Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
1.
Cell ; 185(19): 3487-3500.e14, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36057255

RESUMO

The supercoiling of bacterial and archaeal flagellar filaments is required for motility. Archaeal flagellar filaments have no homology to their bacterial counterparts and are instead homologs of bacterial type IV pili. How these prokaryotic flagellar filaments, each composed of thousands of copies of identical subunits, can form stable supercoils under torsional stress is a fascinating puzzle for which structural insights have been elusive. Advances in cryoelectron microscopy (cryo-EM) make it now possible to directly visualize the basis for supercoiling, and here, we show the atomic structures of supercoiled bacterial and archaeal flagellar filaments. For the bacterial flagellar filament, we identify 11 distinct protofilament conformations with three broad classes of inter-protomer interface. For the archaeal flagellar filament, 10 protofilaments form a supercoil geometry supported by 10 distinct conformations, with one inter-protomer discontinuity creating a seam inside of the curve. Our results suggest that convergent evolution has yielded stable superhelical geometries that enable microbial locomotion.


Assuntos
Flagelos , Flagelina , Archaea , Bactérias , Microscopia Crioeletrônica , Fímbrias Bacterianas/química , Subunidades Proteicas/análise
2.
Cell ; 177(2): 361-369.e10, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951668

RESUMO

Long-range (>10 µm) transport of electrons along networks of Geobacter sulfurreducens protein filaments, known as microbial nanowires, has been invoked to explain a wide range of globally important redox phenomena. These nanowires were previously thought to be type IV pili composed of PilA protein. Here, we report a 3.7 Å resolution cryoelectron microscopy structure, which surprisingly reveals that, rather than PilA, G. sulfurreducens nanowires are assembled by micrometer-long polymerization of the hexaheme cytochrome OmcS, with hemes packed within ∼3.5-6 Å of each other. The inter-subunit interfaces show unique structural elements such as inter-subunit parallel-stacked hemes and axial coordination of heme by histidines from neighboring subunits. Wild-type OmcS filaments show 100-fold greater conductivity than other filaments from a ΔomcS strain, highlighting the importance of OmcS to conductivity in these nanowires. This structure explains the remarkable capacity of soil bacteria to transport electrons to remote electron acceptors for respiration and energy sharing.


Assuntos
Transporte de Elétrons/fisiologia , Geobacter/metabolismo , Heme/metabolismo , Biofilmes , Condutividade Elétrica , Elétrons , Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Nanofios , Oxirredução
3.
Cell ; 165(3): 520-1, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27104974

RESUMO

Pilus assembly in bacteria typically occurs by one of four pathways. In the study by Xu et al., the structures of 20 pilin subunits of human oral and gut Bacteroidales are elucidated, revealing a new pilin superfamily, assembled into pili by a distinct fifth pathway.


Assuntos
Proteínas de Fímbrias , Fímbrias Bacterianas/química , Bactérias/metabolismo , Humanos
4.
Cell ; 164(1-2): 269-278, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26724865

RESUMO

Types 1 and P pili are prototypical bacterial cell-surface appendages playing essential roles in mediating adhesion of bacteria to the urinary tract. These pili, assembled by the chaperone-usher pathway, are polymers of pilus subunits assembling into two parts: a thin, short tip fibrillum at the top, mounted on a long pilus rod. The rod adopts a helical quaternary structure and is thought to play essential roles: its formation may drive pilus extrusion by preventing backsliding of the nascent growing pilus within the secretion pore; the rod also has striking spring-like properties, being able to uncoil and recoil depending on the intensity of shear forces generated by urine flow. Here, we present an atomic model of the P pilus generated from a 3.8 Å resolution cryo-electron microscopy reconstruction. This structure provides the molecular basis for the rod's remarkable mechanical properties and illuminates its role in pilus secretion.


Assuntos
Proteínas de Escherichia coli/química , Fímbrias Bacterianas/química , Escherichia coli Uropatogênica/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Escherichia coli Uropatogênica/citologia
5.
Cell ; 166(6): 1436-1444.e10, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27610568

RESUMO

Conjugative pili are widespread bacterial appendages that play important roles in horizontal gene transfer, in spread of antibiotic resistance genes, and as sites of phage attachment. Among conjugative pili, the F "sex" pilus encoded by the F plasmid is the best functionally characterized, and it is also historically the most important, as the discovery of F-plasmid-mediated conjugation ushered in the era of molecular biology and genetics. Yet, its structure is unknown. Here, we present atomic models of two F family pili, the F and pED208 pili, generated from cryoelectron microscopy reconstructions at 5.0 and 3.6 Å resolution, respectively. These structures reveal that conjugative pili are assemblies of stoichiometric protein-phospholipid units. We further demonstrate that each pilus type binds preferentially to particular phospholipids. These structures provide the molecular basis for F pilus assembly and also shed light on the remarkable properties of conjugative pili in bacterial secretion and phage infection.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/fisiologia , Fator F/química , Fímbrias Bacterianas/química , Modelos Moleculares , Fosfolipídeos/química , Sítios de Ligação Microbiológicos/genética , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Fator F/genética , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Lipídeos/química , Mutação , Fosfolipídeos/metabolismo , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Sistemas de Secreção Tipo V/química , Sistemas de Secreção Tipo V/metabolismo
6.
Nature ; 609(7926): 335-340, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853476

RESUMO

Adhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria1-3. Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens1,4,5. However, their architecture and assembly-secretion process remain unknown. Here, we present the cryo-electron microscopy structure of the prototypical archaic Csu pilus that mediates biofilm formation of Acinetobacter baumannii-a notorious multidrug-resistant nosocomial pathogen. In contrast to the thick helical tubes of the classical type 1 and P pili, archaic pili assemble into an ultrathin zigzag architecture secured by an elegant clinch mechanism. The molecular clinch provides the pilus with high mechanical stability as well as superelasticity, a property observed for the first time, to our knowledge, in biomolecules, while enabling a more economical and faster pilus production. Furthermore, we demonstrate that clinch formation at the cell surface drives pilus secretion through the outer membrane. These findings suggest that clinch-formation inhibitors might represent a new strategy to fight multidrug-resistant bacterial infections.


Assuntos
Acinetobacter baumannii , Microscopia Crioeletrônica , Fímbrias Bacterianas , Chaperonas Moleculares , Acinetobacter baumannii/citologia , Acinetobacter baumannii/ultraestrutura , Elasticidade , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/ultraestrutura , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestrutura
7.
EMBO J ; 42(1): e111661, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36345779

RESUMO

In rod-shaped bacteria, type IV pili (Tfp) promote twitching motility by assembling and retracting at the cell pole. In Myxococcus xanthus, a bacterium that moves in highly coordinated cell groups, Tfp are activated by a polar activator protein, SgmX. However, while it is known that the Ras-like protein MglA is required for unipolar targeting, how SgmX accesses the cell pole to activate Tfp is unknown. Here, we demonstrate that a polar beacon protein, FrzS, recruits SgmX at the cell pole. We identified two main functional domains, including a Tfp-activating domain and a polar-binding domain. Within the latter, we show that the direct binding of MglA-GTP unveils a hidden motif that binds directly to the FrzS N-terminal response regulator (CheY). Structural analyses reveal that this binding occurs through a novel binding interface for response regulator domains. In conclusion, the findings unveil the protein interaction network leading to the spatial activation of Tfp at the cell pole. This tripartite system is at the root of complex collective behaviours in this predatory bacterium.


Assuntos
Proteínas de Bactérias , Myxococcus xanthus , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Myxococcus xanthus/metabolismo , Fímbrias Bacterianas/química
8.
Nature ; 597(7876): 430-434, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471289

RESUMO

Extracellular electron transfer by Geobacter species through surface appendages known as microbial nanowires1 is important in a range of globally important environmental phenomena2, as well as for applications in bio-remediation, bioenergy, biofuels and bioelectronics. Since 2005, these nanowires have been thought to be type 4 pili composed solely of the PilA-N protein1. However, previous structural analyses have demonstrated that, during extracellular electron transfer, cells do not produce pili but rather nanowires made up of the cytochromes OmcS2,3 and OmcZ4. Here we show that Geobacter sulfurreducens binds PilA-N to PilA-C to assemble heterodimeric pili, which remain periplasmic under nanowire-producing conditions that require extracellular electron transfer5. Cryo-electron microscopy revealed that C-terminal residues of PilA-N stabilize its copolymerization with PilA-C (to form PilA-N-C) through electrostatic and hydrophobic interactions that position PilA-C along the outer surface of the filament. PilA-N-C filaments lack π-stacking of aromatic side chains and show a conductivity that is 20,000-fold lower than that of OmcZ nanowires. In contrast with surface-displayed type 4 pili, PilA-N-C filaments show structure, function and localization akin to those of type 2 secretion pseudopili6. The secretion of OmcS and OmcZ nanowires is lost when pilA-N is deleted and restored when PilA-N-C filaments are reconstituted. The substitution of pilA-N with the type 4 pili of other microorganisms also causes a loss of secretion of OmcZ nanowires. As all major phyla of prokaryotes use systems similar to type 4 pili, this nanowire translocation machinery may have a widespread effect in identifying the evolution and prevalence of diverse electron-transferring microorganisms and in determining nanowire assembly architecture for designing synthetic protein nanowires.


Assuntos
Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Geobacter , Nanofios , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biopolímeros , Condutividade Elétrica , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Geobacter/citologia , Geobacter/metabolismo , Multimerização Proteica
9.
EMBO J ; 40(17): e106887, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031903

RESUMO

Bacillus cereus sensu lato is a group of Gram-positive endospore-forming bacteria with high ecological diversity. Their endospores are decorated with micrometer-long appendages of unknown identity and function. Here, we isolate endospore appendages (Enas) from the food poisoning outbreak strain B. cereus NVH 0075-95 and find proteinaceous fibers of two main morphologies: S- and L-Ena. By using cryoEM and 3D helical reconstruction of S-Enas, we show these to represent a novel class of Gram-positive pili. S-Enas consist of single domain subunits with jellyroll topology that are laterally stacked by ß-sheet augmentation. S-Enas are longitudinally stabilized by disulfide bonding through N-terminal connector peptides that bridge the helical turns. Together, this results in flexible pili that are highly resistant to heat, drought, and chemical damage. Phylogenomic analysis reveals a ubiquitous presence of the ena-gene cluster in the B. cereus group, which include species of clinical, environmental, and food importance. We propose Enas to represent a new class of pili specifically adapted to the harsh conditions encountered by bacterial spores.


Assuntos
Bacillus cereus/ultraestrutura , Proteínas de Bactérias/química , Fímbrias Bacterianas/ultraestrutura , Bacillus cereus/genética , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Fímbrias Bacterianas/química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Estabilidade Proteica
10.
Proc Natl Acad Sci U S A ; 119(26): e2207037119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727984

RESUMO

While biofilms formed by bacteria have received great attention due to their importance in pathogenesis, much less research has been focused on the biofilms formed by archaea. It has been known that extracellular filaments in archaea, such as type IV pili, hami, and cannulae, play a part in the formation of archaeal biofilms. We have used cryo-electron microscopy to determine the atomic structure of a previously uncharacterized class of archaeal surface filaments from hyperthermophilic Pyrobaculum calidifontis. These filaments, which we call archaeal bundling pili (ABP), assemble into highly ordered bipolar bundles. The bipolar nature of these bundles most likely arises from the association of filaments from at least two different cells. The component protein, AbpA, shows homology, both at the sequence and structural level, to the bacterial protein TasA, a major component of the extracellular matrix in bacterial biofilms, contributing to biofilm stability. We show that AbpA forms very stable filaments in a manner similar to the donor-strand exchange of bacterial TasA fibers and chaperone-usher pathway pili where a ß-strand from one subunit is incorporated into a ß-sheet of the next subunit. Our results reveal likely mechanistic similarities and evolutionary connection between bacterial and archaeal biofilms, and suggest that there could be many other archaeal surface filaments that are as yet uncharacterized.


Assuntos
Proteínas Arqueais , Biofilmes , Fímbrias Bacterianas , Pyrobaculum , Proteínas Arqueais/química , Microscopia Crioeletrônica , Fímbrias Bacterianas/química , Conformação Proteica em Folha beta , Pyrobaculum/química , Pyrobaculum/fisiologia
11.
Protein Expr Purif ; 215: 106411, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056514

RESUMO

Pathogenic strains of Escherichia coli F17+ are associated with various intestinal and extra-intestinal pathologies, including diarrhea, and result in significant animal mortality. These infections rely on the expression of virulence factors, such as F17 fimbriae, for adhesion. F17 fimbriae form a protective layer on the surface of E. coli bacteria, consisting of a major structural subunit, F17A, and a minor functional subunit, F17G. Because of the evolution of bacterial resistance, conventional antibiotic treatments have limited efficacy. Therefore, there is a pressing need to develop novel therapeutic tools. In this study, we cloned and produced the F17G protein. We then immunized a camel with the purified F17G protein and constructed a VHH library consisting of 2 × 109 clones. The library was then screened against F17G protein using phage display technology. Through this process, we identified an anti-F17G nanobody that was subsequently linked, via a linker, to an anti-F17A nanobody, resulting in the creation of an effective bispecific nanobody. Comprehensive characterization of this bispecific nanobody demonstrated excellent production, specific binding capacity to both recombinant forms of the two F17 antigens and the E. coli F17+ strain, remarkable stability in camel serum, and superior resistance to pepsin protease. The successful generation of this bispecific nanobody with excellent production, specific binding capacity and stability highlights its potential as a valuable tool for fighting infections caused by pathogenic E. coli F17+ strain.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Escherichia coli/genética , Escherichia coli/química , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Camelus , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Diarreia/metabolismo , Diarreia/microbiologia
12.
Nature ; 562(7727): 444-447, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283140

RESUMO

Pathogenic bacteria such as Escherichia coli assemble surface structures termed pili, or fimbriae, to mediate binding to host-cell receptors1. Type 1 pili are assembled via the conserved chaperone-usher pathway2-5. The outer-membrane usher FimD recruits pilus subunits bound by the chaperone FimC via the periplasmic N-terminal domain of the usher. Subunit translocation through the ß-barrel channel of the usher occurs at the two C-terminal domains (which we label CTD1 and CTD2) of this protein. How the chaperone-subunit complex bound to the N-terminal domain is handed over to the C-terminal domains, as well as the timing of subunit polymerization into the growing pilus, have previously been unclear. Here we use cryo-electron microscopy to capture a pilus assembly intermediate (FimD-FimC-FimF-FimG-FimH) in a conformation in which FimD is in the process of handing over the chaperone-bound end of the growing pilus to the C-terminal domains. In this structure, FimF has already polymerized with FimG, and the N-terminal domain of FimD swings over to bind CTD2; the N-terminal domain maintains contact with FimC-FimF, while at the same time permitting access to the C-terminal domains. FimD has an intrinsically disordered N-terminal tail that precedes the N-terminal domain. This N-terminal tail folds into a helical motif upon recruiting the FimC-subunit complex, but reorganizes into a loop to bind CTD2 during handover. Because both the N-terminal and C-terminal domains of FimD are bound to the end of the growing pilus, the structure further suggests a mechanism for stabilizing the assembly intermediate to prevent the pilus fibre diffusing away during the incorporation of thousands of subunits.


Assuntos
Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/ultraestrutura , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/metabolismo , Adesinas de Escherichia coli/ultraestrutura , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34789573

RESUMO

Type IV pili (T4P) are dynamic surface appendages that promote virulence, biofilm formation, horizontal gene transfer, and motility in diverse bacterial species. Pilus dynamic activity is best characterized in T4P that use distinct ATPase motors for pilus extension and retraction. Many T4P systems, however, lack a dedicated retraction motor, and the mechanism underlying this motor-independent retraction remains a mystery. Using the Vibrio cholerae competence pilus as a model system, we identify mutations in the major pilin gene that enhance motor-independent retraction. These mutants likely diminish pilin-pilin interactions within the filament to produce less-stable pili. One mutation adds a bulky residue to α1C, a universally conserved feature of T4P. We found that inserting a bulky residue into α1C of the retraction motor-dependent Acinetobacter baylyi competence T4P enhances motor-independent retraction. Conversely, removing bulky residues from α1C of the retraction motor-independent, V. cholerae toxin-coregulated T4P stabilizes the filament and diminishes pilus retraction. Furthermore, alignment of pilins from the broader type IV filament (T4F) family indicated that retraction motor-independent T4P, gram-positive Com pili, and type II secretion systems generally encode larger residues within α1C oriented toward the pilus core compared to retraction motor-dependent T4P. Together, our data demonstrate that motor-independent retraction relies, in part, on the inherent instability of the pilus filament, which may be a conserved feature of diverse T4Fs. This provides evidence for a long-standing yet previously untested model in which pili retract in the absence of a motor by spontaneous depolymerization.


Assuntos
Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética , Acinetobacter , Adenosina Trifosfatases , Sistemas de Secreção Tipo II , Vibrio cholerae , Virulência
14.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34725157

RESUMO

Neisseria meningitidis utilizes type IV pili (T4P) to adhere to and colonize host endothelial cells, a process at the heart of meningococcal invasive diseases leading to meningitis and sepsis. T4P are polymers of an antigenically variable major pilin building block, PilE, plus several core minor pilins that initiate pilus assembly and are thought to be located at the pilus tip. Adhesion of N. meningitidis to human endothelial cells requires both PilE and a conserved noncore minor pilin PilV, but the localization of PilV and its precise role in this process remains to be clarified. Here, we show that both PilE and PilV promote adhesion to endothelial vessels in vivo. The substantial adhesion defect observed for pilV mutants suggests it is the main adhesin. Consistent with this observation, superresolution microscopy showed the abundant distribution of PilV throughout the pilus. We determined the crystal structure of PilV and modeled it within the pilus filament. The small size of PilV causes it to be recessed relative to adjacent PilE subunits, which are dominated by a prominent hypervariable loop. Nonetheless, we identified a conserved surface-exposed adhesive loop on PilV by alanine scanning mutagenesis. Critically, antibodies directed against PilV inhibit N. meningitidis colonization of human skin grafts. These findings explain how N. meningitidis T4P undergo antigenic variation to evade the humoral immune response while maintaining their adhesive function and establish the potential of this highly conserved minor pilin as a vaccine and therapeutic target for the prevention and treatment of N. meningitidis infections.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/fisiologia , Fímbrias Bacterianas/fisiologia , Neisseria meningitidis/fisiologia , Animais , Anticorpos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Feminino , Fímbrias Bacterianas/química , Fímbrias Bacterianas/ultraestrutura , Humanos , Infecções Meningocócicas/tratamento farmacológico , Camundongos SCID
15.
Nature ; 541(7635): 112-116, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27992877

RESUMO

Packaging of the genome into a protein capsid and its subsequent delivery into a host cell are two fundamental processes in the life cycle of a virus. Unlike double-stranded DNA viruses, which pump their genome into a preformed capsid, single-stranded RNA (ssRNA) viruses, such as bacteriophage MS2, co-assemble their capsid with the genome; however, the structural basis of this co-assembly is poorly understood. MS2 infects Escherichia coli via the host 'sex pilus' (F-pilus); it was the first fully sequenced organism and is a model system for studies of translational gene regulation, RNA-protein interactions, and RNA virus assembly. Its positive-sense ssRNA genome of 3,569 bases is enclosed in a capsid with one maturation protein monomer and 89 coat protein dimers arranged in a T = 3 icosahedral lattice. The maturation protein is responsible for attaching the virus to an F-pilus and delivering the viral genome into the host during infection, but how the genome is organized and delivered is not known. Here we describe the MS2 structure at 3.6 Å resolution, determined by electron-counting cryo-electron microscopy (cryoEM) and asymmetric reconstruction. We traced approximately 80% of the backbone of the viral genome, built atomic models for 16 RNA stem-loops, and identified three conserved motifs of RNA-coat protein interactions among 15 of these stem-loops with diverse sequences. The stem-loop at the 3' end of the genome interacts extensively with the maturation protein, which, with just a six-helix bundle and a six-stranded ß-sheet, forms a genome-delivery apparatus and joins 89 coat protein dimers to form a capsid. This atomic description of genome-capsid interactions in a spherical ssRNA virus provides insight into genome delivery via the host sex pilus and mechanisms underlying ssRNA-capsid co-assembly, and inspires speculation about the links between nucleoprotein complexes and the origins of viruses.


Assuntos
Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Genoma Viral/fisiologia , Levivirus/metabolismo , Levivirus/ultraestrutura , RNA Viral/ultraestrutura , Montagem de Vírus , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Levivirus/química , Levivirus/genética , Modelos Moleculares , Conformação Molecular , Multimerização Proteica , RNA Viral/química , RNA Viral/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(38): 23859-23868, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900945

RESUMO

Bacteria can move across surfaces using type IV pili (T4P), which undergo cycles of extension, adhesion, and retraction. The T4P localization pattern varies between species; however, the underlying mechanisms are largely unknown. In the rod-shaped Myxococcus xanthus cells, T4P localize at the leading cell pole. As cells reverse their direction of movement, T4P are disassembled at the old leading pole and then form at the new leading pole. Thus, cells can form T4P at both poles but engage only one pole at a time in T4P formation. Here, we address how this T4P unipolarity is realized. We demonstrate that the small Ras-like GTPase MglA stimulates T4P formation in its GTP-bound state by direct interaction with the tetratricopeptide repeat (TPR) domain-containing protein SgmX. SgmX, in turn, is important for polar localization of the T4P extension ATPase PilB. The cognate MglA GTPase activating protein (GAP) MglB, which localizes mainly to the lagging cell pole, indirectly blocks T4P formation at this pole by stimulating the conversion of MglA-GTP to MglA-GDP. Based on these findings, we propose a model whereby T4P unipolarity is accomplished by stimulation of T4P formation at the leading pole by MglA-GTP and SgmX and indirect inhibition of T4P formation at the lagging pole by MglB due to its MglA GAP activity. During reversals, MglA, SgmX, and MglB switch polarity, thus laying the foundation for T4P formation at the new leading pole and inhibition of T4P formation at the new lagging pole.


Assuntos
Proteínas de Bactérias , Proteínas de Fímbrias , Fímbrias Bacterianas , Polaridade Celular , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Repetições de Tetratricopeptídeos
17.
Mol Microbiol ; 115(3): 412-424, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33283907

RESUMO

The type II secretion system (T2SS) is a multi-protein complex used by many bacteria to move substrates across their cell membrane. Substrates released into the environment serve as local and long-range effectors that promote nutrient acquisition, biofilm formation, and pathogenicity. In both animals and plants, the T2SS is increasingly recognized as a key driver of virulence. The T2SS spans the bacterial cell envelope and extrudes substrates through an outer membrane secretin channel using a pseudopilus. An inner membrane assembly platform and a cytoplasmic motor controls pseudopilus assembly. This microreview focuses on the structure and mechanism of the T2SS. Advances in cryo-electron microscopy are enabling increasingly elaborate sub-complexes to be resolved. However, key questions remain regarding the mechanism of pseudopilus extension and retraction, and how this is coupled with the choreography of the substrate moving through the secretion system. The T2SS is part of an ancient type IV filament superfamily that may have been present within the last universal common ancestor (LUCA). Overall, mechanistic principles that underlie T2SS function have implication for other closely related systems such as the type IV and tight adherence pilus systems.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Fímbrias Bacterianas/química , Fímbrias Bacterianas/fisiologia , Sistemas de Secreção Tipo II/química , Sistemas de Secreção Tipo II/fisiologia , Sequência de Aminoácidos , Animais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/fisiologia , Fenômenos Fisiológicos Bacterianos , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Conformação Proteica , Secretina/metabolismo , Fatores de Virulência/química , Fatores de Virulência/fisiologia
18.
Proc Natl Acad Sci U S A ; 116(36): 18041-18049, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427528

RESUMO

Assembly of pili on the gram-positive bacterial cell wall involves 2 conserved transpeptidase enzymes named sortases: One for polymerization of pilin subunits and another for anchoring pili to peptidoglycan. How this machine controls pilus length and whether pilus length is critical for cell-to-cell interactions remain unknown. We report here in Actinomyces oris, a key colonizer in the development of oral biofilms, that genetic disruption of its housekeeping sortase SrtA generates exceedingly long pili, catalyzed by its pilus-specific sortase SrtC2 that possesses both pilus polymerization and cell wall anchoring functions. Remarkably, the srtA-deficient mutant fails to mediate interspecies interactions, or coaggregation, even though the coaggregation factor CafA is present at the pilus tip. Increasing ectopic expression of srtA in the mutant progressively shortens pilus length and restores coaggregation accordingly, while elevated levels of shaft pilins and SrtC2 produce long pili and block coaggregation by SrtA+ bacteria. With structural studies, we uncovered 2 key structural elements in SrtA that partake in recognition of pilin substrates and regulate pilus length by inducing the capture and transfer of pilus polymers to the cell wall. Evidently, coaggregation requires proper positioning of the tip adhesin CafA via modulation of pilus length by the housekeeping sortase SrtA.


Assuntos
Actinomyces , Adesinas Bacterianas , Aminoaciltransferases , Proteínas de Bactérias , Cisteína Endopeptidases , Fímbrias Bacterianas , Actinomyces/química , Actinomyces/genética , Actinomyces/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Aminoaciltransferases/química , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo
19.
J Biol Chem ; 295(19): 6594-6604, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32273343

RESUMO

Type IV filaments (T4F), which are helical assemblies of type IV pilins, constitute a superfamily of filamentous nanomachines virtually ubiquitous in prokaryotes that mediate a wide variety of functions. The competence (Com) pilus is a widespread T4F, mediating DNA uptake (the first step in natural transformation) in bacteria with one membrane (monoderms), an important mechanism of horizontal gene transfer. Here, we report the results of genomic, phylogenetic, and structural analyses of ComGC, the major pilin subunit of Com pili. By performing a global comparative analysis, we show that Com pili genes are virtually ubiquitous in Bacilli, a major monoderm class of Firmicutes. This also revealed that ComGC displays extensive sequence conservation, defining a monophyletic group among type IV pilins. We further report ComGC solution structures from two naturally competent human pathogens, Streptococcus sanguinis (ComGCSS) and Streptococcus pneumoniae (ComGCSP), revealing that this pilin displays extensive structural conservation. Strikingly, ComGCSS and ComGCSP exhibit a novel type IV pilin fold that is purely helical. Results from homology modeling analyses suggest that the unusual structure of ComGC is compatible with helical filament assembly. Because ComGC displays such a widespread distribution, these results have implications for hundreds of monoderm species.


Assuntos
Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Dobramento de Proteína , Streptococcus pneumoniae/química , Streptococcus sanguis/química , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Streptococcus pneumoniae/genética , Streptococcus sanguis/genética
20.
J Biol Chem ; 295(35): 12437-12448, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32651228

RESUMO

FimA is the main structural subunit of adhesive type 1 pili from uropathogenic Escherichia coli strains. Up to 3000 copies of FimA assemble to the helical pilus rod through a mechanism termed donor strand complementation, in which the incomplete immunoglobulin-like fold of each FimA subunit is complemented by the N-terminal extension (Nte) of the next subunit. The Nte of FimA, which exhibits a pseudo-palindromic sequence, is inserted in an antiparallel orientation relative to the last ß-strand of the preceding subunit in the pilus. The resulting subunit-subunit interactions are extraordinarily stable against dissociation and unfolding. Alternatively, FimA can fold to a self-complemented monomer with anti-apoptotic activity, in which the Nte inserts intramolecularly into the FimA core in the opposite, parallel orientation. The FimA monomers, however, show dramatically lower thermodynamic stability compared with FimA subunits in the assembled pilus. Using self-complemented FimA variants with reversed, pseudo-palindromic extensions, we demonstrate that the high stability of FimA polymers is primarily caused by the specific interactions between the side chains of the Nte residues and the FimA core and not by the antiparallel orientation of the donor strand alone. In addition, we demonstrate that nonequilibrium two-state folding, a hallmark of FimA with the Nte inserted in the pilus rod-like, antiparallel orientation, only depends on the identity of the inserted Nte side chains and not on Nte orientation.


Assuntos
Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Dobramento de Proteína , Multimerização Proteica , Escherichia coli/química , Escherichia coli/genética , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa