Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
Mais filtros

País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L111-L123, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084409

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-ß (TGF-ß) is one of the most established drivers of fibrotic processes. TGF-ß promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-ß robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-ß-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-ß signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-ß treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-ß-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-ß-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-ß; and 2) ANO1 mediates TGF-ß-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-ß (TGF-ß) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Humanos , Anoctamina-1/metabolismo , Diferenciação Celular , Cloretos/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
2.
J Hepatol ; 80(5): 753-763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38244845

RESUMO

BACKGROUND & AIMS: Ectopic liver regeneration in the spleen is a promising alternative to organ transplantation for treating liver failure. To accommodate transplanted liver cells, the splenic tissue must undergo structural changes to increase extracellular matrix content, demanding a safe and efficient approach for tissue remodelling. METHODS: We synthesised sulphated hyaluronic acid (sHA) with an affinity for the latent complex of transforming growth factor-ß (TGF-ß) and cross-linked it into a gel network (sHA-X) via click chemistry. We injected this glycan into the spleens of mice to induce splenic tissue remodelling via supraphysiological activation of endogenous TGF-ß. RESULTS: sHA-X efficiently bound to the abundant latent TGF-ß in the spleen. It provided the molecular force to liberate the active TGF-ß dimers from their latent complex, mimicking the 'bind-and-pull' mechanism required for physiological activation of TGF-ß and reshaping the splenic tissue to support liver cell growth. Hepatocytes transplanted into the remodelled spleen developed into liver tissue with sufficient volume to rescue animals with a metabolic liver disorder (Fah-/- transgenic model) or following 90% hepatectomy, with no adverse effects observed and no additional drugs required. CONCLUSION: Our findings highlight the efficacy and translational potential of using sHA-X to remodel a specific organ by mechanically activating one single cytokine, representing a novel strategy for the design of biomaterials-based therapies for organ regeneration. IMPACT AND IMPLICATIONS: Cell transplantation may provide a lifeline to millions of patients with end-stage liver diseases, but their severely damaged livers being unable to accommodate the transplanted cells is a crucial hurdle. Herein, we report an approach to restore liver functions in another organ - the spleen - by activating one single growth factor in situ. This approach, based on a chemically designed polysaccharide that can mechanically liberate the active transforming growth factor-ß to an unusually high level, promotes the function of abundant allogenic liver cells in the spleen, rescuing animals from lethal models of liver diseases and showing a high potential for clinical translation.


Assuntos
Hiperplasia Nodular Focal do Fígado , Hepatopatias , Humanos , Camundongos , Animais , Regeneração Hepática/fisiologia , Baço , Fator de Crescimento Transformador beta/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
3.
J Pharmacol Exp Ther ; 389(2): 208-218, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38453525

RESUMO

Renal fibrosis is distinguished by the abnormal deposition of extracellular matrix and progressive loss of nephron function, with a lack of effective treatment options in clinical practice. In this study, we discovered that the Beclin-1-derived peptide MP1 significantly inhibits the abnormal expression of fibrosis and epithelial-mesenchymal transition-related markers, including α-smooth muscle actin, fibronectin, collagen I, matrix metallopeptidase 2, Snail1, and vimentin both in vitro and in vivo. H&E staining was employed to evaluate renal function, while serum creatinine (Scr) and blood urea nitrogen (BUN) were used as main indices to assess pathologic changes in the obstructed kidney. The results demonstrated that daily treatment with MP1 during the 14-day experiment significantly alleviated renal dysfunction and changes in Scr and BUN in mice with unilateral ureteral obstruction. Mechanistic research revealed that MP1 was found to have a significant inhibitory effect on the expression of crucial components involved in both the Wnt/ß-catenin and transforming growth factor (TGF)-ß/Smad pathways, including ß-catenin, C-Myc, cyclin D1, TGF-ß1, and p-Smad/Smad. However, MP1 exhibited no significant impact on either the LC3II/LC3I ratio or P62 levels. These findings indicate that MP1 improves renal physiologic function and mitigates the fibrosis progression by inhibiting the Wnt/ß-catenin pathway. Our study suggests that MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis. SIGNIFICANCE STATEMENT: This study indicated that the Beclin-1-derived peptide MP1 effectively mitigated renal fibrosis induced by unilateral ureteral obstruction through inhibiting the Wnt/ß-catenin pathway and transforming growth factor-ß/Smad pathway, thereby improving renal physiological function. Importantly, unlike other Beclin-1-derived peptides, MP1 exhibited no significant impact on autophagy in normal cells. MP1 represents a promising and novel candidate drug precursor for the treatment of renal fibrosis focusing on Beclin-1 derivatives and Wnt/ß-catenin pathway.


Assuntos
Nefropatias , Pró-Fármacos , Obstrução Ureteral , Animais , Camundongos , Proteína Beclina-1/metabolismo , Proteína Beclina-1/farmacologia , beta Catenina/metabolismo , beta Catenina/farmacologia , Fibrose , Rim , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Nefropatias/metabolismo , Pró-Fármacos/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo
4.
Am J Pathol ; 193(8): 1029-1045, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236504

RESUMO

IL-33, a member of the IL-1 family, acts as an alarmin in immune response. Epithelial-mesenchymal transition and transforming growth factor-ß (TGF-ß)­induced fibroblast activation are key events in the development of renal interstitial fibrosis. The current study found increased expression of IL-33 and interleukin-1 receptor-like 1 (IL1RL1, alias ST2), the receptor for IL-33, in human fibrotic renal tissues. In addition, IL-33­ or ST2-deficient mice showed significantly reduced levels of fibronectin, α-smooth muscle actin, and vimentin, and increased E-cadherin levels. In HK-2 cells, IL-33 promotes the phosphorylation of the TGF-ß receptor (TGF-ßR), Smad2, and Smad3, and the production of extracellular matrix (ECM), with reduced expression of E-cadherin. Blocking TGF-ßR signaling or suppressing ST2 expression impeded Smad2 and Smad3 phosphorylation, thereby reducing ECM production, suggesting that IL-33­induced ECM synthesis requires cooperation between the two pathways. Mechanistically, IL-33 treatment induced a proximate interaction between ST2 and TGF-ßRs, activating downstream Smad2 and Smad3 for ECM production in renal epithelial cells. Collectively, this study identified a novel and essential role for IL-33 in promoting TGF-ß signaling and ECM production in the development of renal fibrosis. Therefore, targeting IL-33/ST2 signaling may be an effective therapeutic strategy for renal fibrosis.


Assuntos
Interleucina-33 , Nefropatias , Camundongos , Humanos , Animais , Interleucina-33/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/uso terapêutico , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Nefropatias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Smad3/metabolismo , Fibrose , Caderinas/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Fatores de Crescimento Transformadores/uso terapêutico , Fator de Crescimento Transformador beta1/metabolismo , Transição Epitelial-Mesenquimal
5.
Am J Obstet Gynecol ; 230(2): 251.e1-251.e17, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37598997

RESUMO

BACKGROUND: Zika virus congenital infection evades double-stranded RNA detection and may persist in the placenta for the duration of pregnancy without accompanying overt histopathologic inflammation. Understanding how viruses can persist and replicate in the placenta without causing overt cellular or tissue damage is fundamental to deciphering mechanisms of maternal-fetal vertical transmission. OBJECTIVE: Placenta-specific microRNAs are believed to be a tenet of viral resistance at the maternal-fetal interface. We aimed to test the hypothesis that the Zika virus functionally disrupts placental microRNAs, enabling viral persistence and fetal pathogenesis. STUDY DESIGN: To test this hypothesis, we used orthogonal approaches in human and murine experimental models. In primary human trophoblast cultures (n=5 donor placentae), we performed Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation to identify any significant alterations in the functional loading of microRNAs and their targets onto the RNA-induced silencing complex. Trophoblasts from same-donors were split and infected with a contemporary first-passage Zika virus strain HN16 (multiplicity of infection=1 plaque forming unit per cell) or mock infected. To functionally cross-validate microRNA-messenger RNA interactions, we compared our Argonaute high-throughput sequencing ultraviolet-crosslinking and immunoprecipitation results with an independent analysis of published bulk RNA-sequencing data from human placental disk specimens (n=3 subjects; Zika virus positive in first, second, or third trimester, CD45- cells sorted by flow cytometry) and compared it with uninfected controls (n=2 subjects). To investigate the importance of these microRNA and RNA interference networks in Zika virus pathogenesis, we used a gnotobiotic mouse model uniquely susceptible to the Zika virus. We evaluated if small-molecule enhancement of microRNA and RNA interference pathways with enoxacin influenced Zika virus pathogenesis (n=20 dams total yielding 187 fetal specimens). Lastly, placentae (n=14 total) from this mouse model were analyzed with Visium spatial transcriptomics (9743 spatial transcriptomes) to identify potential Zika virus-associated alterations in immune microenvironments. RESULTS: We found that Zika virus infection of primary human trophoblast cells led to an unexpected disruption of placental microRNA regulation networks. When compared with uninfected controls, Zika virus-infected placentae had significantly altered SLC12A8, SDK1, and VLDLR RNA-induced silencing complex loading and transcript levels (-22; adjusted P value <.05; Wald-test with false discovery rate correction q<0.05). In silico microRNA target analyses revealed that 26 of 119 transcripts (22%) in the transforming growth factor-ß signaling pathway were targeted by microRNAs that were found to be dysregulated following Zika virus infection in trophoblasts. In gnotobiotic mice, relative to mock controls, Zika virus-associated fetal pathogenesis included fetal growth restriction (P=.036) and viral persistence in placental tissue (P=.011). Moreover, spatial transcriptomics of murine placentae revealed that Zika virus-specific placental niches were defined by significant up-regulation of complement cascade components and coordinated changes in transforming growth factor-ß gene expression. Finally, treatment of Zika virus-infected mice with enoxacin abolished placental Zika virus persistence, rescued the associated fetal growth restriction, and the Zika virus-associated transcriptional changes in placental immune microenvironments were no longer observed. CONCLUSION: These results collectively suggest that (1) Zika virus infection and persistence is associated with functionally perturbed microRNA and RNA interference pathways specifically related to immune regulation in placental microenvironments and (2) enhancement of placental microRNA and RNA interference pathways in mice rescued Zika virus-associated pathogenesis, specifically persistence of viral transcripts in placental microenvironments and fetal growth restriction.


Assuntos
MicroRNAs , Infecção por Zika virus , Zika virus , Gravidez , Humanos , Feminino , Animais , Camundongos , Zika virus/genética , Infecção por Zika virus/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Retardo do Crescimento Fetal/metabolismo , Enoxacino/metabolismo , Placenta/metabolismo , Perfilação da Expressão Gênica , Complexo de Inativação Induzido por RNA/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Trofoblastos/metabolismo
6.
Circ Res ; 131(10): 807-824, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36200440

RESUMO

BACKGROUND: Phenotypic transition of vascular smooth muscle cells (VSMCs) accounts for the pathogenesis of a variety of vascular diseases during the early stage. Recent studies indicate the metabolic reprogramming may be involved in VSMC phenotypic transition. However, the definite molecules that link energy metabolism to distinct VSMC phenotype remain elusive. METHODS: A carotid artery injury model was used to study postinjury neointima formation as well as VSMC phenotypic transition in vivo. RNA-seq analysis, cell migration assay, collagen gel contraction assay, wire myography assay, immunoblotting, protein interactome analysis, co-immunoprecipitation, and mammalian 2-hybrid assay were performed to clarify the phenotype and elucidate the molecular mechanisms. RESULTS: We collected cell energy-regulating genes by using Gene Ontology annotation and applied RNA-Seq analysis of transforming growth factor-ß or platelet-derived growth factor BB stimulated VSMCs. Six candidate genes were overlapped from energy metabolism-related genes and genes reciprocally upregulated by transforming growth factor-ß and downregulated by platelet-derived growth factor BB. Among them, prohibitin 2 has been reported to regulate mitochondrial oxidative phosphorylation. Indeed, prohibitin 2-deficient VSMCs lost the contractile phenotype as evidenced by reduced contractile proteins. Consistently, Phb2SMCKO mice were more susceptible to postinjury VSMC proliferation and neointima formation compared with Phb2flox/flox mice. Further protein interactome analysis, co-immunoprecipitation, and mammalian 2-hybrid assay revealed that prohibitin 2, through its C-terminus, directly interacts with hnRNPA1, a key modulator of pyruvate kinase M1/2 (PKM) mRNA splicing that promotes PKM2 expression and glycolysis. Prohibitin 2 deficiency facilitated PKM1/2 mRNA splicing and reversion from PKM1 to PKM2, and enhanced glycolysis in VSMCs. Blocking prohibitin 2-hnRNPA1 interaction resulted in increased PKM2 expression, enhanced glycolysis, repressed contractile marker genes expression in VSMCs, as well as aggravated postinjury neointima formation in vivo. CONCLUSIONS: Prohibitin 2 maintains VSMC contractile phenotype by interacting with hnRNPA1 to counteract hnRNPA1-mediated PKM alternative splicing and glucose metabolic reprogramming.


Assuntos
Músculo Liso Vascular , Neointima , Animais , Camundongos , Becaplermina/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Mamíferos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/patologia , Fenótipo , RNA Mensageiro/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Proibitinas/genética
7.
Nucleic Acids Res ; 50(17): 9632-9646, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36043443

RESUMO

Adenine base editors (ABEs) catalyze A-to-G conversions, offering therapeutic options to treat the major class of human pathogenic single nucleotide polymorphisms (SNPs). However, robust and precise editing at diverse genome loci remains challenging. Here, using high-throughput chemical screening, we identified and validated SB505124, a selective ALK5 inhibitor, as an ABE activator. Treating cells with SB505124 enhanced on-target editing at multiple genome loci, including epigenetically refractory regions, and showed little effect on off-target conversion on the genome. Furthermore, SB505124 facilitated the editing of disease-associated genes in vitro and in vivo. Intriguingly, SB505124 served as a specific activator by selectively promoting ABE activity. Mechanistically, SB505124 promotes ABE editing, at least in part, by enhancing ABE expression and modulating DNA repair-associated genes. Our findings reveal the role of the canonical transforming growth factor-ß pathway in gene editing and equip ABEs with precise chemical control.


Assuntos
Adenina , Fator de Crescimento Transformador beta , Adenina/química , Sistemas CRISPR-Cas , Edição de Genes , Genoma , Humanos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo
8.
BMC Musculoskelet Disord ; 25(1): 206, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454404

RESUMO

BACKGROUND: Osteoporosis is a genetic disease caused by the imbalance between osteoblast-led bone formation and osteoclast-induced bone resorption. However, further gene-related pathogenesis remains to be elucidated. METHODS: The aberrant expressed genes in osteoporosis was identified by analyzing the microarray profile GSE100609. Serum samples of patients with osteoporosis and normal group were collected, and the mRNA expression of candidate genes was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The mouse cranial osteoblast MC3T3-E1 cells were treated with dexamethasone (DEX) to mimic osteoporosis in vitro. Alizarin Red staining and alkaline phosphatase (ALP) staining methods were combined to measure matrix mineralization deposition of MC3T3-E1 cells. Meanwhile, the expression of osteogenesis related genes including alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), Osterix, and bone morphogenetic protein 2 (BMP2) were evaluated by qRT-PCR and western blotting methods. Then the effects of candidate genes on regulating impede bone loss caused by ovariectomy (OVX) in mice were studied. RESULTS: Cyclin A1 (CCNA1) was found to be significantly upregulated in serum of osteoporosis patients and the osteoporosis model cells, which was in line with the bioinformatic analysis. The osteogenic differentiation ability of MC3T3-E1 cells was inhibited by DEX treatment, which was manifested by decreased Alizarin Red staining intensity, ALP staining intensity, and expression levels of ALP, OCN, OPN, Osterix, and BMP2. The effects of CCNA1 inhibition on regulating osteogenesis were opposite to that of DEX. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that genes negatively associated with CCNA1 were enriched in the TGF-beta signaling pathway. Inhibitor of TGF-beta signaling pathway partly reversed osteogenesis induced by suppressed CCNA1. Furthermore, suppressed CCNA1 relieved bone mass of OVX mice in vivo. CONCLUSION: Downregulation of CCNA1 could activate TGF-beta signaling pathway and promote bone formation, thus playing a role in treatment of osteoporosis.


Assuntos
Antraquinonas , Osteoporose , Fator de Crescimento Transformador beta , Animais , Feminino , Humanos , Camundongos , Fosfatase Alcalina/metabolismo , Diferenciação Celular , Ciclina A1/metabolismo , Osteoblastos/metabolismo , Osteogênese , Osteoporose/induzido quimicamente , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/efeitos adversos , Fatores de Crescimento Transformadores/metabolismo
9.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542077

RESUMO

Novel technologies such as single-cell RNA and single-nucleus RNA sequencing have shed new light on the complexity of different microglia populations in physiological and pathological states. The transcriptomic profiling of these populations has led to the subclassification of specific disease-associated microglia and microglia clusters in neurodegenerative diseases. A common profile includes the downregulation of homeostasis and the upregulation of inflammatory markers. Furthermore, there is concordance in few clusters between murine and human samples. Apolipoprotein E, which has long been considered a high-risk factor for late-onset Alzheimer's disease, is strongly regulated in both these murine and human clusters. Transforming growth factor-ß plays an essential role during the development and maturation of microglia. In a pathological state, it attenuates their activation and is involved in numerous cell regulatory processes. Transforming growth factor-ß also has an influence on the deposition of amyloid-beta, as it is involved in the regulation of key proteins and molecules. Taken together, this review highlights the complex interaction of apolipoprotein E, the triggering receptor on myeloid cells 2, and transforming growth factor-ß as part of a regulatory axis in microglia at the onset and over the course of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores Imunológicos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Modelos Animais de Doenças
10.
J Biol Chem ; 298(11): 102554, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183833

RESUMO

N6-methyladenosine (m6A) is the most common internal chemical modification of mRNAs involved in many pathological processes including various cancers. In this study, we investigated the m6A-dependent regulation of JUN and JUNB transcription factors (TFs) during transforming growth factor-beta-induced epithelial-mesenchymal transition (EMT) of A549 and LC2/ad lung cancer cell lines, as the function and regulation of these TFs within this process remains to be clarified. We found that JUN and JUNB played an important and nonredundant role in the EMT-inducing gene expression program by regulating different mesenchymal genes and that their expressions were controlled by methyltransferase-like 3 (METTL3) m6A methyltransferase. METTL3-mediated regulation of JUN expression is associated with the translation process of JUN protein but not with the stability of JUN protein or mRNA, which is in contrast with the result of m6A-mediated regulation of JUNB mRNA stability. We identified the specific m6A motifs responsible for the regulation of JUN and JUNB in EMT within 3'UTR of JUN and JUNB. Furthermore, we discovered that different m6A reader proteins interacted with JUN and JUNB mRNA and controlled m6A-dependent expression of JUN protein and JUNB mRNA. These results demonstrate that the different modes of m6A-mediated regulation of JUN and JUNB TFs provide critical input in the gene regulatory network during transforming growth factor-beta-induced EMT of lung cancer cells.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Humanos , Transição Epitelial-Mesenquimal/genética , Fator de Crescimento Transformador beta/metabolismo , Metilação , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , RNA Mensageiro/genética , Fator de Transcrição AP-1/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Circulation ; 146(21): 1610-1626, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36268721

RESUMO

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is characterized by progressive loss of cardiomyocytes with fibrofatty tissue replacement, systolic dysfunction, and life-threatening arrhythmias. A substantial proportion of ACM is caused by mutations in genes of the desmosomal cell-cell adhesion complex, but the underlying mechanisms are not well understood. In the current study, we investigated the relevance of defective desmosomal adhesion for ACM development and progression. METHODS: We mutated the binding site of DSG2 (desmoglein-2), a crucial desmosomal adhesion molecule in cardiomyocytes. This DSG2-W2A mutation abrogates the tryptophan swap, a central interaction mechanism of DSG2 on the basis of structural data. Impaired adhesive function of DSG2-W2A was confirmed by cell-cell dissociation assays and force spectroscopy measurements by atomic force microscopy. The DSG2-W2A knock-in mouse model was analyzed by echocardiography, ECG, and histologic and biomolecular techniques including RNA sequencing and transmission electron and superresolution microscopy. The results were compared with ACM patient samples, and their relevance was confirmed in vivo and in cardiac slice cultures by inhibitor studies applying the small molecule EMD527040 or an inhibitory integrin-αVß6 antibody. RESULTS: The DSG2-W2A mutation impaired binding on molecular level and compromised intercellular adhesive function. Mice bearing this mutation develop a severe cardiac phenotype recalling the characteristics of ACM, including cardiac fibrosis, impaired systolic function, and arrhythmia. A comparison of the transcriptome of mutant mice with ACM patient data suggested deregulated integrin-αVß6 and subsequent transforming growth factor-ß signaling as driver of cardiac fibrosis. Blocking integrin-αVß6 led to reduced expression of profibrotic markers and reduced fibrosis formation in mutant animals in vivo. CONCLUSIONS: We show that disruption of desmosomal adhesion is sufficient to induce a phenotype that fulfils the clinical criteria to establish the diagnosis of ACM, confirming the dysfunctional adhesion hypothesis. Deregulation of integrin-αVß6 and transforming growth factor-ß signaling was identified as a central step toward fibrosis. A pilot in vivo drug test revealed this pathway as a promising target to ameliorate fibrosis. This highlights the value of this model to discern mechanisms of cardiac fibrosis and to identify and test novel treatment options for ACM.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Camundongos , Animais , Cardiomiopatias/genética , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Integrinas/metabolismo , Miócitos Cardíacos/metabolismo , Fibrose , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia
12.
Cancer Sci ; 114(11): 4376-4387, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37706357

RESUMO

Tumor-promoting carcinoma-associated fibroblasts (CAFs), abundant in the mammary tumor microenvironment (TME), maintain transforming growth factor-ß (TGF-ß)-Smad2/3 signaling activation and the myofibroblastic state, the hallmark of activated fibroblasts. How myofibroblastic CAFs (myCAFs) arise in the TME and which epigenetic and metabolic alterations underlie activated fibroblastic phenotypes remain, however, poorly understood. We herein show global histone deacetylation in myCAFs present in tumors to be significantly associated with poorer outcomes in breast cancer patients. As the TME is subject to glutamine (Gln) deficiency, human mammary fibroblasts (HMFs) were cultured in Gln-starved medium. Global histone deacetylation and TGF-ß-Smad2/3 signaling activation are induced in these cells, largely mediated by class I histone deacetylase (HDAC) activity. Additionally, mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling is attenuated in Gln-starved HMFs, and mTORC1 inhibition in Gln-supplemented HMFs with rapamycin treatment boosts TGF-ß-Smad2/3 signaling activation. These data indicate that mTORC1 suppression mediates TGF-ß-Smad2/3 signaling activation in Gln-starved HMFs. Global histone deacetylation, class I HDAC activation, and mTORC1 suppression are also observed in cultured human breast CAFs. Class I HDAC inhibition or mTORC1 activation by high-dose Gln supplementation significantly attenuates TGF-ß-Smad2/3 signaling and the myofibroblastic state in these cells. These data indicate class I HDAC activation and mTORC1 suppression to be required for maintenance of myCAF traits. Taken together, these findings indicate that Gln starvation triggers TGF-ß signaling activation in HMFs through class I HDAC activity and mTORC1 suppression, presumably inducing myCAF conversion.


Assuntos
Neoplasias da Mama , Carcinoma , Humanos , Feminino , Glutamina/metabolismo , Histonas/metabolismo , Fibroblastos/metabolismo , Neoplasias da Mama/genética , Fator de Crescimento Transformador beta/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Carcinoma/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral
13.
Gastroenterology ; 163(5): 1391-1406.e24, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35963362

RESUMO

BACKGROUND & AIMS: In the mouse intestinal epithelium, Lgr5+ stem cells are vulnerable to injury, owing to their predominantly cycling nature, and their progenies de-differentiate to replenish the stem cell pool. However, how human colonic stem cells behave in homeostasis and during regeneration remains unknown. METHODS: Transcriptional heterogeneity among colonic epithelial cells was analyzed by means of single-cell RNA sequencing analysis of human and mouse colonic epithelial cells. To trace the fate of human colonic stem or differentiated cells, we generated LGR5-tdTomato, LGR5-iCasase9-tdTomato, LGR5-split-Cre, and KRT20-ERCreER knock-in human colon organoids via genome engineering. p27+ dormant cells were further visualized with the p27-mVenus reporter. To analyze the dynamics of human colonic stem cells in vivo, we orthotopically xenotransplanted fluorescence-labeled human colon organoids into immune-deficient mice. The cell cycle dynamics in xenograft cells were evaluated using 5-ethynyl-2'-deoxyuridine pulse-chase analysis. The clonogenic capacity of slow-cycling human stem cells or differentiated cells was analyzed in the context of homeostasis, LGR5 ablation, and 5-fluorouracil-induced mucosal injury. RESULTS: Single-cell RNA sequencing analysis illuminated the presence of nondividing LGR5+ stem cells in the human colon. Visualization and lineage tracing of slow-cycling LGR5+p27+ cells and orthotopic xenotransplantation validated their homeostatic lineage-forming capability in vivo, which was augmented by 5-FU-induced mucosal damage. Transforming growth factor-ß signaling regulated the quiescent state of LGR5+ cells. Despite the plasticity of differentiated KRT20+ cells, they did not display clonal growth after 5-FU-induced injury, suggesting that occupation of the niche environment by LGR5+p27+ cells prevented neighboring differentiated cells from de-differentiating. CONCLUSIONS: Our results highlight the quiescent nature of human LGR5+ colonic stem cells and their contribution to post-injury regeneration.


Assuntos
Receptores Acoplados a Proteínas G , Células-Tronco , Humanos , Camundongos , Animais , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Colo/metabolismo , Mucosa Intestinal/metabolismo , Fluoruracila , Fatores de Crescimento Transformadores/metabolismo
14.
Biochem Biophys Res Commun ; 660: 28-34, 2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37060828

RESUMO

G protein-coupled receptors (GPCRs) are a major class of membrane receptors that modulate a wide range of physiological functions. These receptors transmit extracellular signals, including secreted bioactive peptides, to intracellular signaling pathways. The nematode Caenorhabditis elegans has FMRFamide-like peptides, which are one of the most diverse neuropeptide families, some of which modulate larval development through GPCRs. In this study, we identified the GPCR neuropeptide receptor (NPR)-15, which modulates C. elegans larval development. Our molecular genetic analyses indicated the following: 1) NPR-15 mainly functions in ASI neurons, which predominantly regulate larval development, 2) NPR-15 interacts with GPA-4, a C. elegans Gα subunit, and 3) NPR-15, along with GPA-4, modulates larval development by regulating the production and secretion of the transforming growth factor-ß (TGF-ß)-like protein DAF-7. The present study is the first report to demonstrate the importance of a GPCR to the direct regulation of a TGF-ß-like protein.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo
15.
Biochem Biophys Res Commun ; 641: 10-17, 2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36516480

RESUMO

Previous studies have highlighted the importance of outdoor time in reducing the risk of myopia progression. Although ultraviolet A (UVA) radiation dominates in terms of energy with respect to the UV radiation reaching the Earth's surface, its effects on the exposed anterior sclera have not been well studied. This study was designed to investigate the UVA-induced biological effects at peak sunlight levels in human scleral fibroblasts (HSFs). Using next-generation sequencing (NGS), we analyzed the differentially expressed genes (DEGs) in UVA-treated and normal HSFs. Further, we then identified the functions and key regulators of the DEGs using bioinformatics analysis, and verified the effects of UVA on gene and protein expression in HSFs using real-time PCR, western blotting, and immunofluorescence imaging. The highest level of solar UVA (365 nm) was 3.4 ± 0.18 (mW/cm2). The results from the functional analysis of the DEGs were related to structural changes in the extracellular matrix (ECM) and protein metabolism. Transforming growth factor-ß1 (TGF-ß1) and Smad3 were predicted to be potential upstream regulators, associated with ECM organization. Exposure to a single wavelength of UVA (365 nm, 3 mW/cm2) for 1 h for 5 consecutive days induced the downregulation of the mRNA of ECM genes including COL1A1, COL3A1, COL5A1, VCAN and collagen I protein in HSF. UVA downregulated Smad3 protein and reduced TGF-ß-induced collagen I protein production following UVA exposure in HSF. In conclusion, high UVA exposure reduces TGF-ß signaling and collagen I production by modulating Smad levels in HSF. The effects of overexposure to high-intensity UVA on myopia control require further investigations.


Assuntos
Miopia , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Esclera/metabolismo , Colágeno/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Raios Ultravioleta/efeitos adversos , Miopia/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
16.
J Pharmacol Exp Ther ; 386(3): 310-322, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419684

RESUMO

Renal fibrosis is characterized by the excessive deposition of extracellular matrix that destroys and replaces the functional renal parenchyma, ultimately leading to organ failure. It is a common pathway by which chronic kidney disease can develop into end-stage renal disease, which has high global morbidity and mortality, and there are currently no good therapeutic agents available. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been indicated to be closely related to the occurrence of renal fibrosis, and its specific inhibitory peptide, autocamtide-2-related inhibitory peptide (AIP), was shown to directly bind the active site of CaMKII. In this study, we examined the effect of AIP on the progression of renal fibrosis and its possible mechanism. The results showed that AIP could inhibit the expression of the fibrosis markers fibronectin, collagen I, matrix metalloproteinase 2, and α-smooth muscle actin in vivo and in vitro. Further analysis revealed that AIP could inhibit the expression of various epithelial-to-mesenchymal transformation-related markers, such as vimentin and Snail 1, in vivo and in vitro. Mechanistically, AIP could significantly inhibit the activation of CaMKII, Smad 2, Raf, and extracellular regulated protein kinases (ERK) in vitro and in vivo and reduce the expression of transforming growth factor-ß (TGF-ß) in vivo. These results suggested that AIP could alleviate renal fibrosis by inhibiting CaMKII and blocking activation of the TGF-ß/Smad2 and RAF/ERK pathways. Our study provides a possible drug candidate and demonstrates that CaMKII is a potential pharmacological target for the treatment of renal fibrosis. SIGNIFICANCE STATEMENT: We have demonstrated that AIP significantly attenuated transforming growth factor-ß-1-induced fibrogenesis and ameliorated unilateral ureteral obstruction-induced renal fibrosis through the CaMKII/TGF-ß/Smad and CaMKII/RAF/ERK signaling pathways in vitro and in vivo. Our study provides a possible drug candidate and demonstrates that CaMKII can be a potential pharmacological target for the treatment of renal fibrosis.


Assuntos
Insuficiência Renal Crônica , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Sistema de Sinalização das MAP Quinases , Rim , Fator de Crescimento Transformador beta1/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Transição Epitelial-Mesenquimal
17.
Am J Pathol ; 192(3): 410-425, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954211

RESUMO

Histopathologic evidence of deployment-related constrictive bronchiolitis (DRCB) has been identified in soldiers deployed to Southwest Asia. While inhalational injury to the airway epithelium is suspected, relatively little is known about the pathogenesis underlying this disabling disorder. Club cells are local progenitors critical for repairing the airway epithelium after exposure to various airborne toxins, and a prior study using an inducible transgenic murine model reported that 10 days of sustained targeted club cell injury causes constrictive bronchiolitis. To further understand the mechanisms leading to small airway fibrosis, a murine model was employed to show that sustained club cell injury elicited acute weight loss, caused increased local production of proinflammatory cytokines, and promoted accumulation of numerous myeloid cell subsets in the lung. Transition to a chronic phase was characterized by up-regulated expression of oxidative stress-associated genes, increased activation of transforming growth factor-ß, accumulation of alternatively activated macrophages, and enhanced peribronchiolar collagen deposition. Comparative histopathologic analysis demonstrated that sustained club cell injury was sufficient to induce epithelial metaplasia, airway wall thickening, peribronchiolar infiltrates, and clusters of intraluminal airway macrophages that recapitulated key abnormalities observed in DRCB. Depletion of alveolar macrophages in mice decreased activation of transforming growth factor-ß and ameliorated constrictive bronchiolitis. Collectively, these findings implicate sustained club cell injury in the development of DRCB and delineate pathways that may yield biomarkers and treatment targets for this disorder.


Assuntos
Bronquiolite Obliterante , Animais , Bronquíolos/patologia , Bronquiolite Obliterante/patologia , Modelos Animais de Doenças , Pulmão/patologia , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo
18.
Am J Pathol ; 192(12): 1683-1698, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063901

RESUMO

Normal myofibroblast differentiation is critical for proper skin wound healing. Neoexpression of α-smooth muscle actin (α-SMA), a marker for myofibroblast differentiation, is driven by transforming growth factor (TGF)-ß receptor-mediated signaling. Hyaluronan and its three synthesizing enzymes, hyaluronan synthases (Has 1, 2, and 3), also participate in this process. Closure of skin wounds is significantly accelerated in Has1/3 double-knockout (Has1/3-null) mice. Herein, TGF-ß activity and dermal collagen maturation were increased in Has1/3-null healing skin. Cultures of primary skin fibroblasts isolated from Has1/3-null mice had higher levels of TGF-ß activity, α-SMA expression, and phosphorylation of p38 mitogen-activated protein kinase at Thr180/Tyr182, compared with wild-type fibroblasts. p38α mitogen-activated protein kinase was a necessary element in a noncanonical TGF-ß receptor signaling pathway driving α-SMA expression in Has1/3-null fibroblasts. Myocardin-related transcription factor (MRTF), a cofactor that binds to the transcription factor serum response factor (SRF), was also critical. Nuclear localization of MRTF was increased, and MRTF binding to SRF was enhanced in Has1/3-null fibroblasts. Inhibition of MRTF or SRF expression by RNA interference suppresses α-SMA expression at baseline and diminished its overexpression in Has1/3-null fibroblasts. Interestingly, total matrix metalloproteinase activity was increased in healing skin and fibroblasts from Has1/3-null mice, possibly explaining the increased TGF-ß activation.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Proteínas Quinases p38 Ativadas por Mitógeno , Camundongos , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Miofibroblastos/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Células Cultivadas , Actinas/metabolismo , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Cicatrização , Fatores de Crescimento Transformadores/metabolismo
19.
J Nutr ; 153(8): 2512-2522, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356501

RESUMO

BACKGROUND: Limosilactobacillusmucosae (LM) exerts anti-inflammatory and health-promoting effects. However, its role in the modulation of gut serotonin or 5-hydroxytryptamine (5-HT) metabolism and 5-HT receptors (HTRs) in inflammation requires further investigation. OBJECTIVES: We compared LM with Lactobacillus amylovorus (LA) for the regulation of 5-HT, HTRs, inflammatory mediators, and their correlations in the colon of mice with experimental colitis. METHODS: Male C57BL/6 mice were randomly assigned to 6 groups: control (Con), LM, LA, dextran sodium sulfate (DSS), and DSS with pre-administration of LM (+LM) or LA (+LA). After 7 d of DSS treatment, mice were killed to analyze the expression of inflammatory mediators, HTRs, and concentrations of 5-HT and microbial metabolites in the colon. RESULTS: LM was more effective than LA in alleviating DSS-induced colonic inflammation. Compared with mice in the DSS group, mice receiving DSS + LM or DSS + LA treatment had lower (P < 0.05) colonic mRNA expression of proinflammatory cytokines. DSS + LM treatment had lower mRNA expression of Il1b, Tnfa, and Ccl3, an abundance of p-STAT3, and greater expression of Tgfb2 and Htr4 in the colon (P < 0.05). The expression of inflammatory mediators (including Tgfb-1) was positively correlated (P < 0.05) with 5-HT and Htr2a and negatively correlated (P < 0.05) with Htr4. However, the expression of Tgfb-2 showed reversed correlations with the 5-HT and HTRs described above. Patterns for these correlations were different for LM and LA. Mice receiving the DSS + LM treatment had greater (P < 0.05) concentrations of acetate and valerate and lower (P < 0.05) concentrations of indole-3-acetic acid in the cecal and colonic contents. CONCLUSIONS: LM showed greater efficacy than LA in alleviating DSS-induced colonic inflammation. The coordinated regulation of transforming growth factor-ß subtypes and serotonin receptors in the colon may be one of the most important mechanisms underlying the probiotic effects of lactobacilli in gut inflammation.


Assuntos
Colite , Serotonina , Masculino , Animais , Camundongos , Serotonina/metabolismo , Lactobacillus acidophilus/metabolismo , Regulação para Cima , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/prevenção & controle , Colite/metabolismo , Colo/metabolismo , Inflamação/metabolismo , RNA Mensageiro/metabolismo , Fatores de Crescimento Transformadores/efeitos adversos , Fatores de Crescimento Transformadores/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças
20.
Neurochem Res ; 48(9): 2808-2825, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37140776

RESUMO

Intermittent hypoxia (IH) is the primary pathological manifestation of obstructive sleep apnea (OSA) and the main cause of OSA-induced cognitive impairment. Hippocampal neurons are considered to be critical cells affected by IH. Transforming growth factor-ß3 (TGF-ß3) is a cytokine with a neuroprotective effect, which plays a crucial role in resisting hypoxic brain injury, while its role in IH-induced neuronal injury is still unclear. Here, we aimed to clarify the mechanism of TGF-ß3 protecting IH-exposed neurons by regulating oxidative stress and secondary apoptosis. Morris water maze results revealed that IH exposure was unable to affect the vision and motor ability of rats, but significantly affected their spatial cognition. Second-generation sequencing (RNA-seq) and subsequent experiments supported that IH decreased TGF-ß3 expression and stimulated reactive oxygen species (ROS)-induced oxidative stress and apoptosis in rat hippocampus. In vitro, IH exposure significantly activated oxidative stress within HT-22 cells. Exogenous administration of Recombinant Human Transforming Growth Factor-ß3 (rhTGF-ß3) prevented ROS surge and secondary apoptosis in HT-22 cells caused by IH, while TGF-ß type receptor I (TGF-ßRI) inhibitor SB431542 blocked the neuroprotective effect of rhTGF-ß3. Nuclear factor erythroid 2-related factor 2 (Nrf-2) is a transcription factor preserving intracellular redox homeostasis. rhTGF-ß3 improved the nuclear translocation of Nrf-2 and activated downstream pathway. However, Nrf-2 inhibitor ML385 suppressed the activation of the Nrf-2 mechanism by rhTGF-3 and restored the effects of oxidative stress damage. These results indicate that TGF-ß3 binding to TGF-ßRI activates the intracellular Nrf-2/KEAP1/HO-1 pathway, reduces ROS creation, and attenuates oxidative stress and apoptosis in IH-exposed HT-22 cells.


Assuntos
Fármacos Neuroprotetores , Apneia Obstrutiva do Sono , Ratos , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Fator de Crescimento Transformador beta3/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Hipóxia/metabolismo , Neurônios/metabolismo , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo , Apoptose , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa