Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Cell ; 181(2): 362-381.e28, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32220312

RESUMO

During human evolution, the knee adapted to the biomechanical demands of bipedalism by altering chondrocyte developmental programs. This adaptive process was likely not without deleterious consequences to health. Today, osteoarthritis occurs in 250 million people, with risk variants enriched in non-coding sequences near chondrocyte genes, loci that likely became optimized during knee evolution. We explore this relationship by epigenetically profiling joint chondrocytes, revealing ancient selection and recent constraint and drift on knee regulatory elements, which also overlap osteoarthritis variants that contribute to disease heritability by tending to modify constrained functional sequence. We propose a model whereby genetic violations to regulatory constraint, tolerated during knee development, lead to adult pathology. In support, we discover a causal enhancer variant (rs6060369) present in billions of people at a risk locus (GDF5-UQCC1), showing how it impacts mouse knee-shape and osteoarthritis. Overall, our methods link an evolutionarily novel aspect of human anatomy to its pathogenesis.


Assuntos
Condrócitos/fisiologia , Articulação do Joelho/fisiologia , Osteoartrite/genética , Animais , Evolução Biológica , Condrócitos/metabolismo , Evolução Molecular , Predisposição Genética para Doença/genética , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Células HEK293 , Humanos , Joelho/fisiologia , Camundongos , Células NIH 3T3 , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Risco
2.
Development ; 147(14)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32580935

RESUMO

Synovial joint development begins with the formation of the interzone, a region of condensed mesenchymal cells at the site of the prospective joint. Recently, lineage-tracing strategies have revealed that Gdf5-lineage cells native to and from outside the interzone contribute to most, if not all, of the major joint components. However, there is limited knowledge of the specific transcriptional and signaling programs that regulate interzone formation and fate diversification of synovial joint constituents. To address this, we have performed single cell RNA-Seq analysis of 7329 synovial joint progenitor cells from the developing murine knee joint from E12.5 to E15.5. By using a combination of computational analytics, in situ hybridization and in vitro characterization of prospectively isolated populations, we have identified the transcriptional profiles of the major developmental paths for joint progenitors. Our freely available single cell transcriptional atlas will serve as a resource for the community to uncover transcriptional programs and cell interactions that regulate synovial joint development.


Assuntos
Análise de Célula Única/métodos , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Fator 5 de Diferenciação de Crescimento/deficiência , Fator 5 de Diferenciação de Crescimento/genética , Hibridização In Situ , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Análise de Sequência de RNA , Células-Tronco/citologia , Membrana Sinovial/citologia
3.
Dev Dyn ; 251(9): 1535-1549, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34242444

RESUMO

BACKGROUND: The development of the vertebrate limb skeleton requires a complex interaction of multiple factors to facilitate the correct shaping and positioning of bones and joints. Growth and differentiation factor 5 (Gdf5) is involved in patterning appendicular skeletal elements including joints. Expression of gdf5 in zebrafish has been detected in fin mesenchyme condensations and segmentation zones as well as the jaw joint, however, little is known about the functional role of Gdf5 outside of Amniota. RESULTS: We generated CRISPR/Cas9 knockout of gdf5 in zebrafish and analyzed the resulting phenotype at different developmental stages. Homozygous gdf5 mutant zebrafish displayed changes in segmentation of the endoskeletal disc and, as a consequence, loss of posterior radials in the pectoral fins. Mutant fish also displayed disorganization and reduced length of endoskeletal elements in the median fins, while joints and mineralization seemed unaffected. CONCLUSIONS: Our study demonstrates the importance of Gdf5 in the development of the zebrafish pectoral and median fin endoskeleton and reveals that the severity of the effect increases from anterior to posterior elements. Our findings are consistent with phenotypes observed in the human and mouse appendicular skeleton in response to Gdf5 knockout, suggesting a broadly conserved role for Gdf5 in Osteichthyes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fator 5 de Diferenciação de Crescimento , Peixe-Zebra , Nadadeiras de Animais/metabolismo , Animais , Osso e Ossos/metabolismo , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Camundongos , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34681754

RESUMO

Osteoarthritis (OA) is a common articular disease manifested by the destruction of cartilage and compromised chondrogenesis in the aging population, with chronic inflammation of synovium, which drives OA progression. Importantly, the activated synovial fibroblast (AF) within the synovium facilitates OA through modulating key molecules, including regulatory microRNAs (miR's). To understand OA associated pathways, in vitro co-culture system, and in vivo papain-induced OA model were applied for this study. The expression of key inflammatory markers both in tissue and blood plasma were examined by qRT-PCR, western blot, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assays. Herein, our result demonstrated, AF-activated human chondrocytes (AC) exhibit elevated NFκB, TNF-α, IL-6, and miR-21 expression as compared to healthy chondrocytes (HC). Importantly, AC induced the apoptosis of HC and inhibited the expression of chondrogenesis inducers, SOX5, TGF-ß1, and GDF-5. NFκB is a key inflammatory transcription factor elevated in OA. Therefore, SC75741 (an NFκB inhibitor) therapeutic effect was explored. SC75741 inhibits inflammatory profile, protects AC-educated HC from apoptosis, and inhibits miR-21 expression, which results in the induced expression of GDF-5, SOX5, TGF-ß1, BMPR2, and COL4A1. Moreover, ectopic miR-21 expression in fibroblast-like activated chondrocytes promoted osteoblast-mediated differentiation of osteoclasts in RW264.7 cells. Interestingly, in vivo study demonstrated SC75741 protective role, in controlling the destruction of the articular joint, through NFκB, TNF-α, IL-6, and miR-21 inhibition, and inducing GDF-5, SOX5, TGF-ß1, BMPR2, and COL4A1 expression. Our study demonstrated the role of NFκB/miR-21 axis in OA progression, and SC75741's therapeutic potential as a small-molecule inhibitor of miR-21/NFκB-driven OA progression.


Assuntos
Benzimidazóis/farmacologia , Condrócitos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Piperidinas/farmacologia , Pirimidinas/farmacologia , Tiazóis/farmacologia , Animais , Benzimidazóis/química , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrócitos/patologia , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Humanos , Interleucina-1beta/farmacologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Osteoartrite/patologia , Piperidinas/química , Pirimidinas/química , Ratos Wistar , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/patologia , Tiazóis/química
5.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919968

RESUMO

The aim of the present study was to investigate the influence of a novel volume-stable collagen matrix (vCM) on early wound healing events including cellular migration and adhesion, protein adsorption and release, and the dynamics of the hemostatic system. For this purpose, we utilized transwell migration and crystal violet adhesion assays, ELISAs for quantification of adsorbed and released from the matrix growth factors, and qRT-PCR for quantification of gene expression in cells grown on the matrix. Our results demonstrated that primary human oral fibroblasts, periodontal ligament, and endothelial cells exhibited increased migration toward vCM compared to control cells that migrated in the absence of the matrix. Cellular adhesive properties on vCM were significantly increased compared to controls. Growth factors TGF-ß1, PDGF-BB, FGF-2, and GDF-5 were adsorbed on vCM with great efficiency and continuously delivered in the medium after an initial burst release within hours. We observed statistically significant upregulation of genes encoding the antifibrinolytic thrombomodulin, plasminogen activator inhibitor type 1, thrombospondin 1, and thromboplastin, as well as strong downregulation of genes encoding the profibrinolytic tissue plasminogen activator, urokinase-type plasminogen activator, its receptor, and the matrix metalloproteinase 14 in cells grown on vCM. As a general trend, the stimulatory effect of the vCM on the expression of antifibrinolytic genes was synergistically enhanced by TGF-ß1, PDGF-BB, or FGF-2, whereas the strong inhibitory effect of the vCM on the expression of profibrinolytic genes was reversed by PDGF-BB, FGF-2, or GDF-5. Taken together, our data strongly support the effect of the novel vCM on fibrin clot stabilization and coagulation/fibrinolysis equilibrium, thus facilitating progression to the next stages of the soft tissue healing process.


Assuntos
Colágeno/farmacologia , Mucosa Bucal/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Regeneração/genética , Cicatrização/genética , Animais , Becaplermina/genética , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Colágeno/química , Células Endoteliais/efeitos dos fármacos , Fibrina/genética , Fibrinólise/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/genética , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fator 5 de Diferenciação de Crescimento/genética , Hemostasia/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Mucosa Bucal/crescimento & desenvolvimento , Ligamento Periodontal/crescimento & desenvolvimento , Cultura Primária de Células , Fator de Crescimento Transformador beta1/genética
6.
J Cell Mol Med ; 24(13): 7141-7150, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32497388

RESUMO

The growth and differentiation factor 5 (GDF-5) is known to play a key role in cartilage morphogenesis and homeostasis, and a single-nucleotide polymorphism in its promoter sequence was found to be associated with osteoarthritis (OA). In addition, GDF-5 was shown to promote extracellular matrix (ECM) production in healthy chondrocytes, to stimulate chondrogenesis of mesenchymal stem cells (MSCs) and to protect against OA progression in vivo. Therefore, GDF-5 appears to be a promising treatment for osteoarthritis. However, GDF-5 also promotes osteogenesis and hypertrophy, limiting its therapeutic utility. To circumvent this, a GDF-5 mutant with lower hypertrophic and osteogenic properties was engineered: M1673. The present study aimed to evaluate and compare the effects of GDF-5 and M1673 on primary porcine and human OA chondrocytes. We found that both GDF-5 and M1673 can robustly stimulate ECM accumulation, type II collagen and aggrecan expression in porcine and human OA chondrocytes in 3D culture. In addition, both molecules also down-regulated MMP13 and ADAMTS5 expression. These results suggest that M1673 retained the anabolic and anti-catabolic effects of GDF-5 on chondrocytes and is an alternative to GDF-5 for osteoarthritis.


Assuntos
Anabolizantes/metabolismo , Condrócitos/metabolismo , Fator 5 de Diferenciação de Crescimento/genética , Mutação/genética , Animais , Proliferação de Células , Células Cultivadas , Matriz Extracelular/metabolismo , Fator 5 de Diferenciação de Crescimento/metabolismo , Humanos , Osteoartrite/metabolismo , Osteoartrite/patologia , Peptídeo Hidrolases/metabolismo , Suínos
7.
Development ; 144(11): 2009-2020, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455377

RESUMO

Lmx1b is a homeodomain transcription factor responsible for limb dorsalization. Despite striking double-ventral (loss-of-function) and double-dorsal (gain-of-function) limb phenotypes, no direct gene targets in the limb have been confirmed. To determine direct targets, we performed a chromatin immunoprecipitation against Lmx1b in mouse limbs at embryonic day 12.5 followed by next-generation sequencing (ChIP-seq). Nearly 84% (n=617) of the Lmx1b-bound genomic intervals (LBIs) identified overlap with chromatin regulatory marks indicative of potential cis-regulatory modules (PCRMs). In addition, 73 LBIs mapped to CRMs that are known to be active during limb development. We compared Lmx1b-bound PCRMs with genes regulated by Lmx1b and found 292 PCRMs within 1 Mb of 254 Lmx1b-regulated genes. Gene ontological analysis suggests that Lmx1b targets extracellular matrix production, bone/joint formation, axonal guidance, vascular development, cell proliferation and cell movement. We validated the functional activity of a PCRM associated with joint-related Gdf5 that provides a mechanism for Lmx1b-mediated joint modification and a PCRM associated with Lmx1b that suggests a role in autoregulation. This is the first report to describe genome-wide Lmx1b binding during limb development, directly linking Lmx1b to targets that accomplish limb dorsalization.


Assuntos
Padronização Corporal/genética , Extremidades/embriologia , Proteínas com Homeodomínio LIM/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Animais , Galinhas , Imunoprecipitação da Cromatina , Sequência Conservada/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Proteínas com Homeodomínio LIM/genética , Camundongos Endogâmicos C57BL , Modelos Biológicos , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Fatores de Transcrição/genética
8.
Osteoarthritis Cartilage ; 28(10): 1373-1384, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32659345

RESUMO

OBJECTIVE: TGFß is a key player in cartilage homeostasis and OA pathology. However, few data are available on the role of TGFß signalling in the different OA phenotypes. Here, we analysed the TGFß pathway by transcriptomic analysis in six mouse models of OA. METHOD: We have brought together seven expert laboratories in OA pathophysiology and, used inter-laboratories standard operating procedures and quality controls to increase experimental reproducibility and decrease bias. As none of the available OA models covers the complexity and heterogeneity of the human disease, we used six different murine models of knee OA: from post-traumatic/mechanical models (meniscectomy (MNX), MNX and hypergravity (HG-MNX), MNX and high fat diet (HF-MNX), MNX and seipin knock-out (SP-MNX)) to aging-related OA and inflammatory OA (collagenase-induced OA (CIOA)). Four controls (MNX-sham, young, SP-sham, CIOA-sham) were added. OsteoArthritis Research Society International (OARSI)-based scoring of femoral condyles and ribonucleic acid (RNA) extraction from tibial plateau samples were done by single operators as well as the transcriptomic analysis of the TGFß family pathway by Custom TaqMan® Array Microfluidic Cards. RESULTS: The transcriptomic analysis revealed specific gene signatures in each of the six models; however, no gene was deregulated in all six OA models. Of interest, we found that the combinatorial Gdf5-Cd36-Ltbp4 signature might discriminate distinct subgroups of OA: Cd36 upregulation is a hallmark of MNX-related OA while Gdf5 and Ltbp4 upregulation is related to MNX-induced OA and CIOA. CONCLUSION: These findings stress the OA animal model heterogeneity and the need of caution when extrapolating results from one model to another.


Assuntos
Antígenos CD36/genética , Modelos Animais de Doenças , Fator 5 de Diferenciação de Crescimento/genética , Proteínas de Ligação a TGF-beta Latente/genética , Camundongos , Osteoartrite/genética , Fator de Crescimento Transformador beta/genética , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Experimental/fisiopatologia , Colagenases , Dieta Hiperlipídica , Subunidades gama da Proteína de Ligação ao GTP/genética , Perfilação da Expressão Gênica , Hipergravidade , Meniscectomia , Síndrome Metabólica , Camundongos Knockout , Obesidade , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo
9.
Cell Mol Life Sci ; 76(20): 3939-3952, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31201464

RESUMO

Articular cartilage is formed at the end of epiphyses in the synovial joint cavity and permanently contributes to the smooth movement of synovial joints. Most skeletal elements develop from transient cartilage by a biological process known as endochondral ossification. Accumulating evidence indicates that articular and growth plate cartilage are derived from different cell sources and that different molecules and signaling pathways regulate these two kinds of cartilage. As the first sign of joint development, the interzone emerges at the presumptive joint site within a pre-cartilage tissue. After that, joint cavitation occurs in the center of the interzone, and the cells in the interzone and its surroundings gradually form articular cartilage and the synovial joint. During joint development, the interzone cells continuously migrate out to the epiphyseal cartilage and the surrounding cells influx into the joint region. These complicated phenomena are regulated by various molecules and signaling pathways, including GDF5, Wnt, IHH, PTHrP, BMP, TGF-ß, and FGF. Here, we summarize current literature and discuss the molecular mechanisms underlying joint formation and articular development.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Condrogênese/genética , Regulação da Expressão Gênica , Cápsula Articular/metabolismo , Via de Sinalização Wnt , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Cartilagem Articular/citologia , Cartilagem Articular/crescimento & desenvolvimento , Diferenciação Celular , Linhagem da Célula/genética , Movimento Celular , Condrócitos/citologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Cápsula Articular/citologia , Cápsula Articular/crescimento & desenvolvimento , Osteogênese/genética , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
10.
Hum Mol Genet ; 26(7): 1280-1293, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28169396

RESUMO

Human multiple synostoses syndrome (SYNS) is an autosomal dominant disorder characterized by multiple joint fusions. We previously identified a point mutation (S99N) in FGF9 that causes human SYNS3. However, the physiological function of FGF9 during joint development and comprehensive molecular portraits of SYNS3 remain elusive. Here, we report that mice harboring the S99N mutation in Fgf9 develop the curly tail phenotype and partially or fully fused caudal vertebrae and limb joints, which mimic the major phenotypes of SYNS3 patients. Further study reveals that the S99N mutation in Fgf9 disrupts joint interzone formation by affecting the chondrogenic differentiation of mesenchymal cells at the early stage of joint development. Consistently, the limb bud micromass culture (LBMMC) assay shows that Fgf9 inhibits mesenchymal cell differentiation into chondrocytes by downregulating the expression of Sox6 and Sox9. However, the mutant protein does not exhibit the same inhibitory effect. We also show that Fgf9 is required for normal expression of Gdf5 in the prospective elbow and knee joints through its activation of Gdf5 promoter activity. Signal transduction assays indicate that the S99N mutation diminishes FGF signaling in developmental limb joints. Finally, we demonstrate that the conformational change in FGF9 resulting from the S99N mutation disrupts FGF9/FGFR/heparin interaction, which impedes FGF signaling in developmental joints. Taken together, we conclude that the S99N mutation in Fgf9 causes SYNS3 via the disturbance of joint interzone formation. These results further implicate the crucial role of Fgf9 during embryonic joint development.


Assuntos
Ossos do Carpo/anormalidades , Diferenciação Celular/genética , Fator 9 de Crescimento de Fibroblastos/genética , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/genética , Estribo/anormalidades , Sinostose/genética , Ossos do Tarso/anormalidades , Animais , Ossos do Carpo/fisiopatologia , Condrogênese/genética , Fator 9 de Crescimento de Fibroblastos/biossíntese , Fator 9 de Crescimento de Fibroblastos/química , Deformidades Congênitas do Pé/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Fator 5 de Diferenciação de Crescimento/genética , Deformidades Congênitas da Mão/fisiopatologia , Humanos , Articulações/crescimento & desenvolvimento , Articulações/patologia , Camundongos , Mutação Puntual , Conformação Proteica , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXD/genética , Transdução de Sinais , Estribo/fisiopatologia , Sinostose/fisiopatologia , Ossos do Tarso/fisiopatologia
11.
FASEB J ; 32(3): 1452-1467, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29146735

RESUMO

DNA methylation is an epigenetic mechanism regulating gene expression. In this study, we observed that DNA methyltransferase 3a (Dnmt3a) expression is decreased after muscle atrophy. We made skeletal muscle-specific Dnmt3a-knockout (Dnmt3a-KO) mice. The regeneration capacity after muscle injury was markedly decreased in Dnmt3a-KO mice. Diminished mRNA and protein expression of Dnmt3a were observed in skeletal muscles as well as in satellite cells, which are important for muscle regeneration, in Dnmt3a-KO mice. Dnmt3a-KO satellite cell showed smaller in size (length/area), suggesting suppressed myotube differentiation. Microarray analysis of satellite cells showed that expression of growth differentiation factor 5 (Gdf5) mRNA was markedly increased in Dnmt3a-KO mice. The DNA methylation level of the Gdf5 promoter was markedly decreased in Dnmt3a-KO satellite cells. In addition, DNA methylation inhibitor azacytidine treatment increased Gdf5 expression in wild-type satellite cells, suggesting Gdf5 expression is regulated by DNA methylation. Also, we observed increased inhibitor of differentiation (a target of Gdf5) mRNA expression in Dnmt3a-KO satellite cells. Thus, Dnmt3a appears to regulate satellite cell differentiation via DNA methylation. This mechanism may play a role in the decreased regeneration capacity during atrophy such as in aged sarcopenia.-Hatazawa, Y., Ono, Y., Hirose, Y., Kanai, S., Fujii, N. L., Machida, S., Nishino, I., Shimizu, T., Okano, M., Kamei, Y., Ogawa, Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.


Assuntos
Diferenciação Celular , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação da Expressão Gênica , Fator 5 de Diferenciação de Crescimento/biossíntese , Músculo Esquelético/fisiologia , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Fator 5 de Diferenciação de Crescimento/genética , Camundongos Knockout , Músculo Esquelético/patologia , Células Satélites de Músculo Esquelético/patologia
12.
PLoS Genet ; 12(11): e1006454, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27902701

RESUMO

Synovial joints are crucial for support and locomotion in vertebrates, and are the frequent site of serious skeletal defects and degenerative diseases in humans. Growth and differentiation factor 5 (Gdf5) is one of the earliest markers of joint formation, is required for normal joint development in both mice and humans, and has been genetically linked to risk of common osteoarthritis in Eurasian populations. Here, we systematically survey the mouse Gdf5 gene for regulatory elements controlling expression in synovial joints. We identify separate regions of the locus that control expression in axial tissues, in proximal versus distal joints in the limbs, and in remarkably specific sub-sets of composite joints like the elbow. Predicted transcription factor binding sites within Gdf5 regulatory enhancers are required for expression in particular joints. The multiple enhancers that control Gdf5 expression in different joints are distributed over a hundred kilobases of DNA, including regions both upstream and downstream of Gdf5 coding exons. Functional rescue tests in mice confirm that the large flanking regions are required to restore normal joint formation and patterning. Orthologs of these enhancers are located throughout the large genomic region previously associated with common osteoarthritis risk in humans. The large array of modular enhancers for Gdf5 provide a new foundation for studying the spatial specificity of joint patterning in vertebrates, as well as new candidates for regulatory regions that may also influence osteoarthritis risk in human populations.


Assuntos
Fator 5 de Diferenciação de Crescimento/genética , Osteoartrite/genética , Esqueleto/crescimento & desenvolvimento , Vertebrados/genética , Animais , Sítios de Ligação/genética , Éxons/genética , Extremidades/crescimento & desenvolvimento , Extremidades/patologia , Fator 5 de Diferenciação de Crescimento/metabolismo , Cabeça/crescimento & desenvolvimento , Cabeça/patologia , Humanos , Articulações/crescimento & desenvolvimento , Articulações/patologia , Joelho/crescimento & desenvolvimento , Joelho/patologia , Camundongos , Osteoartrite/patologia , Sequências Reguladoras de Ácido Nucleico/genética , Ombro/crescimento & desenvolvimento , Ombro/patologia , Esqueleto/metabolismo , Esqueleto/patologia , Líquido Sinovial/metabolismo , Dedos do Pé/crescimento & desenvolvimento , Dedos do Pé/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vertebrados/crescimento & desenvolvimento
13.
J Strength Cond Res ; 33(8): 2057-2065, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30985523

RESUMO

Stastny, P, Lehnert, M, De Ste Croix, M, Petr, M, Svoboda, Z, Maixnerova, E, Varekova, R, Botek, M, Petrek, M, Lenka, K, and Cieszczyk, P. Effect of COL5A1, GDF5, and PPARA genes on a movement screen and neuromuscular performance in adolescent team sport athletes. J Strength Cond Res 33(8): 2057-2065, 2019-The risk of injury increases with adolescents' chronological age and may be related to limited muscle function neuromuscular, genetic, and biomechanical factors. The purpose of this study was to determine whether COL5A1, PPARA, and GDF5 genes are associated with muscle functions and stretch-shortening cycle performance in adolescent athletes. One hundred forty-six youth players (14.4 ± 0.2 years) from various team sports (basketball n = 54, soccer n = 50, handball n = 32) underwent a manual test for muscle function, maturity estimation, functional bend test (FBT), passive straight leg raise (SLR) test, leg stiffness test, test of reactive strength index (RSI), and gene sampling for COL5A1, PPARA, and GDF5. The χ test did not show any differences in allele or genotype frequency between participants before and after peak height velocity. Multivariate analysis of variance showed that COL5A1 rs12722 CT heterozygotes had worse score in FBT (p < 0.001), worse score in SLR (p = 0.003), and lower maturity offset (p = 0.029, only in females) than TT homozygotes. Male GDF5 rs143383 GG homozygotes showed better score in SLR than AA and AG genotypes (p = 0.003), and AA and AG genotypes in both sex had greater RSI than GG homozygotes (p = 0.016). The PPARA rs4253778 CC homozygotes had greater RSI than GG and GC genotypes (p = 0.004). The CT genotype in COL5A1 rs12722 is possible predictor of functional movement disruption in the posterior hip muscle chain, causing shortening in FBT and SLR, which includes hamstrings function. CT genotype in COL5A1 rs12722 should be involved in programs targeting hamstring and posterior hip muscle chain.


Assuntos
Atletas , Movimento/fisiologia , Músculo Esquelético/metabolismo , Esportes Juvenis/fisiologia , Adolescente , Fenômenos Biomecânicos , Pesos e Medidas Corporais , Colágeno Tipo V/genética , Estudos Transversais , Feminino , Genótipo , Fator 5 de Diferenciação de Crescimento/genética , Humanos , Masculino , Força Muscular , PPAR alfa/genética , Puberdade/fisiologia , Fatores Sexuais
14.
Development ; 142(23): 4038-48, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26483211

RESUMO

Muscle denervation resulting from injury, disease or aging results in impaired motor function. Restoring neuromuscular communication requires axonal regrowth and endplate reinnervation. Muscle activity inhibits the reinnervation of denervated muscle. The mechanism by which muscle activity regulates muscle reinnervation is poorly understood. Dach2 and Hdac9 are activity-regulated transcriptional co-repressors that are highly expressed in innervated muscle and suppressed following muscle denervation. Dach2 and Hdac9 control the expression of endplate-associated genes such as those encoding nicotinic acetylcholine receptors (nAChRs). Here we tested the idea that Dach2 and Hdac9 mediate the effects of muscle activity on muscle reinnervation. Dach2 and Hdac9 were found to act in a collaborative fashion to inhibit reinnervation of denervated mouse skeletal muscle and appear to act, at least in part, by inhibiting denervation-dependent induction of Myog and Gdf5 gene expression. Although Dach2 and Hdac9 inhibit Myog and Gdf5 mRNA expression, Myog does not regulate Gdf5 transcription. Thus, Myog and Gdf5 appear to stimulate muscle reinnervation through parallel pathways. These studies suggest that manipulating the Dach2-Hdac9 signaling system, and Gdf5 in particular, might be a good approach for enhancing motor function in instances where neuromuscular communication has been disrupted.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Histona Desacetilases/metabolismo , Músculo Esquelético/inervação , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Axônios/patologia , Proteínas de Ligação a DNA , Feminino , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Histona Desacetilases/genética , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Músculo Esquelético/metabolismo , Miogenina/genética , Miogenina/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Análise de Sequência de DNA , Análise de Sequência de RNA , Fatores de Transcrição , Transcrição Gênica
15.
Ann Rheum Dis ; 77(3): 450, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29311146

RESUMO

OBJECTIVES: Given the role of growth and differentiation factor 5 (GDF5) in knee development and osteoarthritis risk, we sought to characterise knee defects resulting from Gdf5 loss of function and how its regulatory regions control knee formation and morphology. METHODS: The brachypodism (bp) mouse line, which harbours an inactivating mutation in Gdf5, was used to survey how Gdf5 loss of function impacts knee morphology, while two transgenic Gdf5 reporter bacterial artificial chromosome mouse lines were used to assess the spatiotemporal activity and function of Gdf5 regulatory sequences in the context of clinically relevant knee anatomical features. RESULTS: Knees from homozygous bp mice (bp/bp) exhibit underdeveloped femoral condyles and tibial plateaus, no cruciate ligaments, and poorly developed menisci. Secondary ossification is also delayed in the distal femur and proximal tibia. bp/bp mice have significantly narrower femoral condyles, femoral notches and tibial plateaus, and curvier medial femoral condyles, shallower trochlea, steeper lateral tibial slopes and smaller tibial spines. Regulatory sequences upstream from Gdf5 were weakly active in the prenatal knee, while downstream regulatory sequences were active throughout life. Importantly, downstream but not upstream Gdf5 regulatory sequences fully restored all the key morphological features disrupted in the bp/bp mice. CONCLUSIONS: Knee morphology is profoundly affected by Gdf5 absence, and downstream regulatory sequences mediate its effects by controlling Gdf5 expression in knee tissues. This downstream region contains numerous enhancers harbouring human variants that span the osteoarthritis association interval. We posit that subtle alterations to morphology driven by changes in downstream regulatory sequence underlie this locus' role in osteoarthritis risk.


Assuntos
Fator 5 de Diferenciação de Crescimento/genética , Articulação do Joelho/embriologia , Osteoartrite do Joelho/genética , Animais , Predisposição Genética para Doença , Fator 5 de Diferenciação de Crescimento/metabolismo , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mutação , Sequências Reguladoras de Ácido Nucleico/genética , Análise Espaço-Temporal , Microtomografia por Raio-X
16.
BMC Med Genet ; 19(1): 169, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217184

RESUMO

BACKGROUND: Several studies have assessed the association between GDF5 rs143383 polymorphism and the susceptibility of musculoskeletal degenerative diseases, such as intervertebral disc degeneration (IDD) and osteoarthritis (OA), but the results are inconsistent. The aim of our study was to evaluate the association between them comprehensively. METHODS: A systematical search was conducted on PubMed, Scopus, Web of Science (WOS), Embase, and the Cochrane Library databases updated to April 20, 2018. Eligible studies about polymorphisms in GDF5 gene and risk of IDD or OA were included. Pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were utilized. RESULTS: Fifteen studies with a total of 5915 cases and 12,252 controls were finally included in our study. Meta-analysis of GDF5 rs143383 polymorphism was statistically associated with increased risk of musculoskeletal degenerative diseases under each genetic model (allele model: OR = 1.32, 95% CI 1.19-1.48, P = 0.000; homozygote model: OR = 1.80, 95%CI 1.49-2.16, P = 0.000; heterozygote model: OR = 1.37, 95%CI 1.21-1.55, P = 0.000; dominant model: OR = 1.56, 95%CI 1.39-1.75, P = 0.000; recessive model: OR = 1.39, 95%CI 1.20-1.60, P = 0.000). Stratified analyses based on disease type showed a significant association between the GDF5 rs143383 polymorphism and increased risk of IDD and OA under all genetic models studied. When stratified with ethnicity, pooled outcomes revealed that this polymorphism was significantly related with increased risk of musculoskeletal degenerative diseases in both Asian and Caucasian populations under all genetic models studied. CONCLUSIONS: The present study suggested that GDF5 rs143383 polymorphism was significantly associated with susceptibility to musculoskeletal degenerative diseases.


Assuntos
Predisposição Genética para Doença , Fator 5 de Diferenciação de Crescimento/genética , Degeneração do Disco Intervertebral/genética , Osteoartrite/genética , Polimorfismo de Nucleotídeo Único , Alelos , Povo Asiático , Estudos de Casos e Controles , Expressão Gênica , Frequência do Gene , Estudos de Associação Genética , Humanos , Degeneração do Disco Intervertebral/diagnóstico , Degeneração do Disco Intervertebral/etnologia , Modelos Genéticos , Razão de Chances , Osteoartrite/diagnóstico , Osteoartrite/etnologia , Risco , População Branca
17.
Exp Cell Res ; 359(1): 39-49, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28793234

RESUMO

MicroRNAs (miRNAs) have been shown to be involved in the pathogenesis of intervertebral disc degeneration (IDD). This experiment was designed to study the expression and role of the miRNA, miR-132, in IDD. MiR-132 expression in human nucleus pulposus (NP) tissue was assessed by quantitative real-time PCR. The methylation status of the miR-132 was assessed with methylation-specific PCR and bisulfite sequencing PCR. The regulation of growth differentiation factor5 (GDF5) expression by miR-132 was evaluated by luciferase reporter assay. Moreover, we investigated the function of miR-132 on IDD in vivo using a classic needle-punctured rat tail model. These results showed that miR-132 expression was upregulated during IDD and this upregulation was associated with hypomethylation of its promoter. MiR-132 overexpression led to increased expression of ECM catabolic factors, including MMP13 and ADAMTS4, in NP cells while levels of anabolic proteins, such as type II collagen and aggrecan, were diminished. GDF5 was identified as a direct target of negative regulation by miR-132. MAPK/ERK signaling was also found to be associated with miR-132-induced ECM degradation. In addition, we showed that miR-132 inhibition effectively attenuated NP ECM degradation in IDD in vivo. Our findings demonstrated that miR-132 promotes ECM degradation by human NP cells by direct targeting of GDF5. Hence, miR-132 represents a potential therapeutic target in the treatment of IDD.


Assuntos
Matriz Extracelular/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , MicroRNAs/genética , Regulação para Cima/genética , Adolescente , Adulto , Idoso , Animais , Feminino , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Ratos Sprague-Dawley , Adulto Jovem
18.
Biochem Genet ; 56(6): 618-626, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29797005

RESUMO

Developmental dysplasia of the hip (DDH) is quite common among Saudi Arabian babies. With an objective to assess the presence of SNP rs143383 and the alleles in the GDF5 gene among patients with DDH, parents, and unaffected siblings, we undertook this case-controlled study. We collected and analyzed for a functional single nucleotide polymorphism (SNP) in the 5'-untranslated region of the GDF5 gene (rs143383), 473 blood samples, (100 patients, 200 parents, 73 siblings and 100 healthy controls. We determined the association between the patients' genotype and their fathers', mothers' and siblings' genotype through Chi-square analysis. The majority of those screened possessed the TC genotype, and 61.8% of patients and their fathers had the TT genotype. There was no association between patients' and fathers' genotype, P value < 0.332, 95% CI (0.328-0.346), and between patients' and mothers', P < 0.006, 95% CI (0.004-0.007). When considering DDH patients' and the control group's genotypes, the odds ratios of TT versus other combined (0.641 > 1) and CC versus other combined (0.474 < 1) revealed that the TT genotype has higher risk of developing DDH compared with the CC genotype. The 95 percent confidence interval of TT versus other combined and CC versus other combined is 0.932-2.891 and 0.208-1.078, respectively. For patients' and fathers' genotypes, the odds ratios of TT versus other combined (1.275 > 1) and CC versus other combined (0.815 < 1) indicate that the TT genotype has higher risk of exhibiting DDH compared to the CC genotype. For patients' and siblings' genotypes, the odds ratios of TT versus other combined (1.669) and CC versus other combined (1.048) specify that the TT genotype possesses higher risk of developing DDH compared with the CC genotype. Our study shows that there exists a relationship between GDF5 (SNP rs143383) and DDH in our population. Second, we found for the first time that the genotype TT and the T allele were overly expressed in the patients and the fathers. More studies on the confirmation of this genetic marker for DDH are called for.


Assuntos
Alelos , Frequência do Gene , Genótipo , Fator 5 de Diferenciação de Crescimento/genética , Luxação do Quadril/genética , Polimorfismo de Nucleotídeo Único , Regiões 5' não Traduzidas , Feminino , Luxação do Quadril/epidemiologia , Humanos , Recém-Nascido , Masculino , Arábia Saudita/epidemiologia
19.
Stem Cells ; 34(3): 653-67, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26661057

RESUMO

Degenerative disc disease (DDD) primarily affects the central part of the intervertebral disc namely the nucleus pulposus (NP). DDD explains about 40% of low back pain and is characterized by massive cellular alterations that ultimately result in the disappearance of resident NP cells. Thus, repopulating the NP with regenerative cells is a promising therapeutic approach and remains a great challenge. The objectives of this study were to evaluate the potential of growth factor-driven protocols to commit human adipose stromal cells (hASCs) toward NP-like cell phenotype and the involvement of Smad proteins in this differentiation process. Here, we demonstrate that the transforming growth factor-ß1 and the growth differentiation factor 5 synergistically drive the nucleopulpogenic differentiation process. The commitment of the hASCs was robust and highly specific as attested by the expression of NP-related genes characteristic of young healthy human NP cells. In addition, the engineered NP-like cells secreted an abundant aggrecan and type II collagen rich extracellular matrix comparable with that of native NP. Furthermore, we demonstrate that these in vitro engineered cells survived, maintained their specialized phenotype and secretory activity after in vivo transplantation in nude mice subcutis. Finally, we provide evidence suggesting that the Smad 2/3 pathway mainly governed the acquisition of the NP cell molecular identity while the Smad1/5/8 pathway controlled the NP cell morphology. This study offers valuable insights for the development of biologically-inspired treatments for DDD by generating adapted and exhaustively characterized autologous regenerative cells.


Assuntos
Diferenciação Celular/genética , Fator 5 de Diferenciação de Crescimento/genética , Degeneração do Disco Intervertebral/terapia , Transplante de Células-Tronco Mesenquimais , Fator de Crescimento Transformador beta1/genética , Adipócitos/citologia , Adipócitos/transplante , Animais , Engenharia Celular/métodos , Matriz Extracelular , Fator 5 de Diferenciação de Crescimento/uso terapêutico , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Dor Lombar , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Núcleo Pulposo/citologia , Núcleo Pulposo/transplante , Proteínas Smad/genética , Fator de Crescimento Transformador beta1/uso terapêutico
20.
Am J Med Genet A ; 173(12): 3182-3188, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28884893

RESUMO

Microdeletions of 20q11.2 are rare but have been associated with characteristic clinical findings. A 1.6 Mb minimal critical region has been identified that includes three OMIM genes: GDF5, EPB41L1, and SAMHD. Here we describe a male monozygotic, monochorionic-diamniotic twin pair with discordant phenotypes, one with multiple findings that overlap with those reported in 20q11.2 deletions, and the other unaffected. Microarray analysis revealed mosaicism for a 363 Kb deletion encompassing GDF5 in the peripheral blood of both twins, which was confirmed by FISH. Subsequent FISH on buccal cells identified the deletion only in the affected twin. The blood FISH findings were interpreted as representing chimerism resulting from anastomosis and the blood exchange between the twins in utero. The implications of this finding are discussed, as is the contribution of GDF5 to the associated clinical findings of 20q11.2 deletions.


Assuntos
Quimerismo , Deleção Cromossômica , Cromossomos Humanos Par 20/genética , Doenças em Gêmeos/genética , Fator 5 de Diferenciação de Crescimento/genética , Gêmeos Monozigóticos/genética , Doenças em Gêmeos/sangue , Doenças em Gêmeos/diagnóstico , Genótipo , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Cariotipagem , Masculino , Mosaicismo , Mucosa Bucal , Fenótipo , Gêmeos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa