Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Mol Cell Biochem ; 478(6): 1231-1244, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36282352

RESUMO

Sodium fluoroacetate (FA) is a metabolic poison that systemically inhibits the tricarboxylic acid (TCA) cycle, causing energy deficiency and ultimately multi-organ failure. It poses a significant threat to society because of its high toxicity, potential use as a chemical weapon and lack of effective antidotal therapy. In this study, we investigated cell-permeable succinate prodrugs as potential treatment for acute FA intoxication. We hypothesized that succinate prodrugs would bypass FA-induced mitochondrial dysfunction, provide metabolic support, and prevent metabolic crisis during acute FA intoxication. To test this hypothesis, rats were exposed to FA (0.75 mg/kg) and treated with the succinate prodrug candidate NV354. Treatment efficacy was evaluated based on cardiac and cerebral mitochondrial respiration, mitochondrial content, metabolic profiles and tissue pathology. In the heart, FA increased concentrations of the TCA metabolite citrate (+ 4.2-fold, p < 0.01) and lowered ATP levels (- 1.9-fold, p < 0.001), confirming the inhibition of the TCA cycle by FA. High-resolution respirometry of cardiac mitochondria further revealed an impairment of mitochondrial complex V (CV)-linked metabolism, as evident by a reduced phosphorylation system control ratio (- 41%, p < 0.05). The inhibition of CV-linked metabolism is a novel mechanism of FA cardiac toxicity, which has implications for drug development and which NV354 was unable to counteract at the given dose. In the brain, FA induced the accumulation of ß-hydroxybutyrate (+ 1.4-fold, p < 0.05) and the reduction of mitochondrial complex I (CI)-linked oxidative phosphorylation (OXPHOSCI) (- 20%, p < 0.01), the latter of which was successfully alleviated by NV354. This promising effect of NV354 warrants further investigations to determine its potential neuroprotective effects.


Assuntos
Pró-Fármacos , Ratos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/metabolismo , Ácido Succínico/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Complexo I de Transporte de Elétrons/metabolismo , Fluoracetatos/farmacologia , Fluoracetatos/metabolismo
2.
Environ Sci Technol ; 57(26): 9762-9772, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37341426

RESUMO

Three peptides comprising mono-, di-, and tri-fluoroethylglycine (MfeGly, DfeGly, and TfeGly) residues alternating with lysine were digested by readily available proteases (elastase, bromelain, trypsin, and proteinase K). The degree of degradation depended on the enzyme employed and the extent of fluorination. Incubation of the peptides with a microbial consortium from garden soil resulted in degradation, yielding fluoride ions. Further biodegradation studies conducted with the individual fluorinated amino acids demonstrated that the degree of defluorination followed the sequence MfeGly > DfeGly > TfeGly. Enrichment of the soil bacteria employing MfeGly as a sole carbon and energy source resulted in the isolation of a bacterium, which was identified as Serratia liquefaciens. Cell-free extracts of this bacterium enzymatically defluorinated MfeGly, yielding fluoride ion and homoserine. In silico analysis of the genome revealed the presence of a gene that putatively codes for a dehalogenase. However, the low overall homology to known enzymes suggests a potentially new hydrolase that can degrade monofluorinated compounds. 19F NMR analysis of aqueous soil extracts revealed the unexpected presence of trifluoroacetate, fluoride ion, and fluoroacetate. Growth of the soil consortium in tryptone soya broth supplemented with fluoride ions resulted in fluoroacetate production; thus, bacteria in the soil produce and degrade organofluorine compounds.


Assuntos
Bactérias , Fluoretos , Fluoretos/análise , Fluoretos/metabolismo , Bactérias/genética , Fluoracetatos/análise , Fluoracetatos/metabolismo , Peptídeos/metabolismo , Biodegradação Ambiental
3.
J Occup Environ Hyg ; 19(7): 411-414, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35544736

RESUMO

This paper presents experimental data on the skin absorption of sodium fluoroacetate from a formulated product using an in vitro approach and human skin. Sodium fluoroacetate is a pesticide, typically applied in formulation (1080) for the control of unwanted vertebrate invasive species. It has been assigned a Skin Notation by the ACGIH, and other international workplace health regulatory bodies, due to its predicted ability to permeate intact and abraded human skin. However, there is a distinct lack of experimental data on the skin absorption of sodium fluoroacetate to support this assignment. This study found that sodium fluoroacetate, as a formulated product, permeated the human epidermis when in direct contact for greater than 10 hr. A steady-state flux (Jss) of 1.31 ± 0.043 µg/cm2/hr and a lag time of 6.1 hr was calculated from cumulative skin permeation data. This study provides important empirical evidence in support of the assignment of a Skin Notation.


Assuntos
Composição de Medicamentos , Fluoracetatos , Absorção Cutânea , Pele , Fluoracetatos/administração & dosagem , Fluoracetatos/metabolismo , Fluoracetatos/farmacocinética , Humanos , Técnicas In Vitro , Rodenticidas/administração & dosagem , Rodenticidas/metabolismo , Rodenticidas/farmacocinética , Pele/metabolismo , Fatores de Tempo
4.
J Biomol NMR ; 71(2): 79-89, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29876702

RESUMO

Sodium 4,4-dimethyl-4-silapentane-1-sulfonate (DSS) is the most widely accepted internal standard for protein NMR studies in aqueous conditions. Since its introduction as a reference standard, however, concerns have been raised surrounding its propensity to interact with biological molecules through electrostatic and hydrophobic interactions. While DSS has been shown to interact with certain proteins, membrane protein studies by solution-state NMR require use of membrane mimetics such as detergent micelles and, to date, no study has explicitly examined the potential for interaction between membrane mimetics and DSS. Consistent with its amphipathic character, we show DSS to self-associate at elevated concentrations using pulsed field gradient-based diffusion NMR measurements. More critically, DSS diffusion is significantly attenuated in the presence of either like-charged sodium dodecyl sulfate or zwitterionic dodecylphosphocholine micelles, the two most commonly used detergent-based membrane mimetic systems used in solution-state NMR. Binding to oppositely charged dodecyltrimethylammonium bromide micelles is also highly favourable. DSS-micelle interactions are accompanied by a systematic, concentration- and binding propensity-dependent change in the chemical shift of the DSS reference signal by up to 60 ppb. The alternative reference compound 4,4-dimethyl-4-silapentane-1-ammonium trifluoroacetate (DSA) exhibits highly similar behaviour, with reversal of the relative magnitude of chemical shift perturbation and proportion bound in comparison to DSS. Both DSS and DSA, thus, interact with micelles, and self-assemble at high concentration. Chemical shift perturbation of and modulation of micellar properties by these molecules has clear implications for their use as reference standards.


Assuntos
Ácidos Alcanossulfônicos/normas , Micelas , Ressonância Magnética Nuclear Biomolecular/métodos , Compostos de Trimetilsilil/normas , Ácidos Alcanossulfônicos/metabolismo , Detergentes , Difusão , Fluoracetatos/metabolismo , Compostos de Organossilício/metabolismo , Padrões de Referência , Compostos de Trimetilsilil/metabolismo
5.
World J Microbiol Biotechnol ; 34(12): 184, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30488133

RESUMO

Nitrogen fixation is one of the major biogeochemical contributions carried out by diazotrophic microorganisms. The goal of this research is study of posttranslational modification of dinitrogenase reductase (Fe protein), the involvement of malate and pyruvate in generation of reductant in Rhodospirillum rubrum. A procedure for the isolation of the Fe protein from cell extracts was developed and used to monitor the modification of the Fe protein in vivo. The subunit pattern of the isolated the Fe protein after sodium dodecyl sulfate-polyacrylamide gel electrophoresis was assayed by Western blot analysis. Whole-cell nitrogenase activity was also monitored during the Fe protein modification by gas chromatograpy, using the acetylene reduction assay. It has been shown, that the addition of fluoroacetate, ammonia and darkness resulted in the loss of whole-cell nitrogenase activity and the in vivo modification of the Fe protein. For fluoroacetate, ammonia and darkness, the rate of loss of nitrogenase activity was similar to that for the Fe protein modification. The addition of NADH and reillumination of a culture incubated in the dark resulted in the rapid restoration of nitrogenase activity and the demodification of the Fe protein. Fluoroacetate inhibited the nitrogenase activity of R. rubrum and resulted in the modification of the Fe protein in cells, grown on pyruvate or malate as the endogeneous electron source. The nitrogenase activity in draTG mutant (lacking DRAT/DRAG system) decreased after the addition of fluoroacetate, but the Fe protein remained completely unmodified. The results showed that the reduced state of cell, posttranslational modifications of the Fe protein and the DRAT/DRAG system are important for nitrogenase activity and the regulation of nitrogen fixation.


Assuntos
Proteínas de Bactérias/metabolismo , Dinitrogenase Redutase/metabolismo , Fluoracetatos/metabolismo , Rhodospirillum rubrum/enzimologia , Proteínas de Bactérias/genética , Dinitrogenase Redutase/genética , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio , Processamento de Proteína Pós-Traducional , Rhodospirillum rubrum/genética , Rhodospirillum rubrum/metabolismo
6.
Chemistry ; 23(16): 3957-3965, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28124793

RESUMO

We herein propose the use of fluoroacetamide and difluoroacetamide moieties as sensitive tags for the detection of sugar-protein interactions by simple 1 H and/or 19 F NMR spectroscopy methods. In this process, we have chosen the binding of N,N'-diacetyl chitobiose, a ubiquitous disaccharide fragment in glycoproteins, by wheat-germ agglutinin (WGA), a model lectin. By using saturation-transfer difference (STD)-NMR spectroscopy, we experimentally demonstrate that, under solution conditions, the molecule that contained the CHF2 CONH- moiety is the stronger aromatic binder, followed by the analogue with the CH2 FCONH- group and the natural molecule (with the CH3 CONH- fragment). In contrast, the molecule with the CF3 CONH- isoster displayed the weakest intermolecular interaction (one order of magnitude weaker). Because sugar-aromatic CH-π interactions are at the origin of these observations, these results further contribute to the characterization and exploration of these forces and offer an opportunity to use them to unravel complex recognition processes.


Assuntos
Dissacarídeos/metabolismo , Fluoracetatos/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Aglutininas do Germe de Trigo/metabolismo , Dissacarídeos/análise , Fluoracetatos/análise , Halogenação , Análise em Microsséries , Ligação Proteica , Triticum/química , Triticum/metabolismo , Aglutininas do Germe de Trigo/análise
7.
Microb Ecol ; 71(2): 494-504, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26111963

RESUMO

Synergistetes strain MFA1 is an asaccharolytic ruminal bacterium isolated based on its ability to degrade fluoroacetate, a plant toxin. The amino acid and peptide requirements of the bacterium were investigated under different culturing conditions. The growth of strain MFA1 and its fluoroacetate degradation rate were enhanced by peptide-rich protein hydrolysates (tryptone and yeast extract) compared to casamino acid, an amino acid-rich protein hydrolysate. Complete utilization and preference for arginine, asparagine, glutamate, glycine, and histidine as free amino acids from yeast extract were observed, while the utilization of serine, threonine, and lysine in free form and peptide-bound glutamate was stimulated during growth on fluoroacetate. A predominant peptide in yeast extract preferentially utilized by strain MFA1 was partially characterized by high-liquid performance chromatography-mass spectrometry as a hepta-glutamate oligopeptide. Similar utilization profiles of amino acids were observed between the co-culture of strain MFA1 with Methanobrevibacter smithii without fluoroacetate and pure strain MFA1 culture with fluoroacetate. This suggests that growth of strain MFA1 could be enhanced by a reduction of hydrogen partial pressure as a result of hydrogen removal by a methanogen or reduction of fluoroacetate.


Assuntos
Aminoácidos/metabolismo , Bactérias/metabolismo , Fluoracetatos/metabolismo , Peptídeos/metabolismo , Aminoácidos/química , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Fluoracetatos/análise , Espectrometria de Massas , Peptídeos/química
8.
Chem Soc Rev ; 43(18): 6527-36, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-24776946

RESUMO

Both natural products and synthetic organofluorines play important roles in the discovery and design of pharmaceuticals. The combination of these two classes of molecules has the potential to be useful in the ongoing search for new bioactive compounds but our ability to produce site-selectively fluorinated natural products remains limited by challenges in compatibility between their high structural complexity and current methods for fluorination. Living systems provide an alternative route to chemical fluorination and could enable the production of organofluorine natural products through synthetic biology approaches. While the identification of biogenic organofluorines has been limited, the study of the native organisms and enzymes that utilize these compounds can help to guide efforts to engineer the incorporation of this unusual element into complex pharmacologically active natural products. This review covers recent advances in understanding both natural and engineered production of organofluorine natural products.


Assuntos
Produtos Biológicos/química , Alcaloides/biossíntese , Alcaloides/química , Proteínas de Bactérias/metabolismo , Produtos Biológicos/metabolismo , Fluoracetatos/química , Fluoracetatos/metabolismo , Halogenação , Isomerases/metabolismo , Oxirredutases/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Policetídeos/química , Policetídeos/metabolismo , Streptomyces/enzimologia , Streptomyces/metabolismo
9.
Org Biomol Chem ; 12(27): 4828-31, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24903341

RESUMO

Genome sequencing identified a fluorinase gene in the marine bacterium Streptomyces xinghaiensis NRRL B-24674. Fermentation of the organism with inorganic fluoride (2 mM) demonstrated that the organism could biosynthesise fluoroacetate and that fluoroacetate production is sea-salt dependent. This is the first fluorometabolite producing microorganism identified from the marine environment.


Assuntos
Fluoracetatos/metabolismo , Streptomyces/metabolismo , Microbiologia da Água , Espectroscopia de Ressonância Magnética , Treonina/análogos & derivados , Treonina/metabolismo , Transaldolase/genética
10.
mBio ; 15(1): e0278523, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38063407

RESUMO

IMPORTANCE: Society uses thousands of organofluorine compounds, sometimes denoted per- and polyfluoroalkyl substances (PFAS), in hundreds of products, but recent studies have shown some to manifest human and environmental health effects. As a class, they are recalcitrant to biodegradation, partly due to the paucity of fluorinated natural products to which microbes have been exposed. Another limit to PFAS biodegradation is the intracellular toxicity of fluoride anion generated from C-F bond cleavage. The present study identified a broader substrate specificity in an enzyme originally studied for its activity on the natural product fluoroacetate. A recombinant Pseudomonas expressing this enzyme was used here as a model system to better understand the limits and effects of a high level of intracellular fluoride generation. A fluoride stress response has evolved in bacteria and has been described in Pseudomonas spp. The present study is highly relevant to organofluorine compound degradation or engineered biosynthesis in which fluoride anion is a substrate.


Assuntos
Fluoretos , Fluorocarbonos , Humanos , Pseudomonas/genética , Pseudomonas/metabolismo , Fluoracetatos/metabolismo , Biodegradação Ambiental
11.
FEBS J ; 290(20): 4966-4983, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437000

RESUMO

Fluorine forms the strongest single bond to carbon with the highest bond dissociation energy among natural products. However, fluoroacetate dehalogenases (FADs) have been shown to hydrolyze this bond in fluoroacetate under mild reaction conditions. Furthermore, two recent studies demonstrated that the FAD RPA1163 from Rhodopseudomonas palustris can also accept bulkier substrates. In this study, we explored the substrate promiscuity of microbial FADs and their ability to defluorinate polyfluorinated organic acids. Enzymatic screening of eight purified dehalogenases with reported fluoroacetate defluorination activity revealed significant hydrolytic activity against difluoroacetate in three proteins. Product analysis using liquid chromatography-mass spectrometry identified glyoxylic acid as the final product of enzymatic DFA defluorination. The crystal structures of DAR3835 from Dechloromonas aromatica and NOS0089 from Nostoc sp. were determined in the apo-state along with the DAR3835 H274N glycolyl intermediate. Structure-based site-directed mutagenesis of DAR3835 demonstrated a key role for the catalytic triad and other active site residues in the defluorination of both fluoroacetate and difluoroacetate. Computational analysis of the dimer structures of DAR3835, NOS0089, and RPA1163 indicated the presence of one substrate access tunnel in each protomer. Moreover, protein-ligand docking simulations suggested similar catalytic mechanisms for the defluorination of both fluoroacetate and difluoroacetate, with difluoroacetate being defluorinated via two consecutive defluorination reactions producing glyoxylate as the final product. Thus, our findings provide molecular insights into substrate promiscuity and catalytic mechanism of FADs, which are promising biocatalysts for applications in synthetic chemistry and bioremediation of fluorochemicals.


Assuntos
Fluoracetatos , Hidrolases , Hidrólise , Fluoracetatos/metabolismo , Hidrolases/química
12.
Chemistry ; 18(27): 8392-402, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22674735

RESUMO

The high substrate specificity of fluoroacetate dehalogenase was explored by using crystallographic analysis, fluorescence spectroscopy, and theoretical computations. A crystal structure for the Asp104Ala mutant of the enzyme from Burkholderia sp. FA1 complexed with fluoroacetate was determined at 1.2 Å resolution. The orientation and conformation of bound fluoroacetate is different from those in the crystal structure of the corresponding Asp110Asn mutant of the enzyme from Rhodopseudomonas palustris CGA009 reported recently (J. Am. Chem. Soc. 2011, 133, 7461). The fluorescence of the tryptophan residues of the wild-type and Trp150Phe mutant enzymes from Burkholderia sp. FA1 incubated with fluoroacetate and chloroacetate was measured to gain information on the environment of the tryptophan residues. The environments of the tryptophan residues were found to be different between the fluoroacetate- and chloroacetate-bound enzymes; this would come from different binding modes of these two substrates in the active site. Docking simulations and QM/MM optimizations were performed to predict favorable conformations and orientations of the substrates. The F atom of the substrate is oriented toward Arg108 in the most stable enzyme-fluoroacetate complex. This is a stable but unreactive conformation, in which the small O-C-F angle is not suitable for the S(N)2 displacement of the F(-) ion. The cleavage of the C-F bond is initiated by the conformational change of the substrate to a near attack conformation (NAC) in the active site. The second lowest energy conformation is appropriate for NAC; the C-O distance and the O-C-F angle are reasonable for the S(N) 2 reaction. The activation energy is greatly reduced in this conformation because of three hydrogen bonds between the leaving F atom and surrounding amino acid residues. Chloroacetate cannot reach the reactive conformation, due to the longer C-Cl bond; this results in an increase of the activation energy despite the weaker C-Cl bond.


Assuntos
Burkholderia/enzimologia , Hidrolases/metabolismo , Rodopseudomonas/enzimologia , Espectrometria de Fluorescência/métodos , Sítios de Ligação , Catálise , Simulação por Computador , Fluoracetatos/química , Fluoracetatos/metabolismo , Histidina/química , Hidrolases/química , Modelos Teóricos , Conformação Molecular , Especificidade por Substrato , Triptofano/química , Tirosina/química
13.
Bioorg Chem ; 44: 1-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22858315

RESUMO

Streptomyces cattleya DSM 46488 is unusual in its ability to biosynthesise fluorine containing natural products, where it can produce fluoroacetate and 4-fluorothreonine. The individual enzymes involved in fluorometabolite biosynthesis have already been demonstrated in in vitro investigations. Candidate genes for the individual biosynthetic steps were located from recent genome sequences. In vivo inactivation of individual genes including those encoding the S-adenosyl-l-methionine:fluoride adenosyltransferase (fluorinase, SCATT_41540), 5'-fluoro-5'-deoxyadenosine phosphorylase (SCATT_41550), fluoroacetyl-CoA thioesterase (SCATT_41470), 5-fluoro-5-deoxyribose-1-phosphate isomerase (SCATT_20080) and a 4-fluorothreonine acetaldehyde transaldolase (SCATT_p11780) confirm that they are essential for fluorometabolite production. Notably gene disruption of the transaldolase (SCATT_p11780) resulted in a mutant which could produce fluoroacetate but was blocked in its ability to biosynthesise 4-fluorothreonine, revealing a branchpoint role for the PLP-transaldolase.


Assuntos
Fluoracetatos/metabolismo , Streptomyces/enzimologia , Streptomyces/genética , Treonina/análogos & derivados , Técnicas de Inativação de Genes , Genes Bacterianos , Família Multigênica , Mutação , Streptomyces/metabolismo , Treonina/genética , Treonina/metabolismo , Transaldolase/genética , Transaldolase/metabolismo
14.
ScientificWorldJournal ; 2012: 178254, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22919294

RESUMO

The objective of this paper was to report the isolation of two fluoroacetate degrading bacteria from the rumen of goats. The animals were adult goats, males, crossbred, with rumen fistula, fed with hay, and native pasture. The rumen fluid was obtained through the rumen fistula and immediately was inoculated 100 µL in mineral medium added with 20 mmol L(-1) sodium fluoroacetate (SF), incubated at 39°C in an orbital shaker. Pseudomonas fluorescens (strain DSM 8341) was used as positive control for fluoroacetate dehalogenase activity. Two isolates were identified by 16S rRNA gene sequencing as Pigmentiphaga kullae (ECPB08) and Ancylobacter dichloromethanicus (ECPB09). These bacteria degraded sodium fluoroacetate, releasing 20 mmol L(-1) of fluoride ion after 32 hours of incubation in Brunner medium containing 20 mmol L(-1) of SF. There are no previous reports of fluoroacetate dehalogenase activity for P. kullae and A. dichloromethanicus. Control measures to prevent plant intoxication, including use of fences, herbicides, or other methods of eliminating poisonous plants, have been unsuccessful to avoid poisoning by fluoroacetate containing plants in Brazil. In this way, P. kullae and A. dichloromethanicus may be used to colonize the rumen of susceptible animals to avoid intoxication by fluoroacetate containing plants.


Assuntos
Bactérias/metabolismo , Fluoracetatos/metabolismo , Rúmen/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Brasil , Meios de Cultura , Filogenia , RNA Ribossômico 16S/genética , Navios
15.
ScientificWorldJournal ; 2012: 149893, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22619595

RESUMO

The aim of this work was to isolate and identify bacteria able to degrade sodium fluoroacetate from soil and plant samples collected in areas where the fluoroacetate-containing plants Mascagnia rigida and Palicourea aenofusca are found. The samples were cultivated in mineral medium added with 20 mmol L(-1) sodium fluoroacetate. Seven isolates were identified by 16S rRNA gene sequencing as Paenibacillus sp. (ECPB01), Burkholderia sp. (ECPB02), Cupriavidus sp. (ECPB03), Staphylococcus sp. (ECPB04), Ancylobacter sp. (ECPB05), Ralstonia sp. (ECPB06), and Stenotrophomonas sp. (ECPB07). All seven isolates degraded sodium-fluoroacetate-containing in the medium, reaching defluorination rate of fluoride ion of 20 mmol L(-1). Six of them are reported for the first time as able to degrade sodium fluoroacetate (SF). In the future, some of these microorganisms can be used to establish in the rumen an engineered bacterial population able to degrade sodium fluoroacetate and protect ruminants from the poisoning by this compound.


Assuntos
Bactérias/metabolismo , Flúor/metabolismo , Fluoracetatos/metabolismo , Plantas/microbiologia , Microbiologia do Solo , Animais , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Brasil , Bovinos , Fluoracetatos/intoxicação , Filogenia , Intoxicação/mortalidade , Intoxicação/prevenção & controle , Intoxicação/veterinária , RNA Ribossômico 16S/genética
16.
Phytochemistry ; 202: 113356, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934105

RESUMO

Like angiosperms from several other families, the leguminous shrub Gastrolobium bilobum R.Br. produces and accumulates fluoroacetate, indicating that it performs the difficult chemistry needed to make a C-F bond. Bioinformatic analyses indicate that plants lack homologs of the only enzymes known to make a C-F bond, i.e., the Actinomycete flurorinases that form 5'-fluoro-5'-deoxyadenosine from S-adenosylmethionine and fluoride ion. To probe the origin of fluoroacetate in G. bilobum we first showed that fluoroacetate accumulates to millimolar levels in young leaves but not older leaves, stems or roots, that leaf fluoroacetate levels vary >20-fold between individual plants and are not markedly raised by sodium fluoride treatment. Young leaves were fed adenosine-13C-ribose, 13C-serine, or 13C-acetate to test plausible biosynthetic routes to fluoroacetate from S-adenosylmethionine, a C3-pyridoxal phosphate complex, or acetyl-CoA, respectively. Incorporation of 13C into expected metabolites confirmed that all three precursors were taken up and metabolized. Consistent with the bioinformatic evidence against an Actinomycete-type pathway, no adenosine-13C-ribose was converted to 13C-fluoroacetate; nor was the characteristic 4-fluorothreonine product of the Actinomycete pathway detected. Similarly, no 13C from acetate or serine was incorporated into fluoroacetate. While not fully excluding the hypothetical pathways that were tested, these negative labeling data imply that G. bilobum creates the C-F bond by an unprecedented biochemical reaction. Enzyme(s) that mediate such a reaction could be of great value in pharmaceutical and agrochemical manufacturing.


Assuntos
Fluoretação , S-Adenosilmetionina , Fluoracetatos/química , Fluoracetatos/metabolismo , Plantas/metabolismo , Ribose , Serina
17.
Lett Appl Microbiol ; 53(4): 417-23, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21767280

RESUMO

AIMS: To develop a colorimetric colony-screening assay to facilitate the isolation of micro-organisms capable of defluorination. METHODS AND RESULTS: A metal-dye chelate, zirconium-xylenol orange was used to detect fluoride ions released from a fluorinated substrate through microbial metabolism. Depolymerised zirconium reagent gave the greatest visual contrast for the presence of fluoride compared to more polymerised forms of zirconium reagent. The sensitivity of the assay was greatest when the molar ratio of depolymerised zirconium to xylenol orange was 1:2. Using depolymerised zirconium and xylenol orange (150 and 300 nmol l(-1) respectively), the assay could detect a fluoride application spot (5 mmol l(-1)) containing 50 nmoles of fluoride ions. Most media constituents were well tolerated by the assay, although phosphate ions needed to be restricted to 0.1 g l(-1) and some proteins digest to between 1 and 5 g l(-1). A microbial enrichment culture growing on solidified medium containing 20 mmol l(-1) fluoroacetate was screened using the assay, and defluorinating bacteria belonging to the genus Burkholderia isolated. CONCLUSIONS: A method was developed that is sensitive, rapid and reliable for detecting defluorination by micro-organisms growing on solidified medium. SIGNIFICANCE AND IMPACT OF THE STUDY: This method can be used to facilitate the isolation of micro-organisms capable of defluorination.


Assuntos
Bactérias/isolamento & purificação , Colorimetria/métodos , Bactérias/metabolismo , Corantes/química , Meios de Cultura/química , Fluoracetatos/metabolismo , Humanos , Fenóis , Sensibilidade e Especificidade , Microbiologia do Solo , Sulfóxidos , Xilenos/química , Zircônio/química
18.
Sci Rep ; 10(1): 20539, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239700

RESUMO

Dichapetalum cymosum produces the toxic fluorinated metabolite, fluoroacetate, presumably as a defence mechanism. Given the rarity of fluorinated metabolites in nature, the biosynthetic origin and function of fluoroacetate have been of particular interest. However, the mechanism for fluorination in D. cymosum was never elucidated. More importantly, there is a severe lack in knowledge on a genetic level for fluorometabolite-producing plants, impeding research on the subject. Here, we report on the first transcriptome for D. cymosum and investigate the wound response for insights into fluorometabolite production. Mechanical wounding studies were performed and libraries of the unwounded (control) and wounded (30 and 60 min post wounding) plant were sequenced using the Illumina HiSeq platform. A combined reference assembly generated 77,845 transcripts. Using the SwissProt, TrEMBL, GO, eggNOG, KEGG, Pfam, EC and PlantTFDB databases, a 69% annotation rate was achieved. Differential expression analysis revealed the regulation of 364 genes in response to wounding. The wound responses in D. cymosum included key mechanisms relating to signalling cascades, phytohormone regulation, transcription factors and defence-related secondary metabolites. However, the role of fluoroacetate in inducible wound responses remains unclear. Bacterial fluorinases were searched against the D. cymosum transcriptome but transcripts with homology were not detected suggesting the presence of a potentially different fluorinating enzyme in plants. Nevertheless, the transcriptome produced in this study significantly increases genetic resources available for D. cymosum and will assist with future research into fluorometabolite-producing plants.


Assuntos
Fluoracetatos/metabolismo , Magnoliopsida/genética , Folhas de Planta/genética , Estresse Mecânico , Transcriptoma/genética , Vias Biossintéticas/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética
19.
Cancer Chemother Pharmacol ; 86(5): 693-699, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33011861

RESUMO

PURPOSE: Hyperammonemia is an important adverse event associated with 5-fluorouracil (5FU) from 5FU metabolite accumulation. We present a case of an advanced gastric cancer patient with chronic renal failure, who was treated with 5FU/leucovorin (LV) infusion chemotherapy (2-h infusion of LV and 5FU bolus followed by 46-h 5FU continuous infusion on day 1; repeated every 2 weeks) and developed hyperammonemia, with the aim of exploring an appropriate hemodialysis (HD) schedule to resolve its symptoms. METHODS: The blood concentrations of 5FU and its metabolites, α-fluoro-ß-alanine (FBAL), and monofluoroacetate (FA) of a patient who had hyperammonemia from seven courses of palliative 5FU/LV therapy for gastric cancer were measured by liquid chromatography-mass spectrometry. RESULTS: On the third day of the first cycle, the patient presented with symptomatic hyperammonemia relieved by emergency HD. Thereafter, the 5FU dose was reduced; however, in cycles 2-4, the patient developed symptomatic hyperammonemia and underwent HD on day 3 for hyperammonemia management. In cycles 5-7, the timing of scheduled HD administration was changed from day 3 to day 2, preventing symptomatic hyperammonemia. The maximum ammonia and 5FU metabolite levels were significantly lower in cycles 5-7 than in cycles 2-4 (NH3 75 ± 38 vs 303 ± 119 µg/dL, FBAL 13.7 ± 2.5 vs 19.7 ± 2.0 µg/mL, FA 204.0 ± 91.6 vs 395.9 ± 12.6 ng/mL, mean ± standard deviation, all p < 0.05). After seven cycles, partial response was confirmed. CONCLUSION: HD on day 2 instead of 3 may prevent hyperammonemia in 5FU/LV therapy.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Fluoruracila/efeitos adversos , Hiperamonemia/terapia , Diálise Renal , Neoplasias Gástricas/tratamento farmacológico , Idoso de 80 Anos ou mais , Amônia/sangue , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/sangue , Antimetabólitos Antineoplásicos/metabolismo , Esquema de Medicação , Fluoracetatos/sangue , Fluoracetatos/metabolismo , Fluoruracila/administração & dosagem , Fluoruracila/sangue , Fluoruracila/metabolismo , Humanos , Hiperamonemia/sangue , Hiperamonemia/induzido quimicamente , Hiperamonemia/diagnóstico , Masculino , Fatores de Tempo , Resultado do Tratamento , beta-Alanina/análogos & derivados , beta-Alanina/sangue , beta-Alanina/metabolismo
20.
J Bacteriol ; 191(8): 2630-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19218394

RESUMO

Fluoroacetate dehalogenase catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. The enzyme is unique in that it catalyzes the cleavage of a carbon-fluorine bond of an aliphatic compound: the bond energy of the carbon-fluorine bond is among the highest found in natural products. The enzyme also acts on chloroacetate, although much less efficiently. We here determined the X-ray crystal structure of the enzyme from Burkholderia sp. strain FA1 as the first experimentally determined three-dimensional structure of fluoroacetate dehalogenase. The enzyme belongs to the alpha/beta hydrolase superfamily and exists as a homodimer. Each subunit consists of core and cap domains. The catalytic triad, Asp104-His271-Asp128, of which Asp104 serves as the catalytic nucleophile, was found in the core domain at the domain interface. The active site was composed of Phe34, Asp104, Arg105, Arg108, Asp128, His271, and Phe272 of the core domain and Tyr147, His149, Trp150, and Tyr212 of the cap domain. An electron density peak corresponding to a chloride ion was found in the vicinity of the N(epsilon1) atom of Trp150 and the N(epsilon2) atom of His149, suggesting that these are the halide ion acceptors. Site-directed replacement of each of the active-site residues, except for Trp150, by Ala caused the total loss of the activity toward fluoroacetate and chloroacetate, whereas the replacement of Trp150 caused the loss of the activity only toward fluoroacetate. An interaction between Trp150 and the fluorine atom is probably an absolute requirement for the reduction of the activation energy for the cleavage of the carbon-fluorine bond.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Burkholderia/química , Burkholderia/enzimologia , Hidrolases/química , Hidrolases/metabolismo , Acetatos/metabolismo , Substituição de Aminoácidos/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Análise Mutacional de DNA , Fluoracetatos/metabolismo , Hidrolases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa