Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.238
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011880, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271294

RESUMO

BACKGROUND: West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS: We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS: Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION: Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Filogeografia , Europa (Continente)/epidemiologia , Surtos de Doenças
2.
Proc Natl Acad Sci U S A ; 119(35): e2122851119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994656

RESUMO

Disease transmission prediction across wildlife is crucial for risk assessment of emerging infectious diseases. Susceptibility of host species to pathogens is influenced by the geographic, environmental, and phylogenetic context of the specific system under study. We used machine learning to analyze how such variables influence pathogen incidence for multihost pathogen assemblages, including one of direct transmission (coronaviruses and bats) and two vector-borne systems (West Nile Virus [WNV] and birds, and malaria and birds). Here we show that this methodology is able to provide reliable global spatial susceptibility predictions for the studied host-pathogen systems, even when using a small amount of incidence information (i.e., [Formula: see text] of information in a database). We found that avian malaria was mostly affected by environmental factors and by an interaction between phylogeny and geography, and WNV susceptibility was mostly influenced by phylogeny and by the interaction between geographic and environmental distances, whereas coronavirus susceptibility was mostly affected by geography. This approach will help to direct surveillance and field efforts providing cost-effective decisions on where to invest limited resources.


Assuntos
Animais Selvagens , Doenças Transmissíveis Emergentes , Suscetibilidade a Doenças , Animais , Animais Selvagens/parasitologia , Animais Selvagens/virologia , Doenças das Aves/epidemiologia , Doenças das Aves/transmissão , Quirópteros/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/veterinária , Coronavirus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Bases de Dados Factuais , Meio Ambiente , Monitoramento Epidemiológico , Geografia , Interações Hospedeiro-Patógeno , Incidência , Aprendizado de Máquina , Malária/epidemiologia , Malária/transmissão , Malária/veterinária , Filogenia , Medição de Risco , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental
3.
Emerg Infect Dis ; 30(7): 1496-1498, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38916587

RESUMO

We analyzed West Nile Virus (WNV) exposure from 1,222 blood donors during 2017-2018 from an area of south-central Spain. Results revealed WNV seroprevalence of 0.08% (95% CI 0.004%-0.4%) in this population. Our findings underscore the need for continued surveillance and research to manage WNV infection in this region.


Assuntos
Anticorpos Antivirais , Doadores de Sangue , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Espanha/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/imunologia , Estudos Soroepidemiológicos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Anticorpos Antivirais/sangue , Adulto Jovem , Adolescente , Idoso
4.
Vet Res ; 55(1): 32, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493182

RESUMO

Outbreaks of West Nile virus (WNV) occur periodically, affecting both human and equine populations. There are no vaccines for humans, and those commercialised for horses do not have sufficient coverage. Specific antiviral treatments do not exist. Many drug discovery studies have been conducted, but since rodent or primate cell lines are normally used, results cannot always be transposed to horses. There is thus a need to develop relevant equine cellular models. Here, we used induced pluripotent stem cells to develop a new in vitro model of WNV-infected equine brain cells suitable for microplate assay, and assessed the cytotoxicity and antiviral activity of forty-one chemical compounds. We found that one nucleoside analog, 2'C-methylcytidine, blocked WNV infection in equine brain cells, whereas other compounds were either toxic or ineffective, despite some displaying anti-viral activity in human cell lines. We also revealed an unexpected proviral effect of statins in WNV-infected equine brain cells. Our results thus identify a potential lead for future drug development and underscore the importance of using a tissue- and species-relevant cellular model for assessing the activity of antiviral compounds.


Assuntos
Doenças dos Cavalos , Células-Tronco Pluripotentes Induzidas , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Cavalos , Humanos , Febre do Nilo Ocidental/veterinária , Febre do Nilo Ocidental/epidemiologia , Encéfalo , Antivirais/farmacologia , Antivirais/uso terapêutico , Doenças dos Cavalos/tratamento farmacológico
5.
Virus Genes ; 60(4): 370-376, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38847934

RESUMO

Since its initial detection in Africa, the West Nile virus has disseminated widely across all continents, becoming endemic in numerous countries, including the Russian Federation. A substantial expansion of the West Nile virus range was observed in the European part of the Russian territory in 1999. In light of this epidemiological trend, research endeavours focusing on monitoring West Nile virus circulation activity in endemic regions of the country have gained paramount significance. A substantial dataset has been accrued from 2007 onwards regarding genomic variability and dissemination dynamics across the country throughout the entire monitoring period for the West Nile fever pathogen. The objective of this study was to characterise West Nile virus isolates that have been circulating in the Russian Federation and identify their molecular and genetic characteristics. A phylogenetic analysis of 55 complete genome sequences revealed that the West Nile virus population within the Russian Federation is genetically heterogeneous and is represented by four major clades. One of these clades is currently exhibiting extensive spread into new regions of the country.


Assuntos
Variação Genética , Filogenia , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/classificação , Vírus do Nilo Ocidental/isolamento & purificação , Federação Russa/epidemiologia , Febre do Nilo Ocidental/virologia , Febre do Nilo Ocidental/epidemiologia , Humanos , Genoma Viral/genética , Animais
6.
Neurol Sci ; 45(2): 719-726, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37606743

RESUMO

INTRODUCTION: We aimed to describe neurological manifestations and functional outcome at discharge in patients with West Nile neuroinvasive disease. METHODS: This retrospective study enrolled inpatients treated in the University Clinic for Infectious and Tropical Diseases in Belgrade, Serbia, from 1 June until 31 October 2022. Functional outcome at discharge was assessed using modified Rankin scale. RESULTS: Among the 135 analyzed patients, encephalitis, meningitis and acute flaccid paralysis (AFP) were present in 114 (84.6%), 20 (14.8%), and 21 (15.6%), respectively. Quadriparesis/quadriplegia and monoparesis were the most frequent forms of AFP, present in 9 (6.7%) and 6 (4.4%) patients, respectively. Fourty-five (33.3%) patients had cerebellitis, 80 (59.3%) had rhombencephalitis, and 5 (3.7%) exhibited Parkinsonism. Ataxia and wide-based gait were present in 79 (58.5%) patients each. Fifty-one (37.8%) patients had tremor (41 (30.3%) had postural and/or kinetic tremor, 10 (7.4%) had resting tremor). Glasgow coma score (GCS) ≤ 8 and respiratory failure requiring mechanical ventilation developed in 39 (28.9%), and 33 (24.4%) patients, respectively. Quadriparesis was a risk factor for prolonged ventilator support (29.5 ± 16.8 vs. 12.4 ± 8.7 days, p = 0.001). At discharge, one patient with monoparesis recovered full muscle strength, whereas 8 patients with AFP were functionally dependent. Twenty-nine (21.5%) patients died. All of the succumbed had encephalitis, and 7 had quadriparesis. Ataxia, tremor and cognitive deficit persisted in 18 (16.9%), 15 (14.2%), and 22 (16.3%) patients at discharge, respectively. Age, malignancy, coronary disease, quadriparesis, mechanical ventilation, GCS ≤ 8 and healthcare-associated infections were risk factors for death (p = 0.001; p = 0.019; p = 0.004; p = 0.001; p < 0.001; p < 0.001, and p < 0.001, respectively).


Assuntos
Viroses do Sistema Nervoso Central , Mielite , Doenças Neuromusculares , Febre do Nilo Ocidental , Humanos , Febre do Nilo Ocidental/complicações , Febre do Nilo Ocidental/epidemiologia , Estudos Retrospectivos , Tremor/complicações , Sérvia/epidemiologia , Estações do Ano , alfa-Fetoproteínas , Quadriplegia/epidemiologia , Quadriplegia/etiologia , Paresia , Ataxia/complicações
7.
Med Sci Monit ; 29: e943546, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38161310

RESUMO

The major health threats from climate change include increasing temperatures, air pollution, extreme weather events, changes in the spread of infectious diseases, antimicrobial resistance, emerging pathogens, and an increase in vector-borne disease. Between October and December 2023, in 200 medical journal, epidemiologists, clinicians, healthcare policymakers, and journal editors published an emergency call to action to health professionals, the United Nations, and political leaders on climate change and its effects on the ecosystem and human health. Also, in December 2023, the Intergovernmental Panel on Climate Change (IPCC) published its sixth Assessment Report (AR6) that summarizes current knowledge, impacts, and health risks from climate change, as well as suggestions for mitigation and adaptation. For over a decade, the IPCC has reported that the prevalence of vector-borne diseases has increased and highlighted the importance of monitoring dengue, malaria, Lyme disease, West Nile virus infection, and other vector-borne diseases. This editorial aims to provide an update on the association between climate change and the spread of vector-borne diseases and highlights the urgent need for public health and disease prevention and treatment strategies to control the rise in vector-borne diseases.


Assuntos
Dengue , Doença de Lyme , Malária , Doenças Transmitidas por Vetores , Febre do Nilo Ocidental , Humanos , Mudança Climática , Febre do Nilo Ocidental/epidemiologia , Ecossistema , Malária/epidemiologia , Doença de Lyme/epidemiologia , Dengue/epidemiologia
8.
BMC Ophthalmol ; 24(1): 160, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600458

RESUMO

BACKGROUND: To describe a case of bilateral multifocal chorioretinitis as the only presentation of acute West Nile virus (WNV) infection in the absence of neurological involvement. CASE PRESENTATION: A 78-year-old Italian woman was admitted to our emergency department because she noticed blurry vision in both eyes. She did not report fever, fatigue, or neurological symptoms in the last few days. Multimodal imaging showed the presence of bilateral hyperfluorescent lesions with a linear distribution, that corresponded to hypocyanescent spots on indocyanine green angiography. Antibody serology showed the presence of IgM antibodies, IgG antibodies, and ribonucleic acid (RNA) for WNV. Magnetic resonance imaging (MRI) of the brain ruled out central nervous system involvement. Three months later, the patient reported spontaneous resolution of her symptoms and remission of the chorioretinal infiltrates. CONCLUSIONS: In endemic areas, it is important to think of acute WNV infection as an explanatory etiology in cases of multifocal chorioretinitis, even without neurological involvement.


Assuntos
Coriorretinite , Infecções Oculares Virais , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Feminino , Idoso , Febre do Nilo Ocidental/complicações , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/epidemiologia , Infecções Oculares Virais/diagnóstico , Coriorretinite/etiologia , Corpo Vítreo/patologia , Anticorpos Antivirais
9.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930835

RESUMO

Statistical phylogeography provides useful tools to characterize and quantify the spread of organisms during the course of evolution. Analyzing georeferenced genetic data often relies on the assumption that samples are preferentially collected in densely populated areas of the habitat. Deviation from this assumption negatively impacts the inference of the spatial and demographic dynamics. This issue is pervasive in phylogeography. It affects analyses that approximate the habitat as a set of discrete demes as well as those that treat it as a continuum. The present study introduces a Bayesian modeling approach that explicitly accommodates for spatial sampling strategies. An original inference technique, based on recent advances in statistical computing, is then described that is most suited to modeling data where sequences are preferentially collected at certain locations, independently of the outcome of the evolutionary process. The analysis of georeferenced genetic sequences from the West Nile virus in North America along with simulated data shows how assumptions about spatial sampling may impact our understanding of the forces shaping biodiversity across time and space.


Assuntos
Modelos Estatísticos , Filogeografia/métodos , Dinâmica Populacional , Algoritmos , Teorema de Bayes , Ecossistema , Evolução Molecular , Humanos , América do Norte , Análise Espacial , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética
10.
Clin Infect Dis ; 76(6): 1142-1148, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36103602

RESUMO

With increasing use of rituximab and other B-cell depleting monoclonal antibodies for multiple indications, infectious complications are being recognized. We summarize clinical findings of patients on rituximab with arboviral diseases identified through literature review or consultation with the Centers for Disease Control and Prevention. We identified 21 patients on recent rituximab therapy who were diagnosed with an arboviral disease caused by West Nile, tick-borne encephalitis, eastern equine encephalitis, Cache Valley, Jamestown Canyon, and Powassan viruses. All reported patients had neuroinvasive disease. The diagnosis of arboviral infection required molecular testing in 20 (95%) patients. Median illness duration was 36 days (range, 12 days to 1 year), and 15/19 (79%) patients died from their illness. Patients on rituximab with arboviral disease can have a severe or prolonged course with an absence of serologic response. Patients should be counseled about mosquito and tick bite prevention when receiving rituximab and other B-cell depleting therapies.


Assuntos
Infecções por Arbovirus , Encefalite Transmitida por Carrapatos , Febre do Nilo Ocidental , Animais , Rituximab/uso terapêutico , Febre do Nilo Ocidental/tratamento farmacológico , Febre do Nilo Ocidental/complicações , Febre do Nilo Ocidental/epidemiologia , Surtos de Doenças , Encefalite Transmitida por Carrapatos/epidemiologia
11.
Mod Pathol ; 36(6): 100188, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37059228

RESUMO

Flaviviruses are a genus of single-stranded RNA viruses that impose an important and growing burden to human health. There are over 3 billion individuals living in areas where flaviviruses are endemic. Flaviviruses and their arthropod vectors (which include mosquitoes and ticks) take advantage of global travel to expand their distribution and cause severe disease in humans, and they can be grouped according to their vector and pathogenicity. The mosquito-borne flaviviruses cause a spectrum of diseases from encephalitis to hepatitis and vascular shock syndrome, congenital abnormalities, and fetal death. Neurotropic infections such as Zika virus and West Nile virus cross the blood-brain barrier and infect neurons and other cells, leading to meningoencephalitis. In the hemorrhagic fever clade, there are yellow fever virus, the prototypical hemorrhagic fever virus that infects hepatocytes, and dengue virus, which infects cells of the reticuloendothelial system and can lead to a dramatic plasma cell leakage and shock syndrome. Zika virus also causes congenital infections and fetal death and is the first and only example of a teratogenic arbovirus in humans. Diagnostic testing for flaviviruses broadly includes the detection of viral RNA in serum (particularly within the first 10 days of symptoms), viral isolation by cell culture (rarely performed due to complexity and biosafety concerns), and histopathologic evaluation with immunohistochemistry and molecular testing on formalin-fixed paraffin-embedded tissue blocks. This review focuses on 4 mosquito-borne flaviviruses-West Nile, yellow fever, dengue, and Zika virus-and discusses the mechanisms of transmission, the role of travel in geographic distribution and epidemic emergence, and the clinical and histopathologic features of each. Finally, prevention strategies such as vector control and vaccination are discussed.


Assuntos
Culicidae , Dengue , Flavivirus , Febre do Nilo Ocidental , Febre Amarela , Infecção por Zika virus , Zika virus , Animais , Humanos , Flavivirus/genética , Patologistas , Febre do Nilo Ocidental/epidemiologia , Mosquitos Vetores , Febre Amarela/epidemiologia , Dengue/epidemiologia , Infecção por Zika virus/epidemiologia
12.
PLoS Pathog ; 17(6): e1009637, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161394

RESUMO

The Dilution Effect Hypothesis (DEH) argues that greater biodiversity lowers the risk of disease and reduces the rates of pathogen transmission since more diverse communities harbour fewer competent hosts for any given pathogen, thereby reducing host exposure to the pathogen. DEH is expected to operate most intensely in vector-borne pathogens and when species-rich communities are not associated with increased host density. Overall, dilution will occur if greater species diversity leads to a lower contact rate between infected vectors and susceptible hosts, and between infected hosts and susceptible vectors. Field-based tests simultaneously analysing the prevalence of several multi-host pathogens in relation to host and vector diversity are required to validate DEH. We tested the relationship between the prevalence in house sparrows (Passer domesticus) of four vector-borne pathogens-three avian haemosporidians (including the avian malaria parasite Plasmodium and the malaria-like parasites Haemoproteus and Leucocytozoon) and West Nile virus (WNV)-and vertebrate diversity. Birds were sampled at 45 localities in SW Spain for which extensive data on vector (mosquitoes) and vertebrate communities exist. Vertebrate censuses were conducted to quantify avian and mammal density, species richness and evenness. Contrary to the predictions of DEH, WNV seroprevalence and haemosporidian prevalence were not negatively associated with either vertebrate species richness or evenness. Indeed, the opposite pattern was found, with positive relationships between avian species richness and WNV seroprevalence, and Leucocytozoon prevalence being detected. When vector (mosquito) richness and evenness were incorporated into the models, all the previous associations between WNV prevalence and the vertebrate community variables remained unchanged. No significant association was found for Plasmodium prevalence and vertebrate community variables in any of the models tested. Despite the studied system having several characteristics that should favour the dilution effect (i.e., vector-borne pathogens, an area where vector and host densities are unrelated, and where host richness is not associated with an increase in host density), none of the relationships between host species diversity and species richness, and pathogen prevalence supported DEH and, in fact, amplification was found for three of the four pathogens tested. Consequently, the range of pathogens and communities studied needs to be broadened if we are to understand the ecological factors that favour dilution and how often these conditions occur in nature.


Assuntos
Biodiversidade , Doenças das Aves/epidemiologia , Infecções Protozoárias em Animais/epidemiologia , Pardais/microbiologia , Febre do Nilo Ocidental/veterinária , Animais , Haemosporida , Prevalência , Espanha , Febre do Nilo Ocidental/epidemiologia
13.
Mol Ecol ; 32(15): 4199-4208, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37277931

RESUMO

Infectious diseases can cause steep declines in wildlife populations, leading to changes in genetic diversity that may affect the susceptibility of individuals to infection and the overall resilience of populations to pathogen outbreaks. Here, we examine evidence for a genetic bottleneck in a population of American crows (Corvus brachyrhynchos) before and after the emergence of West Nile virus (WNV). More than 50% of marked birds in this population were lost over the 2-year period of the epizootic, representing a 10-fold increase in adult mortality. Using analyses of single-nucleotide polymorphisms (SNPs) and microsatellite markers, we tested for evidence of a genetic bottleneck and compared levels of inbreeding and immigration in the pre- and post-WNV populations. Counter to expectations, genetic diversity (allelic diversity and the number of new alleles) increased after WNV emergence. This was likely due to increases in immigration, as the estimated membership coefficients were lower in the post-WNV population. Simultaneously, however, the frequency of inbreeding appeared to increase: Mean inbreeding coefficients were higher among SNP markers, and heterozygosity-heterozygosity correlations were stronger among microsatellite markers, in the post-WNV population. These results indicate that loss of genetic diversity at the population level is not an inevitable consequence of a population decline, particularly in the presence of gene flow. The changes observed in post-WNV crows could have very different implications for their response to future pathogen risks, potentially making the population as a whole more resilient to a changing pathogen community, while increasing the frequency of inbred individuals with elevated susceptibility to disease.


Assuntos
Doenças das Aves , Corvos , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Corvos/genética , Emigração e Imigração , Variação Genética , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/veterinária , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/genética
14.
Trop Med Int Health ; 28(5): 401-408, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37042224

RESUMO

West Nile virus (WNV) has been documented in human and/or mosquito samples near the border with Mexico in El Paso, Texas, and Doña Ana County, New Mexico. However, on the Mexican side of the border, particularly in the State of Chihuahua, no such cases of WNV-infected mosquitoes have been documented. We tested 367 mosquitoes of four species (Culex quinquefasciatus, Cx. tarsalis, Aedes aegypti, and Aedes (Ochlerotatus) epactius) and found a high rate of WNV-positivity, including the first record of Ae. (Ochlerotatus) epactius infection with WNV. These results call for intensifying WNV surveillance efforts on the border between the United States and Mexico, with particular emphasis on vector control and monitoring of the species included in this study.


Assuntos
Aedes , Arbovírus , Culex , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , México/epidemiologia , Mosquitos Vetores , Febre do Nilo Ocidental/epidemiologia
15.
Virol J ; 20(1): 234, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833787

RESUMO

The mosquito-borne flaviviruses West Nile virus (WNV) and Usutu virus (USUV) pose a significant threat to the health of humans and animals. Both viruses co-circulate in numerous European countries including Germany. Due to their overlapping host and vector ranges, there is a high risk of co-infections. However, it is largely unknown if WNV and USUV interact and how this might influence their epidemiology. Therefore, in-vitro infection experiments in mammalian (Vero B4), goose (GN-R) and mosquito cell lines (C6/36, CT) were performed to investigate potential effects of co-infections in vectors and vertebrate hosts. The growth kinetics of German and other European WNV and USUV strains were determined and compared. Subsequently, simultaneous co-infections were performed with selected WNV and USUV strains. The results show that the growth of USUV was suppressed by WNV in all cell lines. This effect was independent of the virus lineage but depended on the set WNV titre. The replication of WNV also decreased in co-infection scenarios on vertebrate cells. Overall, co-infections might lead to a decreased growth of USUV in mosquitoes and of both viruses in vertebrate hosts. These interactions can strongly affect the epidemiology of USUV and WNV in areas where they co-circulate.


Assuntos
Coinfecção , Culicidae , Infecções por Flavivirus , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Coinfecção/veterinária , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Aves , Mosquitos Vetores , Mamíferos
16.
MMWR Morb Mortal Wkly Rep ; 72(17): 452-457, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104168

RESUMO

West Nile virus (WNV) is a mosquitoborne disease primarily transmitted through bites of infected Culex species mosquitos (1). In the United States, WNV is the leading domestically acquired arboviral disease; it can cause severe illness affecting the brain and spinal cord with an associated case fatality rate of 10% (2,3). On September 2, 2021, Maricopa County Environmental Services Department, Vector Control Division (MCESD-VCD) notified the Maricopa County Department of Public Health (MCDPH) and the Arizona Department of Health Services (ADHS) that the WNV vector index (VI), a measure of infected Culex mosquitoes, was substantially elevated. By that date, at least 100 WNV cases had already been reported among Maricopa County residents to MCDPH by health care providers and laboratories. Within 2 weeks, the VI reached its highest ever recorded level (53.61), with an associated tenfold increase in the number of human disease cases. During 2021, a total of 1,487 human WNV cases were identified; 956 (64.3%) patients had neuroinvasive disease, and 101 (6.8%) died. MCESD-VCD conducted daily remediation efforts to mitigate elevated VI and address mosquito-related complaints from residents (i.e., large numbers of outdoor mosquitoes from an unknown source and unmaintained swimming pools potentially breeding mosquitoes). MCDPH increased outreach to the community and providers through messaging, education events, and media. This was the largest documented focal WNV outbreak in a single county in the United States (4). Despite outreach efforts to communities and health care partners, clinicians and patients reported a lack of awareness of the WNV outbreak, highlighting the need for public health agencies to increase prevention messaging to broaden public awareness and to ensure that health care providers are aware of recommended testing methods for clinically compatible illnesses.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Estados Unidos , Arizona/epidemiologia , Febre do Nilo Ocidental/epidemiologia , Mosquitos Vetores , Surtos de Doenças
17.
J Math Biol ; 86(2): 25, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625946

RESUMO

The paper deals with a West Nile virus (WNv) model, in which the nonlocal diffusion characterizes the long-range movement of birds and mosquitoes, the free boundaries describe their spreading fronts, and the seasonal succession accounts for the effect of the warm and cold seasons. The well-posedness of the mathematical model is established, and its long-term dynamical behaviours, which depend upon the generalized eigenvalues of the corresponding linearized differential operator, are investigated. For both spatially independent and nonlocal WNv models with seasonal successions, the generalized eigenvalues are studied and applied to determine whether the spreading or vanishing occurs. Our results extend those for the case with nonlocal diffusion but no free boundary and those for the case with free boundary but local diffusion, respectively. The generalized eigenvalues reveal that there exists positive correlation between the duration of the warm season and the risk of infection. Moreover, the initial infection length, the initial infection scale and the spreading ability to new areas all play important roles for the long time behaviors of the time dependent solutions.


Assuntos
Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Estações do Ano , Febre do Nilo Ocidental/epidemiologia , Modelos Teóricos
18.
Acta Microbiol Immunol Hung ; 70(2): 111-118, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37130018

RESUMO

Following the introduction of the West Nile virus (WNV) into Hungary in 2004, it has shortly become one of the most important human arbovirus infections, with a gradually increasing number of cases. The study aimed to summarize the current epidemiological situation in Hungary and sequence the WNV PCR-positive clinical specimens and virus isolates by next-generation whole genome sequencing (NGS) to obtain a detailed phylogenetic analysis of the circulating virus strains. Whole blood and urine samples from confirmed WNV-infected patients and WNV isolates were investigated by reverse transcription PCR assays. Genome sequencing was carried out by Sanger-method, followed by NGS on the Illumina MiSeq platform. Altogether 499 human infections were diagnosed between 2004 and 2022. A particularly remarkable increase in human WNV infections was observed in 2018, while the number of reported cases significantly decreased during the COVID-19 pandemic. Between 2015 and 2022, 15 WNV isolates, and 10 PCR-positive clinical specimens were investigated by NGS. Phylogenetic analysis revealed that the major European WNV lineage 2 clades, namely the Eastern European (or Russian) and the Central European (or Hungarian) clades, are presented in Hungary. Strains of the Balkan and other European clusters within the Central European clade are co-circulating in the country, following a characteristic geographical distribution. In Hungary, the presence and co-circulation of multiple lineage 2 WNV strains could be identified in the last few years. Therefore, in light of the 2018 WNV outbreak, sequence-based typing of the currently circulating strains could highly support outbreak investigations.


Assuntos
COVID-19 , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Febre do Nilo Ocidental/epidemiologia , Filogenia , Hungria/epidemiologia , Pandemias , COVID-19/epidemiologia , Vírus do Nilo Ocidental/genética
19.
Euro Surveill ; 28(40)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796440

RESUMO

BackgroundWest Nile virus (WNV) is a flavivirus with an enzootic cycle between birds and mosquitoes; humans and horses are incidental dead-end hosts. In 2020, the largest outbreak of West Nile virus infection in the Iberian Peninsula occurred, with 141 clusters in horses and 77 human cases.AimWe analysed which drivers influence spillover from the cycle to humans and equines and identified areas at risk for WNV transmission.MethodsBased on data on WNV cases in horses and humans in 2020 in Portugal and Spain, we developed logistic regression models using environmental and anthropic variables to highlight risk areas. Models were adapted to a high-resolution risk map.ResultsCases of WNV in horses could be used as indicators of viral activity and thus predict cases in humans. The risk map of horses was able to define high-risk areas for previous cases in humans and equines in Portugal and Spain, as well as predict human and horse cases in the transmission seasons of 2021 and 2022. We found that the spatial patterns of the favourable areas for outbreaks correspond to the main hydrographic basins of the Iberian Peninsula, jointly affecting Portugal and Spain.ConclusionA risk map highlighting the risk areas for potential future cases could be cost-effective as a means of promoting preventive measures to decrease incidence of WNV infection in Europe, based on a One Health surveillance approach.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Cavalos , Animais , Europa (Continente) , Portugal/epidemiologia , Espanha/epidemiologia , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária
20.
Euro Surveill ; 28(48)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38037727

RESUMO

BackgroundWest Nile virus (WNV), found in Berlin in birds since 2018 and humans since 2019, is a mosquito-borne virus that can manifest in humans as West Nile fever (WNF) or neuroinvasive disease (WNND). However, human WNV infections and associated disease are likely underdiagnosed.AimWe aimed to identify and genetically characterise WNV infections in humans and mosquitoes in Berlin.MethodsWe investigated acute WNV infection cases reported to the State Office for Health and Social Affairs Berlin in 2021 and analysed cerebrospinal fluid (CSF) samples from patients with encephalitis of unknown aetiology (n = 489) for the presence of WNV. Mosquitoes were trapped at identified potential exposure sites of cases and examined for WNV infection.ResultsWest Nile virus was isolated and sequenced from a blood donor with WNF, a symptomatic patient with WNND and a WNND case retrospectively identified from testing CSF. All cases occurred in 2021 and had no history of travel 14 days prior to symptom onset (incubation period of the disease). We detected WNV in Culex pipiens mosquitoes sampled at the exposure site of one case in 2021, and in 2022. Genome analyses revealed a monophyletic Berlin-specific virus clade in which two enzootic mosquito-associated variants can be delineated based on tree topology and presence of single nucleotide variants. Both variants have highly identical counterparts in human cases indicating local acquisition of infection.ConclusionOur study provides evidence that autochthonous WNV lineage 2 infections occurred in Berlin and the virus has established an endemic maintenance cycle.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Berlim/epidemiologia , Estudos Retrospectivos , Europa (Continente) , Alemanha/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa