Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.774
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Genome Res ; 34(5): 696-710, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38702196

RESUMO

Many Mendelian developmental disorders caused by coding variants in epigenetic regulators have now been discovered. Epigenetic regulators are broadly expressed, and each of these disorders typically shows phenotypic manifestations from many different organ systems. An open question is whether the chromatin disruption-the root of the pathogenesis-is similar in the different disease-relevant cell types. This is possible in principle, because all these cell types are subject to effects from the same causative gene, which has the same kind of function (e.g., methylates histones) and is disrupted by the same germline variant. We focus on mouse models for Kabuki syndrome types 1 and 2 and find that the chromatin accessibility changes in neurons are mostly distinct from changes in B or T cells. This is not because the neuronal accessibility changes occur at regulatory elements that are only active in neurons. Neurons, but not B or T cells, show preferential chromatin disruption at CpG islands and at regulatory elements linked to aging. A sensitive analysis reveals that regulatory elements disrupted in B/T cells do show chromatin accessibility changes in neurons, but these are very subtle and of uncertain functional significance. Finally, we are able to identify a small set of regulatory elements disrupted in all three cell types. Our findings reveal the cellular-context-specific effect of variants in epigenetic regulators and suggest that blood-derived episignatures, although useful diagnostically, may not be well suited for understanding the mechanistic basis of neurodevelopment in Mendelian disorders of the epigenetic machinery.


Assuntos
Anormalidades Múltiplas , Envelhecimento , Cromatina , Ilhas de CpG , Face , Doenças Hematológicas , Neurônios , Doenças Vestibulares , Animais , Doenças Hematológicas/genética , Doenças Hematológicas/metabolismo , Camundongos , Face/anormalidades , Cromatina/metabolismo , Cromatina/genética , Doenças Vestibulares/genética , Neurônios/metabolismo , Envelhecimento/genética , Anormalidades Múltiplas/genética , Modelos Animais de Doenças , Epigênese Genética , Linfócitos T/metabolismo , Linfócitos B/metabolismo
2.
PLoS Genet ; 20(6): e1011310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857303

RESUMO

Growth deficiency is a characteristic feature of both Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), Mendelian disorders of the epigenetic machinery with similar phenotypes but distinct genetic etiologies. We previously described skeletal growth deficiency in a mouse model of KS1 and further established that a Kmt2d-/- chondrocyte model of KS1 exhibits precocious differentiation. Here we characterized growth deficiency in a mouse model of KS2, Kdm6atm1d/+. We show that Kdm6atm1d/+ mice have decreased femur and tibia length compared to controls and exhibit abnormalities in cortical and trabecular bone structure. Kdm6atm1d/+ growth plates are also shorter, due to decreases in hypertrophic chondrocyte size and hypertrophic zone height. Given these disturbances in the growth plate, we generated Kdm6a-/- chondrogenic cell lines. Similar to our prior in vitro model of KS1, we found that Kdm6a-/- cells undergo premature, enhanced differentiation towards chondrocytes compared to Kdm6a+/+ controls. RNA-seq showed that Kdm6a-/- cells have a distinct transcriptomic profile that indicates dysregulation of cartilage development. Finally, we performed RNA-seq simultaneously on Kmt2d-/-, Kdm6a-/-, and control lines at Days 7 and 14 of differentiation. This revealed surprising resemblance in gene expression between Kmt2d-/- and Kdm6a-/- at both time points and indicates that the similarity in phenotype between KS1 and KS2 also exists at the transcriptional level.


Assuntos
Anormalidades Múltiplas , Condrócitos , Modelos Animais de Doenças , Face , Doenças Hematológicas , Histona Desmetilases , Doenças Vestibulares , Animais , Doenças Vestibulares/genética , Doenças Vestibulares/patologia , Camundongos , Face/anormalidades , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Condrócitos/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Diferenciação Celular/genética , Condrogênese/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/deficiência , Humanos , Camundongos Knockout , Fenótipo , Histona-Lisina N-Metiltransferase , Proteína de Leucina Linfoide-Mieloide
3.
EMBO Rep ; 25(3): 1130-1155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38291337

RESUMO

The correct establishment of DNA methylation patterns is vital for mammalian development and is achieved by the de novo DNA methyltransferases DNMT3A and DNMT3B. DNMT3B localises to H3K36me3 at actively transcribing gene bodies via its PWWP domain. It also functions at heterochromatin through an unknown recruitment mechanism. Here, we find that knockout of DNMT3B causes loss of methylation predominantly at H3K9me3-marked heterochromatin and that DNMT3B PWWP domain mutations or deletion result in striking increases of methylation in H3K9me3-marked heterochromatin. Removal of the N-terminal region of DNMT3B affects its ability to methylate H3K9me3-marked regions. This region of DNMT3B directly interacts with HP1α and facilitates the bridging of DNMT3B with H3K9me3-marked nucleosomes in vitro. Our results suggest that DNMT3B is recruited to H3K9me3-marked heterochromatin in a PWWP-independent manner that is facilitated by the protein's N-terminal region through an interaction with a key heterochromatin protein. More generally, we suggest that DNMT3B plays a role in DNA methylation homeostasis at heterochromatin, a process which is disrupted in cancer, aging and Immunodeficiency, Centromeric Instability and Facial Anomalies (ICF) syndrome.


Assuntos
Metilação de DNA , Face/anormalidades , Heterocromatina , Doenças da Imunodeficiência Primária , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Mutação , Mamíferos/genética , Mamíferos/metabolismo
4.
EMBO Rep ; 25(3): 1256-1281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429579

RESUMO

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


Assuntos
Epilepsia , Face/anormalidades , Dedos/anormalidades , Transtornos do Crescimento , Hipogonadismo , Deficiência Intelectual , Deficiência Intelectual Ligada ao Cromossomo X , Obesidade , Humanos , Camundongos , Animais , Deficiência Intelectual/genética , Proteínas Repressoras , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Fatores de Transcrição
5.
Hum Mol Genet ; 32(9): 1439-1456, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36458887

RESUMO

Immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome is in most cases caused by mutations in either DNA methyltransferase (DNMT)3B, zinc finger and BTB domain containing 24, cell division cycle associated 7 or helicase lymphoid-specific. However, the causative genes of a few ICF patients remain unknown. We, herein, identified ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 (UHRF1) as a novel causative gene of one such patient with atypical symptoms. This patient is a compound heterozygote for two previously unreported mutations in UHRF1: c.886C > T (p.R296W) and c.1852C > T (p.R618X). The R618X mutation plausibly caused nonsense-mediated decay, while the R296W mutation changed the higher order structure of UHRF1, which is indispensable for the maintenance of CG methylation along with DNMT1. Genome-wide methylation analysis revealed that the patient had a centromeric/pericentromeric hypomethylation, which is the main ICF signature, but also had a distinctive hypomethylation pattern compared to patients with the other ICF syndrome subtypes. Structural and biochemical analyses revealed that the R296W mutation disrupted the protein conformation and strengthened the binding affinity of UHRF1 with its partner LIG1 and reduced ubiquitylation activity of UHRF1 towards its ubiquitylation substrates, histone H3 and proliferating cell nuclear antigen -associated factor 15 (PAF15). We confirmed that the R296W mutation causes hypomethylation at pericentromeric repeats by generating the HEK293 cell lines that mimic the patient's UHRF1 molecular context. Since proper interactions of the UHRF1 with LIG1, PAF15 and histone H3 are essential for the maintenance of CG methylation, the mutation could disturb the maintenance process. Evidence for the importance of the UHRF1 conformation for CG methylation in humans is, herein, provided for the first time and deepens our understanding of its role in regulation of CG methylation.


Assuntos
Histonas , Doenças da Imunodeficiência Primária , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , DNA/genética , DNA/metabolismo , Metilação de DNA/genética , Metilação de DNA/fisiologia , Células HEK293 , Histonas/genética , Histonas/metabolismo , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Mutação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Instabilidade Cromossômica/genética , Instabilidade Cromossômica/fisiologia , Centrômero/genética , Centrômero/metabolismo , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/metabolismo , Face/anormalidades , Genoma Humano/genética , Genoma Humano/fisiologia
6.
Am J Hum Genet ; 109(10): 1867-1884, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36130591

RESUMO

Au-Kline syndrome (AKS) is a neurodevelopmental disorder associated with multiple malformations and a characteristic facial gestalt. The first individuals ascertained carried de novo loss-of-function (LoF) variants in HNRNPK. Here, we report 32 individuals with AKS (26 previously unpublished), including 13 with de novo missense variants. We propose new clinical diagnostic criteria for AKS that differentiate it from the clinically overlapping Kabuki syndrome and describe a significant phenotypic expansion to include individuals with missense variants who present with subtle facial features and few or no malformations. Many gene-specific DNA methylation (DNAm) signatures have been identified for neurodevelopmental syndromes. Because HNRNPK has roles in chromatin and epigenetic regulation, we hypothesized that pathogenic variants in HNRNPK may be associated with a specific DNAm signature. Here, we report a unique DNAm signature for AKS due to LoF HNRNPK variants, distinct from controls and Kabuki syndrome. This DNAm signature is also identified in some individuals with de novo HNRNPK missense variants, confirming their pathogenicity and the phenotypic expansion of AKS to include more subtle phenotypes. Furthermore, we report that some individuals with missense variants have an "intermediate" DNAm signature that parallels their milder clinical presentation, suggesting the presence of an epi-genotype phenotype correlation. In summary, the AKS DNAm signature may help elucidate the underlying pathophysiology of AKS. This DNAm signature also effectively supported clinical syndrome delineation and is a valuable aid for variant interpretation in individuals where a clinical diagnosis of AKS is unclear, particularly for mild presentations.


Assuntos
Metilação de DNA , Deficiência Intelectual , Anormalidades Múltiplas , Cromatina , Metilação de DNA/genética , Epigênese Genética , Face/anormalidades , Doenças Hematológicas , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Deficiência Intelectual/genética , Fenótipo , Doenças Vestibulares
7.
J Med Genet ; 61(5): 490-501, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38296633

RESUMO

INTRODUCTION: KCTD15 encodes an oligomeric BTB domain protein reported to inhibit neural crest formation through repression of Wnt/beta-catenin signalling, as well as transactivation by TFAP2. Heterozygous missense variants in the closely related paralogue KCTD1 cause scalp-ear-nipple syndrome. METHODS: Exome sequencing was performed on a two-generation family affected by a distinctive phenotype comprising a lipomatous frontonasal malformation, anosmia, cutis aplasia of the scalp and/or sparse hair, and congenital heart disease. Identification of a de novo missense substitution within KCTD15 led to targeted sequencing of DNA from a similarly affected sporadic patient, revealing a different missense mutation. Structural and biophysical analyses were performed to assess the effects of both amino acid substitutions on the KCTD15 protein. RESULTS: A heterozygous c.310G>C variant encoding p.(Asp104His) within the BTB domain of KCTD15 was identified in an affected father and daughter and segregated with the phenotype. In the sporadically affected patient, a de novo heterozygous c.263G>A variant encoding p.(Gly88Asp) was present in KCTD15. Both substitutions were found to perturb the pentameric assembly of the BTB domain. A crystal structure of the BTB domain variant p.(Gly88Asp) revealed a closed hexameric assembly, whereas biophysical analyses showed that the p.(Asp104His) substitution resulted in a monomeric BTB domain likely to be partially unfolded at physiological temperatures. CONCLUSION: BTB domain substitutions in KCTD1 and KCTD15 cause clinically overlapping phenotypes involving craniofacial abnormalities and cutis aplasia. The structural analyses demonstrate that missense substitutions act through a dominant negative mechanism by disrupting the higher order structure of the KCTD15 protein complex.


Assuntos
Domínio BTB-POZ , Anormalidades Craniofaciais , Face , Humanos , Anormalidades Múltiplas , Proteínas Correpressoras/genética , Anormalidades Craniofaciais/genética , Displasia Ectodérmica , Face/anormalidades , Mutação de Sentido Incorreto/genética , Síndrome
8.
Hum Mol Genet ; 31(18): 3083-3094, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35512351

RESUMO

BACKGROUND: TASP1 encodes an endopeptidase activating histone methyltransferases of the KMT2 family. Homozygous loss-of-function variants in TASP1 have recently been associated with Suleiman-El-Hattab syndrome. We report six individuals with Suleiman-El-Hattab syndrome and provide functional characterization of this novel histone modification disorder in a multi-omics approach. METHODS: Chromosomal microarray/exome sequencing in all individuals. Western blotting from fibroblasts in two individuals. RNA sequencing and proteomics from fibroblasts in one individual. Methylome analysis from blood in two individuals. Knock-out of tasp1 orthologue in zebrafish and phenotyping. RESULTS: All individuals had biallelic TASP1 loss-of-function variants and a phenotype including developmental delay, multiple congenital anomalies (including cardiovascular and posterior fossa malformations), a distinct facial appearance and happy demeanor. Western blot revealed absence of TASP1. RNA sequencing/proteomics showed HOX gene downregulation (HOXA4, HOXA7, HOXA1 and HOXB2) and dysregulation of transcription factor TFIIA. A distinct methylation profile intermediate between control and Kabuki syndrome (KMT2D) profiles could be produced. Zebrafish tasp1 knock-out revealed smaller head size and abnormal cranial cartilage formation in tasp1 crispants. CONCLUSION: This work further delineates Suleiman-El-Hattab syndrome, a recognizable neurodevelopmental syndrome. Possible downstream mechanisms of TASP1 deficiency include perturbed HOX gene expression and dysregulated TFIIA complex. Methylation pattern suggests that Suleiman-El-Hattab syndrome can be categorized into the group of histone modification disorders including Wiedemann-Steiner and Kabuki syndrome.


Assuntos
Código das Histonas , Peixe-Zebra , Anormalidades Múltiplas , Animais , Endopeptidases/genética , Face/anormalidades , Doenças Hematológicas , Histona Metiltransferases/genética , Fenótipo , Fator de Transcrição TFIIA/genética , Doenças Vestibulares , Peixe-Zebra/genética
9.
Hum Genet ; 143(1): 71-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38117302

RESUMO

Coffin-Siris syndrome (CSS) is a rare multisystemic autosomal dominant disorder. Since 2012, alterations in genes of the SWI/SNF complex were identified as the molecular basis of CSS, studying largely pediatric cohorts. Therefore, there is a lack of information on the phenotype in adulthood, particularly on the clinical outcome in adulthood and associated risks. In an international collaborative effort, data from 35 individuals ≥ 18 years with a molecularly ascertained CSS diagnosis (variants in ARID1B, ARID2, SMARCA4, SMARCB1, SMARCC2, SMARCE1, SOX11, BICRA) using a comprehensive questionnaire was collected. Our results indicate that overweight and obesity are frequent in adults with CSS. Visual impairment, scoliosis, and behavioral anomalies are more prevalent than in published pediatric or mixed cohorts. Cognitive outcomes range from profound intellectual disability (ID) to low normal IQ, with most individuals having moderate ID. The present study describes the first exclusively adult cohort of CSS individuals. We were able to delineate some features of CSS that develop over time and have therefore been underrepresented in previously reported largely pediatric cohorts, and provide recommendations for follow-up.


Assuntos
Anormalidades Múltiplas , Face/anormalidades , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Adulto , Humanos , Criança , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Micrognatismo/genética , Micrognatismo/diagnóstico , Deformidades Congênitas da Mão/genética , Pescoço/anormalidades , Fenótipo , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética
10.
Br J Haematol ; 204(5): 1899-1907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432067

RESUMO

Kabuki syndrome (KS) is now listed in the Human Inborn Errors of Immunity (IEI) Classification. It is a rare disease caused by KMT2D and KDM6A variants, dominated by intellectual disability and characteristic facial features. Recurrently, pathogenic variants are identified in those genes in patients examined for autoimmune cytopenia (AIC), but interpretation remains challenging. This study aims to describe the genetic diagnosis and the clinical management of patients with paediatric-onset AIC and KS. Among 11 patients with AIC and KS, all had chronic immune thrombocytopenic purpura, and seven had Evans syndrome. All had other associated immunopathological manifestations, mainly symptomatic hypogammaglobinaemia. They had a median of 8 (5-10) KS-associated manifestations. Pathogenic variants were detected in KMT2D gene without clustering, during the immunological work-up of AIC in three cases, and the clinical strategy to validate them is emphasized. Eight patients received second-line treatments, mainly rituximab and mycophenolate mofetil. With a median follow-up of 17 (2-31) years, 8/10 alive patients still needed treatment for AIC. First-line paediatricians should be able to recognize and confirm KS in children with ITP or multiple AIC, to provide early appropriate clinical management and specific long-term follow-up. The epigenetic immune dysregulation in KS opens exciting new perspectives.


Assuntos
Anormalidades Múltiplas , Proteínas de Ligação a DNA , Face , Doenças Hematológicas , Histona Desmetilases , Proteínas de Neoplasias , Doenças Vestibulares , Humanos , Doenças Vestibulares/genética , Doenças Vestibulares/diagnóstico , Criança , Face/anormalidades , Feminino , Masculino , Pré-Escolar , Anormalidades Múltiplas/genética , Adolescente , Histona Desmetilases/genética , Proteínas de Neoplasias/genética , Doenças Hematológicas/genética , Proteínas de Ligação a DNA/genética , Púrpura Trombocitopênica Idiopática/genética , Púrpura Trombocitopênica Idiopática/terapia , Púrpura Trombocitopênica Idiopática/diagnóstico , Lactente , Trombocitopenia/genética , Trombocitopenia/diagnóstico , Trombocitopenia/etiologia , Trombocitopenia/terapia , Anemia Hemolítica Autoimune/genética , Anemia Hemolítica Autoimune/diagnóstico , Anemia Hemolítica Autoimune/terapia , Doenças Autoimunes/genética , Doenças Autoimunes/diagnóstico , Rituximab/uso terapêutico , Mutação , Citopenia
11.
J Clin Immunol ; 44(5): 105, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676773

RESUMO

Kabuki Syndrome (KS) is a multisystemic genetic disorder. A portion of patients has immunological manifestations characterized by increased susceptibility to infections and autoimmunity. Aiming to describe the clinical and laboratory immunological aspects of KS, we conducted a retrospective multicenter observational study on patients with KS treated in centers affiliated to the Italian Primary Immunodeficiency Network.Thirty-nine patients were enrolled, with a median age at evaluation of 10 years (range: 3 m-21y). All individuals had organ malformations of variable severity. Congenital heart defect (CHD) was present in 19/39 patients (49%) and required surgical correction in 9/39 (23%), with associated thymectomy in 7/39 (18%). Autoimmune cytopenia occurred in 6/39 patients (15%) and was significantly correlated with thymectomy (p < 0.002), but not CHD. Individuals with cytopenia treated with mycophenolate as long-term immunomodulatory treatment (n = 4) showed complete response. Increased susceptibility to infections was observed in 22/32 patients (69%). IgG, IgA, and IgM were low in 13/29 (45%), 13/30 (43%) and 4/29 (14%) patients, respectively. Immunoglobulin substitution was required in three patients. Lymphocyte subsets were normal in all patients except for reduced naïve T-cells in 3/15 patients (20%) and reduced memory switched B-cells in 3/17 patients (18%). Elevated CD3 + TCRαß + CD4-CD8-T-cells were present in 5/17 individuals (23%) and were correlated with hematological and overall autoimmunity (p < 0.05).In conclusion, immunological manifestations of KS in our cohort include susceptibility to infections, antibody deficiency, and autoimmunity. Autoimmune cytopenia is correlated with thymectomy and elevated CD3 + TCRαß + CD4-CD8-T-cells, and benefits from treatment with mycophenolate.


Assuntos
Anormalidades Múltiplas , Face/anormalidades , Doenças Hematológicas , Doenças Vestibulares , Humanos , Feminino , Estudos Retrospectivos , Masculino , Criança , Doenças Hematológicas/imunologia , Doenças Hematológicas/terapia , Adolescente , Itália , Doenças Vestibulares/imunologia , Pré-Escolar , Adulto Jovem , Anormalidades Múltiplas/imunologia , Lactente , Autoimunidade , Adulto
12.
N Engl J Med ; 384(25): 2406-2417, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34161705

RESUMO

BACKGROUND: Autophagy is the major intracellular degradation route in mammalian cells. Systemic ablation of core autophagy-related (ATG) genes in mice leads to embryonic or perinatal lethality, and conditional models show neurodegeneration. Impaired autophagy has been associated with a range of complex human diseases, yet congenital autophagy disorders are rare. METHODS: We performed a genetic, clinical, and neuroimaging analysis involving five families. Mechanistic investigations were conducted with the use of patient-derived fibroblasts, skeletal muscle-biopsy specimens, mouse embryonic fibroblasts, and yeast. RESULTS: We found deleterious, recessive variants in human ATG7, a core autophagy-related gene encoding a protein that is indispensable to classical degradative autophagy. Twelve patients from five families with distinct ATG7 variants had complex neurodevelopmental disorders with brain, muscle, and endocrine involvement. Patients had abnormalities of the cerebellum and corpus callosum and various degrees of facial dysmorphism. These patients have survived with impaired autophagic flux arising from a diminishment or absence of ATG7 protein. Although autophagic sequestration was markedly reduced, evidence of basal autophagy was readily identified in fibroblasts and skeletal muscle with loss of ATG7. Complementation of different model systems by deleterious ATG7 variants resulted in poor or absent autophagic function as compared with the reintroduction of wild-type ATG7. CONCLUSIONS: We identified several patients with a neurodevelopmental disorder who have survived with a severe loss or complete absence of ATG7, an essential effector enzyme for autophagy without a known functional paralogue. (Funded by the Wellcome Centre for Mitochondrial Research and others.).


Assuntos
Anormalidades Múltiplas/genética , Ataxia/genética , Proteína 7 Relacionada à Autofagia/genética , Autofagia/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/fisiologia , Células Cultivadas , Cerebelo/anormalidades , Simulação por Computador , Face/anormalidades , Feminino , Fibroblastos , Genes Recessivos , Humanos , Lactente , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Malformações do Sistema Nervoso/genética , Linhagem , Fenótipo
13.
Development ; 148(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33757991

RESUMO

In the face, symmetry is established when bilateral streams of neural crest cells leave the neural tube at the same time, follow identical migration routes and then give rise to the facial prominences. However, developmental instability exists, particularly surrounding the steps of lip fusion. The causes of instability are unknown but inability to cope with developmental fluctuations are a likely cause of congenital malformations, such as non-syndromic orofacial clefts. Here, we tracked cell movements over time in the frontonasal mass, which forms the facial midline and participates in lip fusion, using live-cell imaging of chick embryos. Our mathematical examination of cell velocity vectors uncovered temporal fluctuations in several parameters, including order/disorder, symmetry/asymmetry and divergence/convergence. We found that treatment with a Rho GTPase inhibitor completely disrupted the temporal fluctuations in all measures and blocked morphogenesis. Thus, we discovered that genetic control of symmetry extends to mesenchymal cell movements and that these movements are of the type that could be perturbed in asymmetrical malformations, such as non-syndromic cleft lip. This article has an associated 'The people behind the papers' interview.


Assuntos
Movimento Celular , Face/fisiologia , Mesoderma/crescimento & desenvolvimento , Crista Neural/fisiologia , Actomiosina , Animais , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Divisão Celular , Proliferação de Células , Embrião de Galinha , Galinhas , Fenda Labial/genética , Fissura Palatina/genética , Olho/anatomia & histologia , Olho/crescimento & desenvolvimento , Face/anormalidades , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/anatomia & histologia , Morfogênese/genética , Crista Neural/anatomia & histologia
14.
Am J Med Genet A ; 194(6): e63540, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243407

RESUMO

Coffin-Siris Syndrome (CSS, MIM 135900) is now a well-described genetic condition caused by pathogenic variants in the Bromocriptine activating factor (BAF) complex, including ARID1B, ARID1A, ARID2, SMARCA4, SMARCE1, SMARCB1, SOX11, SMARCC2, DPF2, and more recently, BICRA. Individuals with CSS have a spectrum of various medical challenges, most often evident at birth, including feeding difficulties, hypotonia, organ-system anomalies, and learning and developmental differences. The classic finding of fifth digit hypo- or aplasia is seen variably. ARID2, previously described, is one of the less frequently observed gene changes in CSS. Although individuals with ARID2 have been reported to have classic features of CSS including hypertrichosis, coarse facial features, short stature, and fifth digit anomalies, as with many of the other CSS genes, there appears to be a spectrum of phenotypes. We report here a cohort of 17 individuals with ARID2 variants from the Coffin-Siris/BAF clinical registry and detail their medical challenges as well as developmental progress. Feeding difficulties, hypotonia, and short stature occur often, and hip dysplasia appears to occur more often than with other genes, however more severe medical challenges such as significant brain and cardiac malformations are rarer. Individuals appear to have mild to moderate intellectual impairment and may carry additional diagnoses such as ADHD. Further phenotypic description of this gene will aid clinicians caring for individuals with this rarer form of CSS.


Assuntos
Anormalidades Múltiplas , Face/anormalidades , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Pescoço , Pescoço/anormalidades , Fenótipo , Fatores de Transcrição , Humanos , Micrognatismo/genética , Micrognatismo/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Pescoço/patologia , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/diagnóstico , Masculino , Feminino , Fatores de Transcrição/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Criança , Pré-Escolar , Lactente , Mutação/genética , Adolescente , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença
15.
Am J Med Genet A ; 194(7): e63567, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38389298

RESUMO

Biallelic variants in the OTUD6B gene have been reported in the literature in association with an intellectual developmental disorder featuring dysmorphic facies, seizures, and distal limb abnormalities. Physical differences described for affected individuals suggest that the disorder may be clinically recognizable, but previous publications have reported an initial clinical suspicion for Kabuki syndrome (KS) in some affected individuals. Here, we report on three siblings with biallelic variants in OTUD6B co-segregating with neurodevelopmental delay, shared physical differences, and other clinical findings similar to those of previously reported individuals. However, clinical manifestations such as long palpebral fissures, prominent and cupped ears, developmental delay, growth deficiency, persistent fetal fingertip pads, vertebral anomaly, and seizures in the proband were initially suggestive of KS. In addition, previously unreported clinical manifestations such as delayed eruption of primary dentition, soft doughy skin with reduced sweating, and mirror movements present in our patients suggest an expansion of the phenotype, and we perform a literature review to update on current information related to OTUD6B and human gene-disease association.


Assuntos
Anormalidades Múltiplas , Face , Doenças Hematológicas , Fenótipo , Irmãos , Doenças Vestibulares , Criança , Pré-Escolar , Humanos , Masculino , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Alelos , Endopeptidases/genética , Face/anormalidades , Face/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Doenças Hematológicas/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação/genética , Pescoço/anormalidades , Pescoço/patologia , Doenças Vestibulares/genética , Doenças Vestibulares/patologia , Doenças Vestibulares/diagnóstico
16.
Am J Med Genet A ; 194(8): e63626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38591849

RESUMO

De novo germline variants of the SRY-related HMG-box 11 gene (SOX11) have been reported to cause Coffin-Siris syndrome-9 (CSS-9), a rare congenital disorder associated with multiple organ malformations, including ear anomalies. Previous clinical and animal studies have found that intragenic pathogenic variant or haploinsufficiency in the SOX11 gene could cause inner ear malformation, but no studies to date have documented the external ear malformation caused by SOX11 deficiency. Here, we reported a Chinese male with unilateral microtia and bilateral sensorineural deafness who showed CSS-like manifestations, including dysmorphic facial features, impaired neurodevelopment, and fingers/toes malformations. Using trio-based whole-exome sequencing, a de novo missense variant in SOX11 (NM_003108.4: c.347A>G, p.Y116C) was identified and classified as pathogenic variant as per American College of Medical Genetics guidelines. Moreover, a systematic search of the literature yielded 12 publications that provided data of 55 SOX11 intragenic variants affecting various protein-coding regions of SOX11 protein. By quantitatively analyzing phenotypic spectrum information related to these 56 SOX11 variants (including our case), we found variants affecting different regions of SOX11 protein (high-mobility group [HMG] domain and non-HMG regions) appear to influence the phenotypic spectrum of organ malformations in CSS-9; variants altering the HMG domain were more likely to cause the widest range of organ anomalies. In summary, this is the first report of CSS with external ear malformation caused by pathogenic variant in SOX11, indicating that the SOX11 gene may be not only essential for the development of the inner ear but also critical for the morphogenesis of the external ear. In addition, thorough clinical examination is recommended for patients who carry pathogenic SOX11 variants that affect the HMG domain, as these variants may cause the widest range of organ anomalies underlying this condition.


Assuntos
Anormalidades Múltiplas , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Fatores de Transcrição SOXC , Humanos , Masculino , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Orelha Externa/anormalidades , Orelha Externa/patologia , Sequenciamento do Exoma , Face/anormalidades , Face/patologia , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Micrognatismo/genética , Micrognatismo/patologia , Micrognatismo/diagnóstico , Mutação de Sentido Incorreto/genética , Pescoço/anormalidades , Pescoço/patologia , Fenótipo , Fatores de Transcrição SOXC/genética
17.
Am J Med Genet A ; 194(2): 268-278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37815018

RESUMO

Kabuki syndrome (KS) is characterized by growth impairment, psychomotor delay, congenital heart disease, and distinctive facial features. KMT2D and KDM6A have been identified as the causative genes of KS. Craniosynostosis (CS) has been reported in individuals with KS; however, its prevalence and clinical implications remain unclear. In this retrospective study, we investigated the occurrence of CS in individuals with genetically diagnosed KS and examined its clinical significance. Among 42 individuals with genetically diagnosed KS, 21 (50%) exhibited CS, with 10 individuals requiring cranioplasty. No significant differences were observed based on sex, causative gene, and molecular consequence among individuals with KS who exhibited CS. Both individuals who underwent evaluation with three-dimensional computed tomography (3DCT) and those who required surgery tended to exhibit cranial dysmorphology. Notably, in several individuals, CS was diagnosed before KS, suggesting that CS could be one of the clinical features by which clinicians can diagnose KS. This study highlights that CS is one of the noteworthy complications in KS, emphasizing the importance of monitoring cranial deformities in the health management of individuals with KS. The findings suggest that in individuals where CS is a concern, conducting 3DCT evaluations for CS and digital impressions are crucial.


Assuntos
Anormalidades Múltiplas , Craniossinostoses , Face/anormalidades , Doenças Hematológicas , Doenças Vestibulares , Humanos , Estudos Retrospectivos , Prevalência , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Doenças Hematológicas/complicações , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/epidemiologia , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/epidemiologia , Doenças Vestibulares/genética , Craniossinostoses/complicações , Craniossinostoses/diagnóstico , Craniossinostoses/epidemiologia , Histona Desmetilases/genética , Mutação
18.
Pediatr Res ; 95(7): 1843-1850, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38238566

RESUMO

BACKGROUND: Congenital Central Hypoventilation Syndrome (CCHS) has devastating consequences if not diagnosed promptly. Despite identification of the disease-defining gene PHOX2B and a facial phenotype, CCHS remains underdiagnosed. This study aimed to incorporate automated techniques on facial photos to screen for CCHS in a diverse pediatric cohort to improve early case identification and assess a facial phenotype-PHOX2B genotype relationship. METHODS: Facial photos of children and young adults with CCHS were control-matched by age, sex, race/ethnicity. After validating landmarks, principal component analysis (PCA) was applied with logistic regression (LR) for feature attribution and machine learning models for subject classification and assessment by PHOX2B pathovariant. RESULTS: Gradient-based feature attribution confirmed a subtle facial phenotype and models were successful in classifying CCHS: neural network performed best (median sensitivity 90% (IQR 84%, 95%)) on 179 clinical photos (versus LR and XGBoost, both 85% (IQR 75-76%, 90%)). Outcomes were comparable stratified by PHOX2B genotype and with the addition of publicly available CCHS photos (n = 104) using PCA and LR (sensitivity 83-89% (IQR 67-76%, 92-100%). CONCLUSIONS: Utilizing facial features, findings suggest an automated, accessible classifier may be used to screen for CCHS in children with the phenotype and support providers to seek PHOX2B testing to improve the diagnostics. IMPACT: Facial landmarking and principal component analysis on a diverse pediatric and young adult cohort with PHOX2B pathovariants delineated a distinct, subtle CCHS facial phenotype. Automated, low-cost machine learning models can detect a CCHS facial phenotype with a high sensitivity in screening to ultimately refer for disease-defining PHOX2B testing, potentially addressing gaps in disease underdiagnosis and allow for critical, timely intervention.


Assuntos
Face , Proteínas de Homeodomínio , Hipoventilação , Fenótipo , Apneia do Sono Tipo Central , Fatores de Transcrição , Humanos , Proteínas de Homeodomínio/genética , Feminino , Masculino , Fatores de Transcrição/genética , Hipoventilação/congênito , Hipoventilação/diagnóstico , Hipoventilação/genética , Criança , Face/anormalidades , Apneia do Sono Tipo Central/diagnóstico , Apneia do Sono Tipo Central/genética , Pré-Escolar , Diagnóstico por Computador/métodos , Análise de Componente Principal , Adolescente , Aprendizado de Máquina , Adulto Jovem , Lactente , Genótipo , Fotografação , Estudos de Casos e Controles , Modelos Logísticos
19.
Pediatr Dev Pathol ; 27(2): 181-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37981638

RESUMO

Coffin-Siris syndrome is an autosomal dominant disorder with neurological, cardiovascular, and gastrointestinal symptoms. Patients with Coffin-Siris syndrome typically have variable degree of developmental delay or intellectual disability, muscular hypotonia, dysmorphic facial features, sparse scalp hair, but otherwise hirsutism and fifth digit nail or distal phalanx hypoplasia or aplasia. Coffin-Siris syndrome is caused by pathogenic variants in 12 different genes including SMARCB1 and ARID1A. Pathogenic SMARCB1 gene variants cause Coffin-Siris syndrome 3 whereas pathogenic ARID1A gene variants cause Coffin-Siris syndrome 2. Here, we present two prenatal Coffin-Siris syndrome cases with autosomal dominant pathogenic variants: SMARCB1 gene c.1066_1067del, p.(Leu356AspfsTer4) variant, and a novel ARID1A gene c.1920+3_1920+6del variant. The prenatal phenotype in Coffin-Siris syndrome has been rarely described. This article widens the phenotypic spectrum of prenatal Coffin-Siris syndrome with severely hypoplastic right ventricle with VSD and truncus arteriosus type III, persisting left superior and inferior caval vein, bilateral olfactory nerve aplasia, and hypoplastic thymus. A detailed clinical description of the patients with ultrasound, MRI, and post mortem pictures of the affected fetuses showing the wide phenotypic spectrum of the disease is presented.


Assuntos
Anormalidades Múltiplas , Face/anormalidades , Deformidades Congênitas da Mão , Deficiência Intelectual , Micrognatismo , Pescoço/anormalidades , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Face/patologia , Fenótipo
20.
Eur J Pediatr ; 183(1): 73-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924347

RESUMO

Tessier clefts are skeletal and soft tissue abnormalities of a neonate's facial structures. They could be classified as syndromic and non-syndromic clefts, which can be attributed to disruptions in fetal development and genetic mutations, respectively. Reported cases of these clefts typically document the presence of additional abnormalities associated with these clefts. In this systematic review, we analyzed reports of Tessier clefts accompanied by cardiovascular anomalies, as one of the commonly encountered anomalies. We systematically searched PubMed (MEDLINE), Scopus, Web of Science, Science Direct, and Google Scholar. We selected and included case reports, case series, and case reviews on patients with Tessier cleft and cardiovascular anomalies. The critical appraisal of the included studies was performed by two independent investigators using the Consensus-based Clinical Case Reporting Guideline Development (CARE) checklist. Overall, 20 reports (18 case reports and 2 case series) were eligible for inclusion in this review. Tessier clefts 3 and 30 were the most commonly observed. In addition, the most prevalent cardiovascular anomalies consisted of the ventricular septal defect (VSD), double-outlet right ventricle, and atrial septal defect (ASD). Most of the patients received cosmetic and cardiovascular surgeries. However, some were not proper candidates for cardiovascular surgery because of their unstable condition and therefore did not survive.   Conclusion: Regardless of the focus placed on the cleft and subsequent plastic surgery procedures in these cases, it is important to prioritize other abnormalities that may be associated with mortality. A complete cardiovascular system and associated disorders assessment should be performed before facial cosmetic surgeries. What is Known: • Tessier clefts are congenital defects in the soft tissues and bones of the face and like many other congenital defects, they are accompanied by defects in other parts of the body. • In the current literature, the emphasis is on clefts and the cosmetic issues rather than the coinciding defects, particularly cardiovascular anomalies. What is New: • Review the cardiovascular anomalies that are commonly encountered in patients with Tessier clefts.


Assuntos
Fenda Labial , Fissura Palatina , Procedimentos de Cirurgia Plástica , Recém-Nascido , Humanos , Face/anormalidades , Face/cirurgia , Fenda Labial/complicações , Fenda Labial/diagnóstico , Síndrome
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa