Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.579
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(17): 4621-4636.e18, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39067443

RESUMO

Bidirectional transport in cilia is carried out by polymers of the IFTA and IFTB protein complexes, called anterograde and retrograde intraflagellar transport (IFT) trains. Anterograde trains deliver cargoes from the cell to the cilium tip, then convert into retrograde trains for cargo export. We set out to understand how the IFT complexes can perform these two directly opposing roles before and after conversion. We use cryoelectron tomography and in situ cross-linking mass spectrometry to determine the structure of retrograde IFT trains and compare it with the known structure of anterograde trains. The retrograde train is a 2-fold symmetric polymer organized around a central thread of IFTA complexes. We conclude that anterograde-to-retrograde remodeling involves global rearrangements of the IFTA/B complexes and requires complete disassembly of the anterograde train. Finally, we describe how conformational changes to cargo-binding sites facilitate unidirectional cargo transport in a bidirectional system.


Assuntos
Cílios , Microscopia Crioeletrônica , Flagelos , Flagelos/metabolismo , Flagelos/ultraestrutura , Cílios/metabolismo , Transporte Biológico , Chlamydomonas reinhardtii/metabolismo , Modelos Moleculares , Transporte Proteico
2.
Cell ; 187(7): 1733-1744.e12, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552612

RESUMO

Mastigonemes, the hair-like lateral appendages lining cilia or flagella, participate in mechanosensation and cellular motion, but their constituents and structure have remained unclear. Here, we report the cryo-EM structure of native mastigonemes isolated from Chlamydomonas at 3.0 Å resolution. The long stem assembles as a super spiral, with each helical turn comprising four pairs of anti-parallel mastigoneme-like protein 1 (Mst1). A large array of arabinoglycans, which represents a common class of glycosylation in plants and algae, is resolved surrounding the type II poly-hydroxyproline (Hyp) helix in Mst1. The EM map unveils a mastigoneme axial protein (Mstax) that is rich in heavily glycosylated Hyp and contains a PKD2-like transmembrane domain (TMD). Mstax, with nearly 8,000 residues spanning from the intracellular region to the distal end of the mastigoneme, provides the framework for Mst1 assembly. Our study provides insights into the complexity of protein and glycan interactions in native bio-architectures.


Assuntos
Chlamydomonas , Cílios , Chlamydomonas/citologia , Cílios/química , Cílios/ultraestrutura , Flagelos , Polissacarídeos , Proteínas
3.
Cell ; 186(13): 2725-2727, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37352832

RESUMO

Inside sperm flagella, there are nine doublet microtubules composed of A and B tubules. In this issue of Cell, Leung et al. and Zhou et al. present high-resolution cryo-EM structures of doublet microtubules from mammalian sperms and show unprecedented structures of the A tubules, which are almost entirely occupied with tektin bundles.


Assuntos
Microtúbulos , Sêmen , Animais , Masculino , Microtúbulos/química , Proteínas dos Microtúbulos/química , Cauda do Espermatozoide/química , Flagelos , Mamíferos
4.
Cell ; 186(23): 5041-5053.e19, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37865089

RESUMO

To understand the molecular mechanisms of cellular pathways, contemporary workflows typically require multiple techniques to identify proteins, track their localization, and determine their structures in vitro. Here, we combined cellular cryoelectron tomography (cryo-ET) and AlphaFold2 modeling to address these questions and understand how mammalian sperm are built in situ. Our cellular cryo-ET and subtomogram averaging provided 6.0-Å reconstructions of axonemal microtubule structures. The well-resolved tertiary structures allowed us to unbiasedly match sperm-specific densities with 21,615 AlphaFold2-predicted protein models of the mouse proteome. We identified Tektin 5, CCDC105, and SPACA9 as novel microtubule-associated proteins. These proteins form an extensive interaction network crosslinking the lumen of axonemal doublet microtubules, suggesting their roles in modulating the mechanical properties of the filaments. Indeed, Tekt5 -/- sperm possess more deformed flagella with 180° bends. Together, our studies presented a cellular visual proteomics workflow and shed light on the in vivo functions of Tektin 5.


Assuntos
Proteoma , Espermatozoides , Animais , Masculino , Camundongos , Axonema/química , Microscopia Crioeletrônica/métodos , Flagelos/metabolismo , Microtúbulos/metabolismo , Sêmen , Espermatozoides/química , Proteoma/análise
5.
Cell ; 185(26): 4863-4865, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563659

RESUMO

The assembly and signaling properties of cilia rely on intraflagellar transport (IFT) trains moving proteins into, within, and out of cilia. A flurry of near-atomic models of the multiprotein complexes that make up IFT trains has revealed new conformational changes, which may underlie the switch between anterograde and retrograde intraflagellar transport.


Assuntos
Cílios , Corrida , Cílios/metabolismo , Flagelos/metabolismo , Ginástica , Transporte Biológico
6.
Cell ; 185(19): 3487-3500.e14, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36057255

RESUMO

The supercoiling of bacterial and archaeal flagellar filaments is required for motility. Archaeal flagellar filaments have no homology to their bacterial counterparts and are instead homologs of bacterial type IV pili. How these prokaryotic flagellar filaments, each composed of thousands of copies of identical subunits, can form stable supercoils under torsional stress is a fascinating puzzle for which structural insights have been elusive. Advances in cryoelectron microscopy (cryo-EM) make it now possible to directly visualize the basis for supercoiling, and here, we show the atomic structures of supercoiled bacterial and archaeal flagellar filaments. For the bacterial flagellar filament, we identify 11 distinct protofilament conformations with three broad classes of inter-protomer interface. For the archaeal flagellar filament, 10 protofilaments form a supercoil geometry supported by 10 distinct conformations, with one inter-protomer discontinuity creating a seam inside of the curve. Our results suggest that convergent evolution has yielded stable superhelical geometries that enable microbial locomotion.


Assuntos
Flagelos , Flagelina , Archaea , Bactérias , Microscopia Crioeletrônica , Fímbrias Bacterianas/química , Subunidades Proteicas/análise
7.
Cell ; 185(26): 4986-4998.e12, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563665

RESUMO

Intraflagellar transport (IFT) is the highly conserved process by which proteins are transported along ciliary microtubules by a train-like polymeric assembly of IFT-A and IFT-B complexes. IFT-A is sandwiched between IFT-B and the ciliary membrane, consistent with its putative role in transporting transmembrane and membrane-associated cargoes. Here, we have used single-particle analysis electron cryomicroscopy (cryo-EM) to determine structures of native IFT-A complexes. We show that subcomplex rearrangements enable IFT-A to polymerize laterally on anterograde IFT trains, revealing a cooperative assembly mechanism. Surprisingly, we discover that binding of IFT-A to IFT-B shields the preferred lipid-binding interface from the ciliary membrane but orients an interconnected network of ß-propeller domains with the capacity to accommodate diverse cargoes toward the ciliary membrane. This work provides a mechanistic basis for understanding IFT-train assembly and cargo interactions.


Assuntos
Cílios , Proteínas , Polimerização , Transporte Biológico , Cílios/metabolismo , Proteínas/metabolismo , Microtúbulos/metabolismo , Flagelos/metabolismo , Transporte Proteico
8.
Cell ; 185(26): 4971-4985.e16, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36462505

RESUMO

Intraflagellar transport (IFT) trains are massive molecular machines that traffic proteins between cilia and the cell body. Each IFT train is a dynamic polymer of two large complexes (IFT-A and -B) and motor proteins, posing a formidable challenge to mechanistic understanding. Here, we reconstituted the complete human IFT-A complex and obtained its structure using cryo-EM. Combined with AlphaFold prediction and genome-editing studies, our results illuminate how IFT-A polymerizes, interacts with IFT-B, and uses an array of ß-propeller and TPR domains to create "carriages" of the IFT train that engage TULP adaptor proteins. We show that IFT-A⋅TULP carriages are essential for cilia localization of diverse membrane proteins, as well as ICK-the key kinase regulating IFT train turnaround. These data establish a structural link between IFT-A's distinct functions, provide a blueprint for IFT-A in the train, and shed light on how IFT evolved from a proto-coatomer ancestor.


Assuntos
Cílios , Cinesinas , Humanos , Cílios/metabolismo , Transporte Biológico , Cinesinas/metabolismo , Dineínas/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Flagelos/metabolismo
9.
Cell ; 184(10): 2665-2679.e19, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33882274

RESUMO

The bacterial flagellar motor is a supramolecular protein machine that drives rotation of the flagellum for motility, which is essential for bacterial survival in different environments and a key determinant of pathogenicity. The detailed structure of the flagellar motor remains unknown. Here we present an atomic-resolution cryoelectron microscopy (cryo-EM) structure of the bacterial flagellar motor complexed with the hook, consisting of 175 subunits with a molecular mass of approximately 6.3 MDa. The structure reveals that 10 peptides protruding from the MS ring with the FlgB and FliE subunits mediate torque transmission from the MS ring to the rod and overcome the symmetry mismatch between the rotational and helical structures in the motor. The LP ring contacts the distal rod and applies electrostatic forces to support its rotation and torque transmission to the hook. This work provides detailed molecular insights into the structure, assembly, and torque transmission mechanisms of the flagellar motor.


Assuntos
Flagelos/fisiologia , Flagelos/ultraestrutura , Salmonella typhimurium/fisiologia , Microscopia Crioeletrônica , Conformação Proteica , Torque
10.
Annu Rev Cell Dev Biol ; 38: 103-123, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767872

RESUMO

Cilia are ubiquitous microtubule-based eukaryotic organelles that project from the cell to generate motility or function in cellular signaling. Motile cilia or flagella contain axonemal dynein motors and other complexes to achieve beating. Primary cilia are immotile and act as signaling hubs, with receptors shuttling between the cytoplasm and ciliary compartment. In both cilia types, an intraflagellar transport (IFT) system powered by unique kinesin and dynein motors functions to deliver the molecules required to build cilia and maintain their functions. Cryo-electron tomography has helped to reveal the organization of protein complex arrangement along the axoneme and the structure of anterograde IFT trains as well as the structure of primary cilia. Only recently, single-particle analysis (SPA) cryo-electron microscopy has provided molecular details of the protein organization of ciliary components, helping us to understand how they bind to microtubule doublets and how mechanical force propagated by dynein conformational changes is converted into ciliary beating. Here we highlight recent structural advances that are leading to greater knowledge of ciliary function.


Assuntos
Dineínas do Axonema , Cílios , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Transporte Biológico/fisiologia , Biologia , Cílios/metabolismo , Microscopia Crioeletrônica , Flagelos/metabolismo , Cinesinas
11.
Annu Rev Immunol ; 31: 73-106, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23215645

RESUMO

Inflammasomes are cytosolic multiprotein complexes that assemble in response to a variety of infectious and noxious insults. Inflammasomes play a critical role in the initiation of innate immune responses, primarily by serving as platforms for the activation of inflammatory caspase proteases. One such caspase, CASPASE-1 (CASP1), initiates innate immune responses by cleaving pro-IL-1ß and pro-IL-18, leading to their activation and release. CASP1 and another inflammatory caspase termed CASP11 can also initiate a rapid and inflammatory form of cell death termed pyroptosis. Several distinct inflammasomes have been described, each of which contains a unique sensor protein of the NLR (nucleotide-binding domain, leucine-rich repeat-containing) superfamily or the PYHIN (PYRIN and HIN-200 domain-containing) superfamily. Here we describe the surprisingly diverse mechanisms by which NLR/PYHIN proteins sense bacteria and initiate innate immune responses. We conclude that inflammasomes represent a highly adaptable scaffold ideally suited for detecting and initiating rapid innate responses to diverse and rapidly evolving bacteria.


Assuntos
Bactérias/patogenicidade , Inflamassomos/metabolismo , Animais , Bacillus anthracis/patogenicidade , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Flagelos/metabolismo , Flagelos/fisiologia , Humanos , Inflamassomos/genética , Inflamassomos/fisiologia , Legionella pneumophila/patogenicidade , Listeria monocytogenes/patogenicidade , Salmonella typhimurium/patogenicidade
12.
Cell ; 183(1): 244-257.e16, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931735

RESUMO

Many bacteria use the flagellum for locomotion and chemotaxis. Its bidirectional rotation is driven by a membrane-embedded motor, which uses energy from the transmembrane ion gradient to generate torque at the interface between stator units and rotor. The structural organization of the stator unit (MotAB), its conformational changes upon ion transport, and how these changes power rotation of the flagellum remain unknown. Here, we present ~3 Å-resolution cryoelectron microscopy reconstructions of the stator unit in different functional states. We show that the stator unit consists of a dimer of MotB surrounded by a pentamer of MotA. Combining structural data with mutagenesis and functional studies, we identify key residues involved in torque generation and present a detailed mechanistic model for motor function and switching of rotational direction.


Assuntos
Proteínas de Bactérias/ultraestrutura , Flagelos/ultraestrutura , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica/métodos , Flagelos/metabolismo , Conformação Proteica , Torque
13.
Cell ; 173(6): 1323-1327, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29856952

RESUMO

Tubulin posttranslational modifications are currently emerging as important regulators of the microtubule cytoskeleton and thus have a strong potential to be implicated in a number of disorders. Here, we review the latest advances in understanding the physiological roles of tubulin modifications and their links to a variety of pathologies.


Assuntos
Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/química , Animais , Plaquetas/metabolismo , Cílios/metabolismo , Citoesqueleto/metabolismo , Flagelos/metabolismo , Cardiopatias/metabolismo , Humanos , Camundongos , Microtúbulos/metabolismo , Mutação , Doenças Neurodegenerativas/terapia , Fenótipo , Fatores de Risco , Tubulina (Proteína)/fisiologia
14.
Annu Rev Biochem ; 86: 637-657, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28471691

RESUMO

Eukaryotic cells possess a remarkably diverse range of organelles that provide compartmentalization for distinct cellular functions and are likely responsible for the remarkable success of these organisms. The origins and subsequent elaboration of these compartments represent a key aspect in the transition between prokaryotic and eukaryotic cellular forms. The protein machinery required to build, maintain, and define many membrane-bound compartments is encoded by several paralog families, including small GTPases, coiled-bundle proteins, and proteins with ß-propeller and α-solenoid secondary structures. Together these proteins provide the membrane coats and control systems to structure and coordinate the endomembrane system. Mechanistically and evolutionarily, they unite not only secretory and endocytic organelles but also the flagellum and nucleus. The ancient origins for these families have been revealed by recent findings, providing new perspectives on the deep evolutionary processes and relationships that underlie eukaryotic cell structure.


Assuntos
Membrana Celular/ultraestrutura , Clatrina/química , Complexo I de Proteína do Envoltório/química , Vesículas Revestidas/ultraestrutura , Células Eucarióticas/ultraestrutura , Proteínas Monoméricas de Ligação ao GTP/química , Transporte Ativo do Núcleo Celular , Membrana Celular/química , Membrana Celular/metabolismo , Clatrina/genética , Clatrina/metabolismo , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Vesículas Revestidas/química , Vesículas Revestidas/metabolismo , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Evolução Molecular , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Expressão Gênica , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos
15.
Annu Rev Biochem ; 86: 873-896, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28426242

RESUMO

Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Fímbrias Bacterianas/ultraestrutura , Poro Nuclear/química , Imagem Óptica/métodos , Células Procarióticas/ultraestrutura , Archaea/metabolismo , Archaea/ultraestrutura , Bactérias/metabolismo , Bactérias/ultraestrutura , Sistemas de Secreção Bacterianos/metabolismo , Sistemas de Secreção Bacterianos/ultraestrutura , Microscopia Crioeletrônica/história , Microscopia Crioeletrônica/instrumentação , Tomografia com Microscopia Eletrônica/história , Tomografia com Microscopia Eletrônica/instrumentação , Fímbrias Bacterianas/metabolismo , Flagelos/metabolismo , Flagelos/ultraestrutura , História do Século XX , História do Século XXI , Modelos Moleculares , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Imagem Óptica/história , Imagem Óptica/instrumentação , Células Procarióticas/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína
16.
Cell ; 164(1-2): 246-257, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771494

RESUMO

Intercellular communication between parasites and with host cells provides mechanisms for parasite development, immune evasion, and disease pathology. Bloodstream African trypanosomes produce membranous nanotubes that originate from the flagellar membrane and disassociate into free extracellular vesicles (EVs). Trypanosome EVs contain several flagellar proteins that contribute to virulence, and Trypanosoma brucei rhodesiense EVs contain the serum resistance-associated protein (SRA) necessary for human infectivity. T. b. rhodesiense EVs transfer SRA to non-human infectious trypanosomes, allowing evasion of human innate immunity. Trypanosome EVs can also fuse with mammalian erythrocytes, resulting in rapid erythrocyte clearance and anemia. These data indicate that trypanosome EVs are organelles mediating non-hereditary virulence factor transfer and causing host erythrocyte remodeling, inducing anemia.


Assuntos
Vesículas Extracelulares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei rhodesiense/citologia , Trypanosoma brucei rhodesiense/imunologia , Tripanossomíase Africana/patologia , Tripanossomíase Africana/parasitologia , Fatores de Virulência/metabolismo , Anemia/patologia , Animais , Eritrócitos/parasitologia , Flagelos/metabolismo , Humanos , Evasão da Resposta Imune , Camundongos , Proteoma/metabolismo , Rodaminas/análise , Trypanosoma brucei rhodesiense/metabolismo , Trypanosoma brucei rhodesiense/patogenicidade
17.
Nature ; 618(7965): 625-633, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258679

RESUMO

Motile cilia and flagella beat rhythmically on the surface of cells to power the flow of fluid and to enable spermatozoa and unicellular eukaryotes to swim. In humans, defective ciliary motility can lead to male infertility and a congenital disorder called primary ciliary dyskinesia (PCD), in which impaired clearance of mucus by the cilia causes chronic respiratory infections1. Ciliary movement is generated by the axoneme, a molecular machine consisting of microtubules, ATP-powered dynein motors and regulatory complexes2. The size and complexity of the axoneme has so far prevented the development of an atomic model, hindering efforts to understand how it functions. Here we capitalize on recent developments in artificial intelligence-enabled structure prediction and cryo-electron microscopy (cryo-EM) to determine the structure of the 96-nm modular repeats of axonemes from the flagella of the alga Chlamydomonas reinhardtii and human respiratory cilia. Our atomic models provide insights into the conservation and specialization of axonemes, the interconnectivity between dyneins and their regulators, and the mechanisms that maintain axonemal periodicity. Correlated conformational changes in mechanoregulatory complexes with their associated axonemal dynein motors provide a mechanism for the long-hypothesized mechanotransduction pathway to regulate ciliary motility. Structures of respiratory-cilia doublet microtubules from four individuals with PCD reveal how the loss of individual docking factors can selectively eradicate periodically repeating structures.


Assuntos
Axonema , Cílios , Transtornos da Motilidade Ciliar , Flagelos , Mecanotransdução Celular , Humanos , Masculino , Inteligência Artificial , Dineínas do Axonema/química , Dineínas do Axonema/metabolismo , Dineínas do Axonema/ultraestrutura , Axonema/química , Axonema/metabolismo , Axonema/ultraestrutura , Cílios/química , Cílios/metabolismo , Cílios/ultraestrutura , Microscopia Crioeletrônica , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Microtúbulos/metabolismo , Chlamydomonas reinhardtii , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Transtornos da Motilidade Ciliar/fisiopatologia , Movimento , Conformação Proteica
18.
Nature ; 623(7985): 193-201, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880360

RESUMO

Voltage-sensing domains control the activation of voltage-gated ion channels, with a few exceptions1. One such exception is the sperm-specific Na+/H+ exchanger SLC9C1, which is the only known transporter to be regulated by voltage-sensing domains2-5. After hyperpolarization of sperm flagella, SLC9C1 becomes active, causing pH alkalinization and CatSper Ca2+ channel activation, which drives chemotaxis2,6. SLC9C1 activation is further regulated by cAMP2,7, which is produced by soluble adenyl cyclase (sAC). SLC9C1 is therefore an essential component of the pH-sAC-cAMP signalling pathway in metazoa8,9, required for sperm motility and fertilization4. Despite its importance, the molecular basis of SLC9C1 voltage activation is unclear. Here we report cryo-electron microscopy (cryo-EM) structures of sea urchin SLC9C1 in detergent and nanodiscs. We show that the voltage-sensing domains are positioned in an unusual configuration, sandwiching each side of the SLC9C1 homodimer. The S4 segment is very long, 90 Å in length, and connects the voltage-sensing domains to the cytoplasmic cyclic-nucleotide-binding domains. The S4 segment is in the up configuration-the inactive state of SLC9C1. Consistently, although a negatively charged cavity is accessible for Na+ to bind to the ion-transporting domains of SLC9C1, an intracellular helix connected to S4 restricts their movement. On the basis of the differences in the cryo-EM structure of SLC9C1 in the presence of cAMP, we propose that, upon hyperpolarization, the S4 segment moves down, removing this constriction and enabling Na+/H+ exchange.


Assuntos
Microscopia Crioeletrônica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Ouriços-do-Mar , Trocadores de Sódio-Hidrogênio , Animais , Masculino , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Concentração de Íons de Hidrogênio , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/ultraestrutura , Potenciais da Membrana , Multimerização Proteica , Ouriços-do-Mar/química , Ouriços-do-Mar/metabolismo , Ouriços-do-Mar/ultraestrutura , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/ultraestrutura , Motilidade dos Espermatozoides , Espermatozoides/química , Espermatozoides/metabolismo , Espermatozoides/ultraestrutura
19.
EMBO J ; 43(7): 1257-1272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454149

RESUMO

Dynein-2 is a large multiprotein complex that powers retrograde intraflagellar transport (IFT) of cargoes within cilia/flagella, but the molecular mechanism underlying this function is still emerging. Distinctively, dynein-2 contains two identical force-generating heavy chains that interact with two different intermediate chains (WDR34 and WDR60). Here, we dissect regulation of dynein-2 function by WDR34 and WDR60 using an integrative approach including cryo-electron microscopy and CRISPR/Cas9-enabled cell biology. A 3.9 Å resolution structure shows how WDR34 and WDR60 use surprisingly different interactions to engage equivalent sites of the two heavy chains. We show that cilia can assemble in the absence of either WDR34 or WDR60 individually, but not both subunits. Dynein-2-dependent distribution of cargoes depends more strongly on WDR60, because the unique N-terminal extension of WDR60 facilitates dynein-2 targeting to cilia. Strikingly, this N-terminal extension can be transplanted onto WDR34 and retain function, suggesting it acts as a flexible tether to the IFT "trains" that assemble at the ciliary base. We discuss how use of unstructured tethers represents an emerging theme in IFT train interactions.


Assuntos
Cílios , Dineínas , Dineínas/metabolismo , Microscopia Crioeletrônica , Transporte Biológico , Cílios/metabolismo , Flagelos/metabolismo
20.
Annu Rev Microbiol ; 77: 669-698, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713458

RESUMO

Two of the most fascinating bacterial nanomachines-the broadly disseminated rotary flagellum at the heart of cellular motility and the eukaryotic cell-puncturing injectisome essential to specific pathogenic species-utilize at their core a conserved export machinery called the type III secretion system (T3SS). The T3SS not only secretes the components that self-assemble into their extracellular appendages but also, in the case of the injectisome, subsequently directly translocates modulating effector proteins from the bacterial cell into the infected host. The injectisome is thought to have evolved from the flagellum as a minimal secretory system lacking motility, with the subsequent acquisition of additional components tailored to its specialized role in manipulating eukaryotic hosts for pathogenic advantage. Both nanomachines have long been the focus of intense interest, but advances in structural and functional understanding have taken a significant step forward since 2015, facilitated by the revolutionary advances in cryo-electron microscopy technologies. With several seminal structures of each nanomachine now captured, we review here the molecular similarities and differences that underlie their diverse functions.


Assuntos
Flagelos , Sistemas de Secreção Tipo III , Microscopia Crioeletrônica , Transporte Biológico , Eucariotos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa