-d-aspartate (NMDA) receptors are ligand-gated, cation-selective channels that mediate a slow component of excitatory synaptic transmission. Subunit-selective positive allosteric modulators of NMDA receptor function have therapeutically relevant effects on multiple processes in the brain. A series of pyrrolidinones, such as PYD-106, that selectively potentiate NMDA receptors that contain the GluN2C subunit have structural determinants of activity that reside between the GluN2C amino terminal domain and the GluN2C agonist binding domain, suggesting a unique site of action. Here we use molecular biology and homology modeling to identify residues that line a candidate binding pocket for GluN2C-selective pyrrolidinones. We also show that occupancy of only one site in diheteromeric receptors is required for potentiation. Both GluN2A and GluN2B can dominate the sensitivity of triheteromeric receptors to eliminate the actions of pyrrolidinones, thus rendering this series uniquely sensitive to subunit stoichiometry. We experimentally identified NMR-derived conformers in solution, which combined with molecular modeling allows the prediction of the bioactive binding pose for this series of GluN2C-selective positive allosteric modulators of NMDA receptors. These data advance our understanding of the site and nature of the ligand-protein interaction for GluN2C-selective positive allosteric modulators for NMDA receptors.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Técnicas de Patch-Clamp , Conformação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Reprodutibilidade dos Testes , Estereoisomerismo , Xenopus laevis
14.
J Pharmacol Exp Ther ; 367(3): 442-451, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30291173

RESUMO

Safinamide (Xadago) is a novel dual-mechanism drug that has been approved in the European Union and United States as add-on treatment to levodopa in Parkinson's disease therapy. In addition to its selective and reversible monoamine oxidase B inhibition, safinamide through use-dependent sodium channel blockade reduces overactive glutamatergic transmission in basal ganglia, which is believed to contribute to motor symptoms and complications including levodopa-induced dyskinesia (LID). The present study investigated the effects of safinamide on the development of LID in 6-hydroxydopamine (6-OHDA)-lesioned rats, evaluating behavioral, molecular, and neurochemical parameters associated with LID appearance. 6-OHDA-lesioned rats were treated with saline, levodopa (6 mg/kg), or levodopa plus safinamide (15 mg/kg) for 21 days. Abnormal involuntary movements, motor performance, molecular composition of the striatal glutamatergic synapse, glutamate, and GABA release were analyzed. In the striatum, safinamide prevented the rearrangement of the subunit composition of N-methyl-d-aspartate receptors and the levodopa-induced increase of glutamate release associated with dyskinesia without affecting the levodopa-stimulated motor performance and dyskinesia. Overall, these findings suggest that the striatal glutamate-modulating component of safinamide's activity may contribute to its clinical effects, where its long-term use as levodopa add-on therapy significantly improves motor function and "on" time without troublesome dyskinesia.


Assuntos
Alanina/análogos & derivados , Benzilaminas/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Levodopa/farmacologia , Transdução de Sinais/efeitos dos fármacos , Alanina/farmacologia , Animais , Antiparkinsonianos/farmacologia , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Dopaminérgicos/farmacologia , Masculino , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
15.
Int J Neuropsychopharmacol ; 21(3): 242-254, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29099938

RESUMO

Background: N-methyl-D-aspartate receptors are one member of a family of ionotropic glutamate receptors that play a pivotal role in synaptic plasticity processes associated with learning and have become attractive therapeutic targets for diseases such as depression, anxiety, schizophrenia, and neuropathic pain. NYX-2925 ((2S, 3R)-3-hydroxy-2-((R)-5-isobutyryl-1-oxo-2,5-diazaspiro[3.4]octan-2-yl)butanamide) is one member of a spiro-ß-lactam-based chemical platform that mimics some of the dipyrrolidine structural features of rapastinel (formerly GLYX-13: threonine-proline-proline-threonine) and is distinct from known N-methyl-D-aspartate receptor agonists or antagonists such as D-cycloserine, ketamine, MK-801, kynurenic acid, or ifenprodil. Methods: The in vitro and in vivo pharmacological properties of NYX-2925 were examined. Results: NYX-2925 has a low potential for "off-target" activity, as it did not exhibit any significant affinity for a large panel of neuroactive receptors, including hERG receptors. NYX-2925 increased MK-801 binding to human N-methyl-D-aspartate receptor NR2A-D subtypes expressed in HEK cells and enhanced N-methyl-D-aspartate receptor current and long-term potentiation (LTP) in rat hippocampal slices (100-500 nM). Single dose ex vivo studies showed increased metaplasticity in a hippocampal LTP paradigm and structural plasticity 24 hours after administration (1 mg/kg p.o.). Significant learning enhancement in both novel object recognition and positive emotional learning paradigms were observed (0.01-1 mg/kg p.o.), and these effects were blocked by the N-methyl-D-aspartate receptor antagonist CPP. NYX-2925 does not show any addictive or sedative/ataxic side effects and has a therapeutic index of >1000. NYX-2925 (1 mg/kg p.o.) has a cerebrospinal fluid half-life of 1.2 hours with a Cmax of 44 nM at 1 hour. Conclusions: NYX-2925, like rapastinel, activates an NMDA receptor-mediated synaptic plasticity process and may have therapeutic potential for a variety of NMDA receptor-mediated central nervous system disorders.


Assuntos
Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Oligopeptídeos/farmacologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Emoções/efeitos dos fármacos , Fármacos Atuantes sobre Aminoácidos Excitatórios/líquido cefalorraquidiano , Fármacos Atuantes sobre Aminoácidos Excitatórios/química , Células HEK293 , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Estrutura Molecular , Plasticidade Neuronal/fisiologia , Oligopeptídeos/líquido cefalorraquidiano , Oligopeptídeos/química , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Pirazinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
16.
Cereb Cortex ; 27(7): 3568-3585, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27341850

RESUMO

Patch-clamp recordings indicated the presence of P2X7 receptors at neural progenitor cells (NPCs) in the subgranular zone of the dentate gyrus in hippocampal brain slices prepared from transgenic nestin reporter mice. The activation of these receptors caused inward current near the resting membrane potential of the NPCs, while P2Y1 receptor activation initiated outward current near the reversal potential of the P2X7 receptor current. Both receptors were identified by biophysical/pharmacological methods. When the brain slices were prepared from mice which underwent a pilocarpine-induced status epilepticus or when brain slices were incubated in pilocarpine-containing external medium, the sensitivity of P2X7 and P2Y1 receptors was invariably increased. Confocal microscopy confirmed the localization of P2X7 and P2Y1 receptor-immunopositivity at nestin-positive NPCs. A one-time status epilepticus in rats caused after a latency of about 5 days recurrent epileptic fits. The blockade of central P2X7 receptors increased the number of seizures and their severity. It is hypothesized that P2Y1 receptors after a status epilepticus may increase the ATP-induced proliferation/ectopic migration of NPCs; the P2X7 receptor-mediated necrosis/apoptosis might counteract these effects, which would otherwise lead to a chronic manifestation of recurrent epileptic fits.


Assuntos
Hipocampo/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Nucleotídeos/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Estado Epiléptico/patologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Aminoquinolinas/farmacologia , Animais , Modelos Animais de Doenças , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Agonistas Muscarínicos/toxicidade , Células-Tronco Neurais/metabolismo , Pilocarpina/toxicidade , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2Y1/genética , Estado Epiléptico/induzido quimicamente
17.
Cereb Cortex ; 27(11): 5369-5384, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968657

RESUMO

Intellectual disability affects 2-3% of the world's population and typically begins during childhood, causing impairments in social skills and cognitive abilities. Mutations in the TM4SF2 gene, which encodes the TSPAN7 protein, cause a severe form of intellectual disability, and currently, no therapy is able to ameliorate this cognitive impairment. We previously reported that, in cultured neurons, shRNA-mediated down-regulation of TSPAN7 affects AMPAR trafficking by enhancing PICK1-GluA2 interaction, thereby increasing the intracellular retention of AMPAR. Here, we found that loss of TSPAN7 function in mice causes alterations in hippocampal excitatory synapse structure and functionality as well as cognitive impairment. These changes occurred along with alterations in AMPAR expression levels. We also found that interfering with PICK1-GluA2 binding restored synaptic function in Tm4sf2-/y mice. Moreover, potentiation of AMPAR activity via the administration of the ampakine CX516 reverted the neurological phenotype observed in Tm4sf2-/y mice, suggesting that pharmacological modulation of AMPAR may represent a new approach for treating patients affected by TM4SF2 mutations and intellectual disability.


Assuntos
Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/metabolismo , Proteínas de Membrana/deficiência , Proteínas do Tecido Nervoso/deficiência , Psicotrópicos/farmacologia , Receptores de AMPA/metabolismo , Regulação Alostérica , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Deficiência Intelectual/patologia , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
18.
J Neurosci ; 36(36): 9490-504, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27605622

RESUMO

UNLABELLED: Reconsolidation updating is a form of memory modification in which an existing memory can become destabilized upon retrieval and subsequently be modified via protein-synthesis-dependent reconsolidation. However, not all memories appear to destabilize upon retrieval and thus are not modifiable via reconsolidation updating approaches and the neurobiological basis for this remains poorly understood. Here, we report that auditory fear memories created with 10 tone-shock pairings are resistant to retrieval-dependent memory destabilization and are associated with an increase in the synaptic GluN2A/GluN2B ratio in neurons of the basal and lateral amygdala (BLA) compared with weaker fear memories created via one or three tone-shock pairings. To increase the GluN2A/GluN2B ratio after learning, we generated a line of mice that expresses an inducible and doxycycline-dependent GFP-GluN2A transgene specifically in α-CaMKII-positive neurons. Our findings indicate that increasing the GluN2A/GluN2B ratio in BLA α-CaMKII-positive neurons after a weak fear memory has consolidated inhibits retrieval-dependent memory destabilization and modification of the fear memory trace. This was associated with a reduction in retrieval-dependent AMPA receptor trafficking, as evidenced by a reduction in retrieval-dependent phosphorylation of GluR1 at serine-845. In addition, we determined that increasing the GluN2A/GluN2B ratio before fear learning significantly impaired long term memory consolidation, whereas short-term memory remained unaltered. An increase in the GluN2A/GluN2B ratio after fear learning had no influence on fear extinction or expression. Our results underscore the importance of NMDAR subunit composition for memory destabilization and suggest a mechanism for why some memories are resistant to modification. SIGNIFICANCE STATEMENT: Memory modification using reconsolidation updating is being examined as one of the potential treatment approaches for attenuating maladaptive memories associated with emotional disorders. However, studies have shown that, whereas weak memories can be modified using reconsolidation updating, strong memories can be resistant to this approach. Therefore, treatments targeting the reconsolidation process are unlikely to be clinically effective unless methods are devised to enhance retrieval-dependent memory destabilization. Currently, little is known about the cellular and molecular events that influence the induction of reconsolidation updating. Here, we determined that an increase in the GluN2A/GluN2B ratio interferes with retrieval-dependent memory destabilization and inhibits the initiation of reconsolidation updating.


Assuntos
Tonsila do Cerebelo/metabolismo , Medo/psicologia , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Estimulação Acústica , Análise de Variância , Animais , Anisomicina/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína 4 Homóloga a Disks-Large , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/efeitos dos fármacos , Feminino , Guanilato Quinases/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Rememoração Mental/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores da Síntese de Proteínas/farmacologia , Receptores de N-Metil-D-Aspartato/genética
19.
J Neurosci ; 36(38): 9817-27, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27656021

RESUMO

UNLABELLED: Fragile X syndrome (FXS) is a neurodevelopmental disease. It is one of the leading monogenic causes of intellectual disability among boys with most also displaying autism spectrum disorder traits. Here we investigated the role of NMDA receptors on mGluR-dependent long-term depression (mGluR-LTD), a key biomarker in the disease, at four different developmental stages. First, we applied the mGluR agonist 3,5-dihydroxyphenylglycine in the absence or presence of the NMDAR blocker, APV, hereby unmasking the NMDAR component in this process. As expected, in the presence of APV, we found more LTD in the mouse KO than in WT. This, however, was only observed in the p30-60 age group. At all other age groups tested, mGluR-LTD was almost identical between KO and WT. Interestingly, at p60, in the absence of APV, no or very little LTD was found in KO that was completely restored by application of APV. This suggests that the underlying cause of the enhanced mGluR-LTD in KO (at p30) is caused by dysregulated NMDAR signaling. To investigate this further, we next used NMDAR-subunit-specific antagonists. Inhibition of GluN2B, but not GluN2A, blocked mGluR-LTD only in WT. This was in contrast in the KO where blocking GluN2B rescued mGluR-LTD, suggesting GluN2B-containing NMDARs in the KO are hyperactive. Thus, these findings suggest strong involvement of GluN2B-containing-NMDARs in the pathophysiology of FXS and highlight a potential path for treatment for the disease. SIGNIFICANCE STATEMENT: There is currently no cure for fragile X, although medications targeting specific FXS symptoms do exist. The FXS animal model, the Fmr1 knock-out mouse, has demonstrated an increased mGluR5-mediated long-term depression (LTD) leading to several clinical trials of mGluR5 inhibitors/modulators, yet all have failed. In addition, surprisingly little information exists about the possible role of other ion channels/receptors, including NMDA receptors (NMDAR), in mGluR-LTD. Here we focus on NMDARs and their regulation of mGluR-mediated LTD at different developmental stages using several different NMDAR blockers/antagonists. Our findings suggest dysregulated NMDARs in the pathophysiology of FXS leading to altered mGluR-mediated LTD. Together, these data will help to develop new drug candidates that could lead to reversal of the FXS phenotype.


Assuntos
Síndrome do Cromossomo X Frágil/fisiopatologia , Depressão Sináptica de Longo Prazo/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/genética , Fatores Etários , Animais , Biofísica , Região CA3 Hipocampal/patologia , Modelos Animais de Doenças , Estimulação Elétrica , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Técnicas In Vitro , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
20.
J Neurosci ; 36(37): 9696-709, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27629719

RESUMO

UNLABELLED: Dendritic filopodia are actin-rich structures that are thought to contribute to early spine synapse formation; however, the actin regulatory proteins important for early synaptogenesis are poorly defined. Using organotypic hippocampal slice cultures and primary neuron hippocampal cultures from Arp2/3 conditional knock-out mice, we analyze the roles of the Arp2/3 complex, an actin regulator that creates branched actin networks, and demonstrate it is essential for distinct stages of both structural and functional maturation of excitatory spine synapses. Our data show that initially the Arp2/3 complex inhibits the formation of dendritic filopodia but that later during development, the Arp2/3 complex drives the morphological maturation from filopodia to typical spine morphology. Furthermore, we demonstrate that although the Arp2/3 complex is not required for key spine maturation steps, such as presynaptic contact and recruitment of MAGUK (membrane-associated guanylate kinase) scaffolding proteins or NMDA receptors, it is necessary for the recruitment of AMPA receptors. This latter process, also known as synapse unsilencing, is a final and essential step in the neurodevelopment of excitatory postsynaptic synaptogenesis, setting the stage for neuronal interconnectivity. These findings provide the first evidence that the Arp2/3 complex is directly involved in functional maturation of dendritic spines during the developmental period of spinogenesis. SIGNIFICANCE STATEMENT: Excitatory spine synapse formation (spinogenesis) is a poorly understood yet pivotal period of neurodevelopment that occurs within 2-3 weeks after birth. Neurodevelopmental disorders such as intellectual disability and autism are characterized by abnormal spine structure, which may arise from abnormal excitatory synaptogenesis. The initial stage of spinogenesis is thought to begin with the emergence of actin-rich dendritic filopodia that initiate contact with presynaptic axonal boutons. However, it remains enigmatic how actin cytoskeletal regulation directs dendritic filopodial emergence or their subsequent maturation into dendritic spines during development and on into adulthood. In this study, we provide the first evidence that the Arp2/3 complex, a key actin nucleator, is involved in distinct stages of spine formation and is required for synapse unsilencing.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Espinhas Dendríticas/fisiologia , Neurônios/citologia , Sinapses/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Células Cultivadas , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Hipocampo/citologia , Masculino , Camundongos , Camundongos Knockout , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fotodegradação , Pseudópodes/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/ultraestrutura , Fatores de Tempo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa