Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.066
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(6): 3069-3087, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38321933

RESUMO

Coordinating epigenomic inheritance and cell cycle progression is essential for organogenesis. UHRF1 connects these functions during development by facilitating maintenance of DNA methylation and cell cycle progression. Here, we provide evidence resolving the paradoxical phenotype of uhrf1 mutant zebrafish embryos which have activation of pro-proliferative genes and increased number of hepatocytes in S-phase, but the liver fails to grow. We uncover decreased Cdkn2a/b and persistent Cdk4/6 activation as the mechanism driving uhrf1 mutant hepatocytes into S-phase. This induces replication stress, DNA damage and Atr activation. Palbociclib treatment of uhrf1 mutants prevented aberrant S-phase entry, reduced DNA damage, and rescued most cellular and developmental phenotypes, but it did not rescue DNA hypomethylation, transposon expression or the interferon response. Inhibiting Atr reduced DNA replication and increased liver size in uhrf1 mutants, suggesting that Atr activation leads to dormant origin firing and prevents hepatocyte proliferation. Cdkn2a/b was downregulated pro-proliferative genes were also induced in a Cdk4/6 dependent fashion in the liver of dnmt1 mutants, suggesting DNA hypomethylation as a mechanism of Cdk4/6 activation during development. This shows that the developmental defects caused by DNA hypomethylation are attributed to persistent Cdk4/6 activation, DNA replication stress, dormant origin firing and cell cycle inhibition.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Metilação de DNA , Fígado , Peixe-Zebra , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , DNA/metabolismo , Replicação do DNA/genética , Embrião não Mamífero , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fase S , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ativação Enzimática/genética
2.
BMC Genomics ; 25(1): 438, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698322

RESUMO

BACKGROUND: Nutrient availability during early stages of development (embryogenesis and the first week post-hatch) can have long-term effects on physiological functions and bird metabolism. The embryo develops in a closed structure and depends entirely on the nutrients and energy available in the egg. The aim of this study was to describe the ontogeny of pathways governing hepatic metabolism that mediates many physiological functions in the pHu + and pHu- chicken lines, which are divergently selected for the ultimate pH of meat, a proxy for muscle glycogen stores, and which differ in the nutrient content and composition of eggs. RESULTS: We identified eight clusters of genes showing a common pattern of expression between embryonic day 12 (E12) and day 8 (D8) post-hatch. These clusters were not representative of a specific metabolic pathway or function. On E12 and E14, the majority of genes differentially expressed between the pHu + and pHu- lines were overexpressed in the pHu + line. Conversely, the majority of genes differentially expressed from E18 were overexpressed in the pHu- line. During the metabolic shift at E18, there was a decrease in the expression of genes linked to several metabolic functions (e.g. protein synthesis, autophagy and mitochondrial activity). At hatching (D0), there were two distinct groups of pHu + chicks based on hierarchical clustering; these groups also differed in liver weight and serum parameters (e.g. triglyceride content and creatine kinase activity). At D0 and D8, there was a sex effect for several metabolic pathways. Metabolism appeared to be more active and oriented towards protein synthesis (RPS6) and fatty acid ß-oxidation (ACAA2, ACOX1) in males than in females. In comparison, the genes overexpressed in females were related to carbohydrate metabolism (SLC2A1, SLC2A12, FoxO1, PHKA2, PHKB, PRKAB2 and GYS2). CONCLUSIONS: Our study provides the first detailed description of the evolution of different hepatic metabolic pathways during the early development of embryos and post-hatching chicks. We found a metabolic orientation for the pHu + line towards proteolysis, glycogen degradation, ATP synthesis and autophagy, likely in response to a higher energy requirement compared with pHu- embryos. The metabolic orientations specific to the pHu + and pHu- lines are established very early, probably in relation with their different genetic background and available nutrients.


Assuntos
Galinhas , Fígado , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Fígado/metabolismo , Fígado/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Feminino , Músculos Peitorais/metabolismo , Músculos Peitorais/crescimento & desenvolvimento , Masculino , Perfilação da Expressão Gênica , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento
3.
Development ; 148(6)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33658226

RESUMO

Groucho-related genes (GRGs) are transcriptional co-repressors that are crucial for many developmental processes. Several essential pancreatic transcription factors are capable of interacting with GRGs; however, the in vivo role of GRG-mediated transcriptional repression in pancreas development is still not well understood. In this study, we used complex mouse genetics and transcriptomic analyses to determine that GRG3 is essential for ß cell development, and in the absence of Grg3 there is compensatory upregulation of Grg4Grg3/4 double mutant mice have severe dysregulation of the pancreas gene program with ectopic expression of canonical liver genes and Foxa1, a master regulator of the liver program. Neurod1, an essential ß cell transcription factor and predicted target of Foxa1, becomes downregulated in Grg3/4 mutants, resulting in reduced ß cell proliferation, hyperglycemia, and early lethality. These findings uncover novel functions of GRG-mediated repression during pancreas development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Correpressoras/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Pâncreas/crescimento & desenvolvimento , Proteínas Repressoras/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Secretoras de Insulina/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Mutação/genética , Organogênese/genética , Pâncreas/metabolismo
4.
Development ; 148(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478514

RESUMO

Liver development is controlled by key signals and transcription factors that drive cell proliferation, migration, differentiation and functional maturation. In the adult liver, cell maturity can be perturbed by genetic and environmental factors that disrupt hepatic identity and function. Developmental signals and fetal genetic programmes are often dysregulated or reactivated, leading to dedifferentiation and disease. Here, we highlight signalling pathways and transcriptional regulators that drive liver cell development and primary liver cancers. We also discuss emerging models derived from pluripotent stem cells, 3D organoids and bioengineering for improved studies of signalling pathways in liver cancer and regenerative medicine.


Assuntos
Neoplasias Hepáticas/patologia , Fígado/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Regeneração Hepática , Engenharia Tecidual
5.
Nature ; 562(7725): 128-132, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30258227

RESUMO

Angiocrine signals derived from endothelial cells are an important component of intercellular communication and have a key role in organ growth, regeneration and disease1-4. These signals have been identified and studied in multiple organs, including the liver, pancreas, lung, heart, bone, bone marrow, central nervous system, retina and some cancers1-4. Here we use the developing liver as a model organ to study angiocrine signals5,6, and show that the growth rate of the liver correlates both spatially and temporally with blood perfusion to this organ. By manipulating blood flow through the liver vasculature, we demonstrate that vessel perfusion activates ß1 integrin and vascular endothelial growth factor receptor 3 (VEGFR3). Notably, both ß1 integrin and VEGFR3 are strictly required for normal production of hepatocyte growth factor, survival of hepatocytes and liver growth. Ex vivo perfusion of adult mouse liver and in vitro mechanical stretching of human hepatic endothelial cells illustrate that mechanotransduction alone is sufficient to turn on angiocrine signals. When the endothelial cells are mechanically stretched, angiocrine signals trigger in vitro proliferation and survival of primary human hepatocytes. Our findings uncover a signalling pathway in vascular endothelial cells that translates blood perfusion and mechanotransduction into organ growth and maintenance.


Assuntos
Comunicação Autócrina , Integrina beta1/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/fisiologia , Mecanotransdução Celular/fisiologia , Transdução de Sinais , Animais , Células Cultivadas , Células Endoteliais/fisiologia , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/citologia , Hepatócitos/fisiologia , Humanos , Fígado/irrigação sanguínea , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928468

RESUMO

Low-density lipoprotein receptor-related protein 5 (LRP5) is a constitutively expressed receptor with observed roles in bone homeostasis, retinal development, and cardiac metabolism. However, the function of LRP5 in the brain remains unexplored. This study investigates LRP5's role in the central nervous system by conducting an extensive analysis using RNA-seq tools and in silico assessments. Two protein-coding Lrp5 transcripts are expressed in mice: full-length Lrp5-201 and a truncated form encoded by Lrp5-202. Wt mice express Lrp5-201 in the liver and brain and do not express the truncated form. Lrp5-/- mice express Lrp5-202 in the liver and brain and do not express Lrp5-201 in the liver. Interestingly, Lrp5-/- mouse brains show full-length Lrp5-201 expression, suggesting that LRP5 has a role in preserving brain function during development. Functional gene enrichment analysis on RNA-seq unveils dysregulated expression of genes associated with neuronal differentiation and synapse formation in the brains of Lrp5-/- mice compared to Wt mice. Furthermore, Gene Set Enrichment Analysis highlights downregulated expression of genes involved in retinol and linoleic acid metabolism in Lrp5-/- mouse brains. Tissue-specific alternative splicing of Lrp5 in Lrp5-/- mice supports that the expression of LRP5 in the brain is needed for the correct synthesis of vitamins and fatty acids, and it is indispensable for correct brain development.


Assuntos
Processamento Alternativo , Encéfalo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Fígado/metabolismo , Fígado/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL
7.
Genome Res ; 30(2): 263-275, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32051188

RESUMO

Liver organogenesis and development are composed of a series of complex, well-orchestrated events. Identifying key factors and pathways governing liver development will help elucidate the physiological and pathological processes including those of cancer. We conducted multidimensional omics measurements including protein, mRNA, and transcription factor (TF) DNA-binding activity for mouse liver tissues collected from embryonic day 12.5 (E12.5) to postnatal week 8 (W8), encompassing major developmental stages. These data sets reveal dynamic changes of core liver functions and canonical signaling pathways governing development at both mRNA and protein levels. The TF DNA-binding activity data set highlights the importance of TF activity in early embryonic development. A comparison between mouse liver development and human hepatocellular carcinoma (HCC) proteomic profiles reveal that more aggressive tumors are characterized with the activation of early embryonic development pathways, whereas less aggressive ones maintain liver function-related pathways that are elevated in the mature liver. This work offers a panoramic view of mouse liver development and provides a rich resource to explore in-depth functional characterization.


Assuntos
Desenvolvimento Embrionário/genética , Fígado/crescimento & desenvolvimento , Proteoma/genética , Transcriptoma/genética , Animais , Carcinoma Hepatocelular/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Camundongos , RNA Mensageiro/genética , Fatores de Transcrição/genética
8.
Hepatology ; 75(3): 567-583, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34569629

RESUMO

BACKGROUND AND AIMS: Alagille Syndrome (ALGS) is a congenital disorder caused by mutations in the Notch ligand gene JAGGED1, leading to neonatal loss of intrahepatic duct (IHD) cells and cholestasis. Cholestasis can resolve in certain patients with ALGS, suggesting regeneration of IHD cells. However, the mechanisms driving IHD cell regeneration following Jagged loss remains unclear. Here, we show that cholestasis due to developmental loss of IHD cells can be consistently phenocopied in zebrafish with compound jagged1b and jagged2b mutations or knockdown. APPROACH AND RESULTS: Leveraging the transience of jagged knockdown in juvenile zebrafish, we find that resumption of Jagged expression leads to robust regeneration of IHD cells through a Notch-dependent mechanism. Combining multiple lineage tracing strategies with whole-liver three-dimensional imaging, we demonstrate that the extrahepatic duct (EHD) is the primary source of multipotent progenitors that contribute to the regeneration, but not to the development, of IHD cells. Hepatocyte-to-IHD cell transdifferentiation is possible but rarely detected. Progenitors in the EHD proliferate and migrate into the liver with Notch signaling loss and differentiate into IHD cells if Notch signaling increases. Tissue-specific mosaic analysis with an inducible dominant-negative Fgf receptor suggests that Fgf signaling from the surrounding mesenchymal cells maintains this extrahepatic niche by directly preventing premature differentiation and allocation of EHD progenitors to the liver. Indeed, transcriptional profiling and functional analysis of adult mouse EHD organoids uncover their distinct differentiation and proliferative potential relative to IHD organoids. CONCLUSIONS: Our data show that IHD cells regenerate upon resumption of Jagged/Notch signaling, from multipotent progenitors originating from an Fgf-dependent extrahepatic stem cell niche. We posit that if Jagged/Notch signaling is augmented, through normal stochastic variation, gene therapy, or a Notch agonist, regeneration of IHD cells in patients with ALGS may be enhanced.


Assuntos
Síndrome de Alagille , Ductos Biliares Extra-Hepáticos , Ductos Biliares Intra-Hepáticos , Proteínas de Ligação ao Cálcio , Proteína Jagged-1 , Regeneração Hepática/fisiologia , Receptores Notch/metabolismo , Proteínas de Peixe-Zebra , Síndrome de Alagille/genética , Síndrome de Alagille/metabolismo , Animais , Ductos Biliares Extra-Hepáticos/crescimento & desenvolvimento , Ductos Biliares Extra-Hepáticos/fisiologia , Ductos Biliares Intra-Hepáticos/crescimento & desenvolvimento , Ductos Biliares Intra-Hepáticos/fisiologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Transdiferenciação Celular , Modelos Animais de Doenças , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(11): 6103-6113, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123069

RESUMO

Clinical observation of the association between cancer aggressiveness and embryonic development stage implies the importance of developmental signals in cancer initiation and therapeutic resistance. However, the dynamic gene expression during organogenesis and the master oncofetal drivers are still unclear, which impeded the efficient elimination of poor prognostic tumors, including human hepatocellular carcinoma (HCC). In this study, human embryonic stem cells were induced to differentiate into adult hepatocytes along hepatic lineages to mimic liver development in vitro. Combining transcriptomic data from liver cancer patients with the hepatocyte differentiation model, the active genes derived from different hepatic developmental stages and the tumor tissues were selected. Bioinformatic analysis followed by experimental assays was used to validate the tumor subtype-specific oncofetal signatures and potential therapeutic values. Hierarchical clustering analysis revealed the existence of two subtypes of liver cancer with different oncofetal properties. The gene signatures and their clinical significance were further validated in an independent clinical cohort and The Cancer Genome Atlas database. Upstream activator analysis and functional screening further identified E2F1 and SMAD3 as master transcriptional regulators. Small-molecule inhibitors specifically targeting the oncofetal drivers extensively down-regulated subtype-specific developmental signaling and inhibited tumorigenicity. Liver cancer cells and primary HCC tumors with different oncofetal properties also showed selective vulnerability to their specific inhibitors. Further precise targeting of the tumor initiating steps and driving events according to subtype-specific biomarkers might eliminate tumor progression and provide novel therapeutic strategy.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Hepatócitos/patologia , Neoplasias Hepáticas/genética , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Biomarcadores Tumorais/antagonistas & inibidores , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Estudos de Coortes , Intervalo Livre de Doença , Fator de Transcrição E2F1/antagonistas & inibidores , Fator de Transcrição E2F1/metabolismo , Feminino , Perfilação da Expressão Gênica , Hepatectomia , Células-Tronco Embrionárias Humanas , Humanos , Hidroxiquinolinas/farmacologia , Hidroxiquinolinas/uso terapêutico , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Estimativa de Kaplan-Meier , Fígado/crescimento & desenvolvimento , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Transdução de Sinais/genética , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Hum Mol Genet ; 29(18): 3064-3080, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32886109

RESUMO

ANKS6 is a ciliary protein that localizes to the proximal compartment of the primary cilium, where it regulates signaling. Mutations in the ANKS6 gene cause multiorgan ciliopathies in humans, which include laterality defects of the visceral organs, renal cysts as part of nephronophthisis and congenital hepatic fibrosis (CHF) in the liver. Although CHF together with liver ductal plate malformations are common features of several human ciliopathy syndromes, including nephronophthisis-related ciliopathies, the mechanism by which mutations in ciliary genes lead to bile duct developmental abnormalities is not understood. Here, we generated a knockout mouse model of Anks6 and show that ANKS6 function is required for bile duct morphogenesis and cholangiocyte differentiation. The loss of Anks6 causes ciliary abnormalities, ductal plate remodeling defects and periportal fibrosis in the liver. Our expression studies and biochemical analyses show that biliary abnormalities in Anks6-deficient livers result from the dysregulation of YAP transcriptional activity in the bile duct-lining epithelial cells. Mechanistically, our studies suggest, that ANKS6 antagonizes Hippo signaling in the liver during bile duct development by binding to Hippo pathway effector proteins YAP1, TAZ and TEAD4 and promoting their transcriptional activity. Together, this study reveals a novel function for ANKS6 in regulating Hippo signaling during organogenesis and provides mechanistic insights into the regulatory network controlling bile duct differentiation and morphogenesis during liver development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Fígado/crescimento & desenvolvimento , Proteínas Musculares/genética , Fatores de Transcrição/genética , Animais , Ductos Biliares/crescimento & desenvolvimento , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Diferenciação Celular/genética , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Humanos , Fígado/anormalidades , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Morfogênese/genética , Transdução de Sinais/genética , Fatores de Transcrição de Domínio TEA , Proteínas de Sinalização YAP
11.
J Hepatol ; 76(3): 694-725, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34715263

RESUMO

As one of the most metabolically complex systems in the body, the liver ensures multi-organ homeostasis and ultimately sustains life. Nevertheless, during early postnatal development, the liver is highly immature and takes about 2 years to acquire and develop almost all of its functions. Different events occurring at the environmental and cellular levels are thought to mediate hepatic maturation and function postnatally. The crosstalk between the liver, the gut and its microbiome has been well appreciated in the context of liver disease, but recent evidence suggests that the latter could also be critical for hepatic function under physiological conditions. The gut-liver crosstalk is thought to be mediated by a rich repertoire of microbial metabolites that can participate in a myriad of biological processes in hepatic sinusoids, from energy metabolism to tissue regeneration. Studies on germ-free animals have revealed the gut microbiome as a critical contributor in early hepatic programming, and this influence extends throughout life, mediating liver function and body homeostasis. In this seminar, we describe the microbial molecules that have a known effect on the liver and discuss how the gut microbiome and the liver evolve throughout life. We also provide insights on current and future strategies to target the gut microbiome in the context of hepatology research.


Assuntos
Microbioma Gastrointestinal/fisiologia , Testes de Função Hepática/estatística & dados numéricos , Fígado/crescimento & desenvolvimento , Homeostase/imunologia , Homeostase/fisiologia , Humanos , Fígado/fisiologia , Testes de Função Hepática/métodos
12.
Biochem Biophys Res Commun ; 587: 92-98, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34872004

RESUMO

Aminoacyl tRNA synthetases (ARSs) are a group of proteins, acting as transporters to transfer and attach the appropriate amino acids onto their cognate tRNAs for translation. So far, 18 out of 20 cytoplasmic ARSs are reported to be connected to different neuropathy disorders with multi-organ defects that are often accompanied with developmental delays. Thus, it is important to understand functions and impacts of ARSs at the whole organism level. Here, we systematically analyzed the spatiotemporal expression of 14 ars and 2 aimp genes during development in zebrafish that have not be previously reported. Not only in the brain, their dynamic expression patterns in several tissues such as in the muscles, liver and intestine suggest diverse roles in a wide range of development processes in addition to neuronal function, which is consistent with potential involvement in multiple syndrome diseases associated with ARS mutations. In particular, hinted by its robust expression pattern in the brain, we confirmed that aimp1 is required for the formation of cerebrovasculature by a loss-of-function approach. Overall, our systematic profiling data provides a useful basis for studying roles of ARSs during development and understanding their potential functions in the etiology of related diseases.


Assuntos
Aminoacil-tRNA Sintetases/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Embrião não Mamífero , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Intestinos/crescimento & desenvolvimento , Intestinos/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Anotação de Sequência Molecular , Morfolinos/administração & dosagem , Morfolinos/genética , Morfolinos/metabolismo , Músculos/metabolismo , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/classificação , Proteínas de Peixe-Zebra/metabolismo
13.
Development ; 146(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30733279

RESUMO

Liver development involves dramatic gene expression changes mediated by transcriptional and post-transcriptional control. Here, we show that the Cnot deadenylase complex plays a crucial role in liver functional maturation. The Cnot3 gene encodes an essential subunit of the Cnot complex. Mice lacking Cnot3 in liver have reduced body and liver masses, and they display anemia and severe liver damage. Histological analyses indicate that Cnot3-deficient (Cnot3-/- ) hepatocytes are irregular in size and morphology, resulting in formation of abnormal sinusoids. We observe hepatocyte death, increased abundance of mitotic and mononucleate hepatocytes, and inflammation. Cnot3-/- livers show increased expression of immune response-related, cell cycle-regulating and immature liver genes, while many genes relevant to liver functions, such as oxidation-reduction, lipid metabolism and mitochondrial function, decrease, indicating impaired liver functional maturation. Highly expressed mRNAs possess elongated poly(A) tails and are stabilized in Cnot3-/- livers, concomitant with an increase of the proteins they encode. In contrast, transcription of liver function-related mRNAs was lower in Cnot3-/- livers. We detect efficient suppression of Cnot3 protein postnatally, demonstrating the crucial contribution of mRNA decay to postnatal liver functional maturation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fígado/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Albuminas/metabolismo , Anemia/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Ductos Biliares/metabolismo , Ciclo Celular , Feminino , Perfilação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Inflamação , Lipídeos/química , Fígado/embriologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética
14.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33361417

RESUMO

Hepatitis B virus (HBV) transcription and replication increase progressively throughout postnatal liver development with maximal viral biosynthesis occurring at around 4 weeks of age in the HBV transgenic mouse model of chronic infection. Increasing viral biosynthesis is associated with a corresponding progressive loss of DNA methylation. The loss of DNA methylation is associated with increasing levels of 5-hydroxymethylcytosine (5hmC) residues which correlate with increased liver-enriched pioneer transcription factor Forkhead box protein A (FoxA) RNA levels, a rapid decline in postnatal liver DNA methyltransferase (Dnmt) transcripts, and a very modest reduction in ten-eleven translocation (Tet) methylcytosine dioxygenase expression. These observations are consistent with the suggestion that the balance between active HBV DNA methylation and demethylation is regulated by FoxA recruitment of Tet in the presence of declining Dnmt activity. These changes lead to demethylation of the viral genome during hepatocyte maturation with associated increases in viral biosynthesis. Consequently, manipulation of the relative activities of these two counterbalancing processes might permit the specific silencing of HBV gene expression with the loss of viral biosynthesis and the resolution of chronic HBV infections.IMPORTANCE HBV biosynthesis begins at birth and increases during early postnatal liver development in the HBV transgenic mouse model of chronic infection. The levels of viral RNA and DNA synthesis correlate with pioneer transcription factor FoxA transcript plus Tet methylcytosine dioxygenase-generated 5hmC abundance but inversely with Dnmt transcript levels and HBV DNA methylation. Together, these findings suggest that HBV DNA methylation during neonatal liver development is actively modulated by the relative contributions of FoxA-recruited Tet-mediated DNA demethylation and Dnmt-mediated DNA methylation activities. This mode of gene regulation, mediated by the loss of DNA methylation at hepatocyte-specific viral and cellular promoters, likely contributes to hepatocyte maturation during liver development in addition to the postnatal activation of HBV transcription and replication.


Assuntos
DNA Viral/metabolismo , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/virologia , Fígado/crescimento & desenvolvimento , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Animais Recém-Nascidos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Replicação do DNA , DNA Viral/biossíntese , Desmetilação , Dioxigenases/genética , Dioxigenases/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Regulação Viral da Expressão Gênica , Hepatite B Crônica/metabolismo , Hepatite B Crônica/patologia , Fatores Nucleares de Hepatócito/genética , Fatores Nucleares de Hepatócito/metabolismo , Fígado/metabolismo , Fígado/virologia , Camundongos , Camundongos Transgênicos , RNA Viral/biossíntese , Replicação Viral
15.
Hepatology ; 74(6): 3513-3522, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34256416

RESUMO

The liver is innervated by autonomic and sensory fibers of the sympathetic and parasympathetic nervous systems that regulate liver function, regeneration, and disease. Although the importance of the hepatic nervous system in maintaining and restoring liver homeostasis is increasingly appreciated, much remains unknown about the specific mechanisms by which hepatic nerves both influence and are influenced by liver diseases. While recent work has begun to illuminate the developmental mechanisms underlying recruitment of nerves to the liver, evolutionary differences contributing to species-specific patterns of hepatic innervation remain elusive. In this review, we summarize current knowledge on the development of the hepatic nervous system and its role in liver regeneration and disease. We also highlight areas in which further investigation would greatly enhance our understanding of the evolution and function of liver innervation.


Assuntos
Hepatopatias/patologia , Regeneração Hepática , Fígado/inervação , Animais , Humanos , Fígado/crescimento & desenvolvimento , Fígado/patologia , Regeneração Hepática/fisiologia , Camundongos
16.
Hepatology ; 73(6): 2510-2526, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32969030

RESUMO

BACKGROUND AND AIMS: Mitogen-activated protein kinase kinase (MKK) 7 and MKK4 are upstream activators of c-Jun NH2 -terminal kinases (JNKs) and have been shown to be required for the early development of the liver. Although it has been suggested that MKK7 might be involved in the regulation of hepatocyte proliferation, the functional role of MKK7 in the liver has remained unclear. APPROACH AND RESULTS: Here, we examined phenotypic alterations in liver-specific or hepatocyte/hematopoietic cell-specific MKK7 knockout (KO) mice, which were generated by crossing MKK7LoxP/LoxP with albumin-cyclization recombination (Alb-Cre) or myxovirus resistance protein 1-Cre mice, respectively. The livers of Alb-Cre-/+ MKK7LoxP/LoxP mice developed without discernible tissue disorganization. MKK7 KO mice responded normally to liver injuries incurred by partial hepatectomy or injection of CCl4 . However, tissue repair following CCl4 -induced injury was delayed in MKK7 KO mice compared with that of control mice. Furthermore, after repeated injections of CCl4 for 8 weeks, the liver in MKK7 KO mice showed intense fibrosis with increased protractive hepatocyte proliferation, suggesting that MKK7 deficiency might affect regenerative responses of hepatocytes in the altered tissue microenvironment. MKK7 KO hepatocytes demonstrated normal proliferative activity when cultured in monolayers. However, MKK7 KO significantly suppressed branching morphogenesis of hepatocyte aggregates within a collagen gel matrix. Microarray analyses revealed that suppression of branching morphogenesis in MKK7 KO hepatocytes was associated with a reduction in mRNA expression of transgelin, glioma pathogenesis related 2, and plasminogen activator urokinase-type (Plau); and forced expression of these genes in MKK7 KO hepatocytes partially recovered the attenuated morphogenesis. Furthermore, hepatocyte-specific overexpression of Plau rescued the impaired tissue repair of MKK7 KO mice following CCl4 -induced injury. CONCLUSIONS: MKK7 is dispensable for the regenerative proliferation of hepatocytes but plays important roles in repair processes following parenchymal destruction, possibly through modulation of hepatocyte-extracellular matrix interactions.


Assuntos
Matriz Extracelular/metabolismo , Hepatócitos/metabolismo , Regeneração Hepática/fisiologia , Fígado , MAP Quinase Quinase 7/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Hepatectomia/métodos , Fígado/crescimento & desenvolvimento , Fígado/lesões , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Morfogênese/fisiologia
17.
Toxicol Appl Pharmacol ; 435: 115831, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922950

RESUMO

Nicofluprole is a novel insecticide of the phenylpyrazole class conferring selective antagonistic activity on insect GABA receptors. After repeated daily dietary administration to Wistar rats for 28/90 days, Nicofluprole induced increases in thyroid (and liver) weight, associated with histopathology changes. Nicofluprole did not inhibit thyroid peroxydase nor sodium/iodide symporter, two key players in the biosynthesis of thyroid hormones, indicating the absence of a direct thyroid effect. The results seen in rats suggested a mode of action of Nicofluprole driven by the molecular initiating event of CAR/PXR nuclear receptor activation in livers, with key events of increases in liver weight and hypertrophy, decreasing circulatory thyroid hormones, a compensatory increase in TSH release and follicular cell hypertrophy. To explore the relevance of these changes to humans, well established in vitro rat and human sandwich-cultured hepatocytes were exposed to Nicofluprole up to 7 days. A concentration-dependent CYP3A induction (PXR-activation), an increase in T4-glucuronoconjugation accompanied by UGT1A/2B inductions was observed in rat but not in human hepatocytes. The inductions seen with Nicofluprole in rat (in vivo and in vitro in hepatocytes) that were absent in human hepatocytes represent another example of species-selectivity of nuclear CAR/PXR receptor activators. Importantly, the different pattern observed in rat and human models demonstrate that Nicofluprole-related thyroid effects observed in the rat are with no human relevance.


Assuntos
Disruptores Endócrinos/toxicidade , Inseticidas/toxicidade , Glândula Tireoide/efeitos dos fármacos , Animais , Tamanho Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Iodeto Peroxidase/metabolismo , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Wistar , Especificidade da Espécie , Simportadores/metabolismo , Glândula Tireoide/patologia , Hormônios Tireóideos/sangue , Tireotropina/sangue
18.
Funct Integr Genomics ; 21(1): 59-72, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33404915

RESUMO

The dynamics of chromatin have been the focus of studies aimed at characterizing gene regulation. Among various chromosome conformation capture methods, 4C-seq is a powerful technique to identify genome-wide interactions with a single locus of interest. Insulin-like growth factor 1 (IGF1) is a member of the somatotropin axis that plays a significant role in cell proliferation and growth. Determining the IGF1-involved genome-wide chromatin interaction profile at different growth stages not only is important for understanding IGF1 transcriptional regulation but also provides a representation of genome-wide chromatin transformation during development. Using the IGF1 promoter as a "bait", we identified genome-wide interactomes of embryonic (E70) and postnatal (P1 and P70) pig liver cells by 4C-seq. The IGF1 promoter interactomes varied significantly among the three developmental stages. The most active chromatin interaction was observed in the P1 stage, while the highest interaction variability was observed in the P70 stage. The identified 4C sites were enriched around transcription start sites, CpG sites and functional pig QTLs. In addition, the genes located in the interacting regions and the involved pathways were also analysed. Overall, our work reveals a distinct long-distance regulatory pattern in pig liver during development for the first time, and the identified interacting sites and genes may serve as candidate targets in further transcriptional mechanism studies and effective molecular markers for functional traits.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento Insulin-Like I/genética , Fígado/metabolismo , Suínos/genética , Animais , Cromatina/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Suínos/embriologia , Suínos/crescimento & desenvolvimento , Suínos/metabolismo , Sítio de Iniciação de Transcrição
19.
Biochem Biophys Res Commun ; 579: 81-88, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34592574

RESUMO

Zebrafish Liver-enriched gene 1a (Leg1a) and Leg1b are liver-produced serum proteins encoded by two adjacently linked homologous genes leg1a and leg1b, respectively. We previously showed that maternal-zygotic (MZ) leg1a null mutant developed a small liver at 3.5 days post-fertilization (dpf) during winter-time or under UV-treatment and displayed an abnormal stature at its adulthood. It is puzzling why Leg1b, which shares 89.3% identity with Leg1a and co-expressed with Leg1a, cannot fully compensate for the loss-of-function of Leg1a in the leg1azju1 MZ mutant. Here we report that Leg1a and Leg1b share eight cysteine residues but differ in amino acid residue 358, which is a serine in Leg1a but cysteine (C358) in Leg1b. We find that Leg1b forms an intermolecular disulfide bond through C358. Mutating C358 to Methionine (M358) does not affect Leg1b secretion whereas mutating other conserved cysteine residues do. We propose that the intermolecular disulfide bond in Leg1b might establish a rigid structure that makes it functionally different from Leg1a under certain oxidative conditions.


Assuntos
Dissulfetos/química , Regulação da Expressão Gênica , Fígado/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/química , Animais , Proteínas Sanguíneas/química , Cisteína/genética , Masculino , Mutagênese Sítio-Dirigida , Oxigênio/química , Análise de Componente Principal , Conformação Proteica , Serina/química , Regulação para Cima , Peixe-Zebra
20.
Amino Acids ; 53(11): 1739-1748, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34613458

RESUMO

Polyamines (putrescine, spermidine, and spermine) are synthesized primarily from ornithine via ornithine decarboxylase (ODC) in mammals. Although avian tissues contain ODC activity, little is known about intracellular sources of ornithine for their polyamine synthesis. This study tested the hypothesis that arginase and proline oxidase contribute to polyamine synthesis in chickens. Kidney, jejunum, leg muscle, and liver from 0-, 7-, 14- and 21-day-old broiler chickens were assayed for the activities of arginase, proline oxidase (POX), ornithine aminotransferase (OAT), and ornithine decarboxylase (ODC). Kidney slices were also used to determine 14C-polyamine synthesis from [U-14C]arginine and [U-14C]proline. Furthermore, these tissues and plasma were analyzed for polyamines. Results indicate that all tissues contained OAT (mitochondrial) and ODC (cytosolic) activities, but arginase and POX activities were only detected in the mitochondria of chicken kidneys. Renal POX and arginase activities were greater at 7 days of age compared to newly hatched birds, and declined by Day 14. Renal arginase activity was greater at 21 days compared to 14 days of age, but there was no change in renal POX activity during that same period. Concentrations of polyamines in the kidneys and plasma were greater on Day 7 compared to Day 0 and decreased thereafter on Days 14 and 21. Kidney slices readily converted arginine and proline into polyamines, with peak rates being on Day 7. Concentrations of putrescine, spermidine and spermine in the plasma of chickens were about 20- to 100-fold greater than those in mammals. Our results indicate that polyamines are synthesized from arginine and proline in avian kidneys. Unlike mammals, polyamines released from the kidneys are likely the major source of polyamines in the blood and other extra-renal tissues in chickens.


Assuntos
Arginina/metabolismo , Galinhas/crescimento & desenvolvimento , Poliaminas/metabolismo , Prolina/metabolismo , Animais , Galinhas/metabolismo , Jejuno/crescimento & desenvolvimento , Jejuno/metabolismo , Rim/crescimento & desenvolvimento , Rim/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Ornitina Descarboxilase/metabolismo , Prolina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa