Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.526
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(14): 3079-3094.e17, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37321218

RESUMO

Ants communicate via large arrays of pheromones and possess expanded, highly complex olfactory systems, with antennal lobes in the brain comprising up to ∼500 glomeruli. This expansion implies that odors could activate hundreds of glomeruli, which would pose challenges for higher-order processing. To study this problem, we generated transgenic ants expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon imaging, we mapped complete glomerular responses to four ant alarm pheromones. Alarm pheromones robustly activated ≤6 glomeruli, and activity maps for the three pheromones inducing panic alarm in our study species converged on a single glomerulus. These results demonstrate that, rather than using broadly tuned combinatorial encoding, ants employ precise, narrowly tuned, and stereotyped representations of alarm pheromones. The identification of a central sensory hub glomerulus for alarm behavior suggests that a simple neural architecture is sufficient to translate pheromone perception into behavioral outputs.


Assuntos
Formigas , Animais , Formigas/genética , Encéfalo/fisiologia , Odorantes , Feromônios , Olfato/fisiologia , Comportamento Animal
2.
Cell ; 186(20): 4289-4309.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37683635

RESUMO

Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.


Assuntos
Formigas , Animais , Formigas/fisiologia , Barreira Hematoencefálica , Encéfalo/metabolismo , Drosophila , Comportamento Social , Comportamento Animal
3.
Cell ; 184(23): 5807-5823.e14, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34739833

RESUMO

Behavioral plasticity is key to animal survival. Harpegnathos saltator ants can switch between worker and queen-like status (gamergate) depending on the outcome of social conflicts, providing an opportunity to study how distinct behavioral states are achieved in adult brains. Using social and molecular manipulations in live ants and ant neuronal cultures, we show that ecdysone and juvenile hormone drive molecular and functional differences in the brains of workers and gamergates and direct the transcriptional repressor Kr-h1 to different target genes. Depletion of Kr-h1 in the brain caused de-repression of "socially inappropriate" genes: gamergate genes were upregulated in workers, whereas worker genes were upregulated in gamergates. At the phenotypic level, loss of Kr-h1 resulted in the emergence of worker-specific behaviors in gamergates and gamergate-specific traits in workers. We conclude that Kr-h1 is a transcription factor that maintains distinct brain states established in response to socially regulated hormones.


Assuntos
Formigas/genética , Ecdisterona/farmacologia , Hierarquia Social , Proteínas de Insetos/metabolismo , Neurônios/metabolismo , Sesquiterpenos/farmacologia , Comportamento Social , Transcriptoma/genética , Animais , Formigas/efeitos dos fármacos , Formigas/fisiologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma , Neurônios/efeitos dos fármacos , Fenótipo , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
4.
Cell ; 170(4): 748-759.e12, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802044

RESUMO

Social insects are emerging models to study how gene regulation affects behavior because their colonies comprise individuals with the same genomes but greatly different behavioral repertoires. To investigate the molecular mechanisms that activate distinct behaviors in different castes, we exploit a natural behavioral plasticity in Harpegnathos saltator, where adult workers can transition to a reproductive, queen-like state called gamergate. Analysis of brain transcriptomes during the transition reveals that corazonin, a neuropeptide homologous to the vertebrate gonadotropin-releasing hormone, is downregulated as workers become gamergates. Corazonin is also preferentially expressed in workers and/or foragers from other social insect species. Injection of corazonin in transitioning Harpegnathos individuals suppresses expression of vitellogenin in the brain and stimulates worker-like hunting behaviors, while inhibiting gamergate behaviors, such as dueling and egg deposition. We propose that corazonin is a central regulator of caste identity and behavior in social insects.


Assuntos
Formigas/metabolismo , Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Animais , Formigas/genética , Formigas/crescimento & desenvolvimento , Comportamento Animal , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Comportamento Social
5.
Cell ; 170(4): 727-735.e10, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802042

RESUMO

Life inside ant colonies is orchestrated with diverse pheromones, but it is not clear how ants perceive these social signals. It has been proposed that pheromone perception in ants evolved via expansions in the numbers of odorant receptors (ORs) and antennal lobe glomeruli. Here, we generate the first mutant lines in the clonal raider ant, Ooceraea biroi, by disrupting orco, a gene required for the function of all ORs. We find that orco mutants exhibit severe deficiencies in social behavior and fitness, suggesting they are unable to perceive pheromones. Surprisingly, unlike in Drosophila melanogaster, orco mutant ants also lack most of the ∼500 antennal lobe glomeruli found in wild-type ants. These results illustrate that ORs are essential for ant social organization and raise the possibility that, similar to mammals, receptor function is required for the development and/or maintenance of the highly complex olfactory processing areas in the ant brain. VIDEO ABSTRACT.


Assuntos
Formigas/genética , Formigas/fisiologia , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Animais , Antenas de Artrópodes/citologia , Antenas de Artrópodes/fisiologia , Proteínas de Insetos/genética , Mutagênese , Mutação , Odorantes , Receptores Odorantes/genética , Comportamento Social
6.
Cell ; 170(4): 736-747.e9, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802043

RESUMO

Ants exhibit cooperative behaviors and advanced forms of sociality that depend on pheromone-mediated communication. Odorant receptor neurons (ORNs) express specific odorant receptors (ORs) encoded by a dramatically expanded gene family in ants. In most eusocial insects, only the queen can transmit genetic information, restricting genetic studies. In contrast, workers in Harpegnathos saltator ants can be converted into gamergates (pseudoqueens) that can found entire colonies. This feature facilitated CRISPR-Cas9 generation of germline mutations in orco, the gene that encodes the obligate co-receptor of all ORs. orco mutations should significantly impact olfaction. We demonstrate striking functions of Orco in odorant perception, reproductive physiology, and social behavior plasticity. Surprisingly, unlike in other insects, loss of OR functionality also dramatically impairs development of the antennal lobe to which ORNs project. Therefore, the development of genetics in Harpegnathos establishes this ant species as a model organism to study the complexity of eusociality.


Assuntos
Formigas/crescimento & desenvolvimento , Formigas/genética , Proteínas de Insetos/genética , Receptores Odorantes/genética , Comportamento Social , Sequência de Aminoácidos , Animais , Formigas/anatomia & histologia , Formigas/fisiologia , Antenas de Artrópodes/anatomia & histologia , Antenas de Artrópodes/metabolismo , Sequência de Bases , Comportamento Animal , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Feminino , Técnicas de Inativação de Genes , Proteínas de Insetos/química , Masculino , Mutação , Feromônios/metabolismo , Receptores Odorantes/química
7.
Genes Dev ; 37(9-10): 398-417, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257919

RESUMO

Eusocial insect reproductive females show strikingly longer life spans than nonreproductive female workers despite high genetic similarity. In the ant Harpegnathos saltator (Hsal), workers can transition to reproductive "gamergates," acquiring a fivefold prolonged life span by mechanisms that are poorly understood. We found that gamergates have elevated expression of heat shock response (HSR) genes in the absence of heat stress and enhanced survival with heat stress. This HSR gene elevation is driven in part by gamergate-specific up-regulation of the gene encoding a truncated form of a heat shock factor most similar to mammalian HSF2 (hsalHSF2). In workers, hsalHSF2 was bound to DNA only upon heat stress. In gamergates, hsalHSF2 bound to DNA even in the absence of heat stress and was localized to gamergate-biased HSR genes. Expression of hsalHSF2 in Drosophila melanogaster led to enhanced heat shock survival and extended life span in the absence of heat stress. Molecular characterization illuminated multiple parallels between long-lived flies and gamergates, underscoring the centrality of hsalHSF2 to extended ant life span. Hence, ant caste-specific heat stress resilience and extended longevity can be transferred to flies via hsalHSF2. These findings reinforce the critical role of proteostasis in health and aging and reveal novel mechanisms underlying facultative life span extension in ants.


Assuntos
Formigas , Longevidade , Animais , Feminino , Longevidade/genética , Formigas/genética , Drosophila melanogaster/genética , Envelhecimento , Resposta ao Choque Térmico/genética , Mamíferos
8.
Genes Dev ; 35(5-6): 410-424, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602869

RESUMO

Ant societies show a division of labor in which a queen is in charge of reproduction while nonreproductive workers maintain the colony. In Harpegnathos saltator, workers retain reproductive ability, inhibited by the queen pheromones. Following the queen loss, the colony undergoes social unrest with an antennal dueling tournament. Most workers quickly abandon the tournament while a few workers continue the dueling for months and become gamergates (pseudoqueens). However, the temporal dynamics of the social behavior and molecular mechanisms underlining the caste transition and social dominance remain unclear. By tracking behaviors, we show that the gamergate fate is accurately determined 3 d after initiation of the tournament. To identify genetic factors responsible for this commitment, we compared transcriptomes of different tissues between dueling and nondueling workers. We found that juvenile hormone is globally repressed, whereas ecdysone biosynthesis in the ovary is increased in gamergates. We show that molecular changes in the brain serve as earliest caste predictors compared with other tissues. Thus, behavioral and molecular data indicate that despite the prolonged social upheaval, the gamergate fate is rapidly established, suggesting a robust re-establishment of social structure.


Assuntos
Formigas , Comportamento Animal , Animais , Feminino , Formigas/genética , Comportamento Animal/fisiologia , Ovário/metabolismo , Reprodução/genética , Transcriptoma
9.
Nature ; 612(7940): 488-494, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450990

RESUMO

Insect societies are tightly integrated, complex biological systems in which group-level properties arise from the interactions between individuals1-4. However, these interactions have not been studied systematically and therefore remain incompletely known. Here, using a reverse engineering approach, we reveal that unlike solitary insects, ant pupae extrude a secretion derived from the moulting fluid that is rich in nutrients, hormones and neuroactive substances. This secretion elicits parental care behaviour and is rapidly removed and consumed by the adults. This behaviour is crucial for pupal survival; if the secretion is not removed, pupae develop fungal infections and die. Analogous to mammalian milk, the secretion is also an important source of early larval nutrition, and young larvae exhibit stunted growth and decreased survival without access to the fluid. We show that this derived social function of the moulting fluid generalizes across the ants. This secretion thus forms the basis of a central and hitherto overlooked interaction network in ant societies, and constitutes a rare example of how a conserved developmental process can be co-opted to provide the mechanistic basis of social interactions. These results implicate moulting fluids in having a major role in the evolution of ant eusociality.


Assuntos
Formigas , Líquidos Corporais , Muda , Pupa , Comportamento Social , Animais , Formigas/crescimento & desenvolvimento , Formigas/fisiologia , Larva/fisiologia , Muda/fisiologia , Pupa/fisiologia , Líquidos Corporais/fisiologia
10.
Mol Cell ; 77(2): 205-206, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31951544

RESUMO

Glastad et al. (2019) describe a role for the neuronal CoREST corepressor and changes in juvenile hormone (JH) and ecdysone signaling during the reprogramming of social behavioral phenotypes in ants that are reflective of a natural mechanism differentiating "Major" and "Minor" worker ants.


Assuntos
Formigas , Animais , Ecdisona , Epigênese Genética , Hormônios Juvenis , Comportamento Social
11.
Mol Cell ; 77(2): 338-351.e6, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31732456

RESUMO

Ants acquire distinct morphological and behavioral phenotypes arising from a common genome, underscoring the importance of epigenetic regulation. In Camponotus floridanus, "Major" workers defend the colony, but can be epigenetically reprogrammed to forage for food analogously to "Minor" workers. Here, we utilize reprogramming to investigate natural behavioral specification. Reprogramming of Majors upregulates Minor-biased genes and downregulates Major-biased genes, engaging molecular pathways fundamental to foraging behavior. We discover the neuronal corepressor for element-1-silencing transcription factor (CoREST) is upregulated upon reprogramming and required for the epigenetic switch to foraging. Genome-wide profiling during reprogramming reveals CoREST represses expression of enzymes that degrade juvenile hormone (JH), a hormone elevated upon reprogramming. High CoREST, low JH-degrader expression, and high JH levels are mirrored in natural Minors, revealing parallel mechanisms of natural and reprogrammed foraging. These results unveil chromatin regulation via CoREST as central to programming of ant social behavior, with potential far-reaching implications for behavioral epigenetics.


Assuntos
Formigas/genética , Formigas/fisiologia , Comportamento Animal/fisiologia , Proteínas Correpressoras/genética , Epigênese Genética/genética , Proteínas de Insetos/genética , Animais , Cromatina/genética , Genoma/genética , Hormônios Juvenis/genética , Neurônios/fisiologia , Comportamento Social
12.
Annu Rev Genet ; 53: 373-392, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31487469

RESUMO

The Drosophila melanogaster foraging (for) gene is a well-established example of a gene with major effects on behavior and natural variation. This gene is best known for underlying the behavioral strategies of rover and sitter foraging larvae, having been mapped and named for this phenotype. Nevertheless, in the last three decades an extensive array of studies describing for's role as a modifier of behavior in a wide range of phenotypes, in both Drosophila and other organisms, has emerged. Furthermore, recent work reveals new insights into the genetic and molecular underpinnings of how for affects these phenotypes. In this article, we discuss the history of the for gene and its role in natural variation in behavior, plasticity, and behavioral pleiotropy, with special attention to recent findings on the molecular structure and transcriptional regulation of this gene.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Comportamento Alimentar/fisiologia , Interação Gene-Ambiente , Pleiotropia Genética , Animais , Formigas/fisiologia , Drosophila melanogaster/genética , Larva/fisiologia , Memória/fisiologia , Sono/genética , Sono/fisiologia , Comportamento Social , Termotolerância/fisiologia
13.
Proc Natl Acad Sci U S A ; 121(17): e2314772121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621122

RESUMO

Dynamic networks composed of constituents that break and reform bonds reversibly are ubiquitous in nature owing to their modular architectures that enable functions like energy dissipation, self-healing, and even activity. While bond breaking depends only on the current configuration of attachment in these networks, reattachment depends also on the proximity of constituents. Therefore, dynamic networks composed of macroscale constituents (not benefited by the secondary interactions cohering analogous networks composed of molecular-scale constituents) must rely on primary bonds for cohesion and self-repair. Toward understanding how such macroscale networks might adaptively achieve this, we explore the uniaxial tensile response of 2D rafts composed of interlinked fire ants (S. invicta). Through experiments and discrete numerical modeling, we find that ant rafts adaptively stabilize their bonded ant-to-ant interactions in response to tensile strains, indicating catch bond dynamics. Consequently, low-strain rates that should theoretically induce creep mechanics of these rafts instead induce elastic-like response. Our results suggest that this force-stabilization delays dissolution of the rafts and improves toughness. Nevertheless, above 35[Formula: see text] strain low cohesion and stress localization cause nucleation and growth of voids whose coalescence patterns result from force-stabilization. These voids mitigate structural repair until initial raft densities are restored and ants can reconnect across defects. However mechanical recovery of ant rafts during cyclic loading suggests that-even upon reinstatement of initial densities-ants exhibit slower repair kinetics if they were recently loaded at faster strain rates. These results exemplify fire ants' status as active agents capable of memory-driven, stimuli-response for potential inspiration of adaptive structural materials.


Assuntos
Formigas , Formigas Lava-Pés , Animais , Formigas/fisiologia , Física , Microdomínios da Membrana
14.
Proc Natl Acad Sci U S A ; 121(9): e2201598121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38346209

RESUMO

Mechanical grasping and holding devices depend upon a firm and controlled grip. The possibility to improve this gripping performance is severely limited by the need for miniaturization in many applications, such as robotics, microassembly, or surgery. In this paper, we show how this gripping can be improved in one application (the endoscopic needle holder) by understanding and imitating the design principles that evolution has selected to make the mandibles of an ant a powerful natural gripping device. State-of-the-art kinematic, morphological, and engineering approaches show that the ant, in contrast to other insects, has considerable movement within the articulation and the jaw´s rotational axis. We derived three major evolutionary design principles from the ant's biting apparatus: 1) a mobile joint axis, 2) a tilted orientation of the mandibular axis, and 3) force transmission of the adductor muscle to the tip of the mandible. Application of these three principles to a commercially available endoscopic needle holder resulted in calculated force amplification up to 296% and an experimentally measured one up to 433%. This reduced the amount of translations and rotations of the needle, compared to the needle's original design, while retaining its size or outer shape. This study serves as just one example showing how bioengineers might find elegant solutions to their design problems by closely observing the natural world.


Assuntos
Formigas , Mandíbula , Animais , Mandíbula/anatomia & histologia , Agulhas , Formigas/fisiologia , Fenômenos Biomecânicos
15.
Proc Natl Acad Sci U S A ; 121(8): e2320764121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346192

RESUMO

Many animal species rely on the Earth's magnetic field during navigation, but where in the brain magnetic information is processed is still unknown. To unravel this, we manipulated the natural magnetic field at the nest entrance of Cataglyphis desert ants and investigated how this affects relevant brain regions during early compass calibration. We found that manipulating the Earth's magnetic field has profound effects on neuronal plasticity in two sensory integration centers. Magnetic field manipulations interfere with a typical look-back behavior during learning walks of naive ants. Most importantly, structural analyses in the ants' neuronal compass (central complex) and memory centers (mushroom bodies) demonstrate that magnetic information affects neuronal plasticity during early visual learning. This suggests that magnetic information does not only serve as a compass cue for navigation but also as a global reference system crucial for spatial memory formation. We propose a neural circuit for integration of magnetic information into visual guidance networks in the ant brain. Taken together, our results provide an insight into the neural substrate for magnetic navigation in insects.


Assuntos
Formigas , Animais , Formigas/fisiologia , Aprendizagem/fisiologia , Encéfalo , Plasticidade Neuronal/fisiologia , Fenômenos Magnéticos , Comportamento de Retorno ao Território Vital/fisiologia , Sinais (Psicologia) , Clima Desértico
16.
Proc Natl Acad Sci U S A ; 121(11): e2316284121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442176

RESUMO

Entire chromosomes are typically only transmitted vertically from one generation to the next. The horizontal transfer of such chromosomes has long been considered improbable, yet gained recent support in several pathogenic fungi where it may affect the fitness or host specificity. To date, it is unknown how these transfers occur, how common they are, and whether they can occur between different species. In this study, we show multiple independent instances of horizontal transfers of the same accessory chromosome between two distinct strains of the asexual entomopathogenic fungus Metarhizium robertsii during experimental co-infection of its insect host, the Argentine ant. Notably, only the one chromosome-but no other-was transferred from the donor to the recipient strain. The recipient strain, now harboring the accessory chromosome, exhibited a competitive advantage under certain host conditions. By phylogenetic analysis, we further demonstrate that the same accessory chromosome was horizontally transferred in a natural environment between M. robertsii and another congeneric insect pathogen, Metarhizium guizhouense. Hence, horizontal chromosome transfer is not limited to the observed frequent events within species during experimental infections but also occurs naturally across species. The accessory chromosome that was transferred contains genes that may be involved in its preferential horizontal transfer or support its establishment. These genes encode putative histones and histone-modifying enzymes, as well as putative virulence factors. Our study reveals that both intra- and interspecies horizontal transfer of entire chromosomes is more frequent than previously assumed, likely representing a not uncommon mechanism for gene exchange.


Assuntos
Formigas , Animais , Filogenia , Histonas , Insetos , Cromossomos
17.
Proc Natl Acad Sci U S A ; 121(13): e2317795121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38466878

RESUMO

With ~14,000 extant species, ants are ubiquitous and of tremendous ecological importance. They have undergone remarkable diversification throughout their evolutionary history. However, the drivers of their diversity dynamics are not well quantified or understood. Previous phylogenetic analyses have suggested patterns of diversity dynamics associated with the Angiosperm Terrestrial Revolution (ATR), but these studies have overlooked valuable information from the fossil record. To address this gap, we conducted a comprehensive analysis using a large dataset that includes both the ant fossil record (~24,000 individual occurrences) and neontological data (~14,000 occurrences), and tested four hypotheses proposed for ant diversification: co-diversification, competitive extinction, hyper-specialization, and buffered extinction. Taking into account biases in the fossil record, we found three distinct diversification periods (the latest Cretaceous, Eocene, and Oligo-Miocene) and one extinction period (Late Cretaceous). The competitive extinction hypothesis between stem and crown ants is not supported. Instead, we found support for the co-diversification, buffered extinction, and hyper-specialization hypotheses. The environmental changes of the ATR, mediated by the angiosperm radiation, likely played a critical role in buffering ants against extinction and favoring their diversification by providing new ecological niches, such as forest litter and arboreal nesting sites, and additional resources. We also hypothesize that the decline and extinction of stem ants during the Late Cretaceous was due to their hyper-specialized morphology, which limited their ability to expand their dietary niche in changing environments. This study highlights the importance of a holistic approach when studying the interplay between past environments and the evolutionary trajectories of organisms.


Assuntos
Formigas , Magnoliopsida , Animais , Filogenia , Evolução Biológica , Fósseis , Extinção Biológica , Biodiversidade
18.
PLoS Biol ; 21(7): e3002203, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486940

RESUMO

The physiology and behavior of social organisms correlate with their social environments. However, because social environments are typically confounded by age and physical environments (i.e., spatial location and associated abiotic factors), these correlations are usually difficult to interpret. For example, associations between an individual's social environment and its gene expression patterns may result from both factors being driven by age or behavior. Simultaneous measurement of pertinent variables and quantification of the correlations between these variables can indicate whether relationships are direct (and possibly causal) or indirect. Here, we combine demographic and automated behavioral tracking with a multiomic approach to dissect the correlation structure among the social and physical environment, age, behavior, brain gene expression, and microbiota composition in the carpenter ant Camponotus fellah. Variations in physiology and behavior were most strongly correlated with the social environment. Moreover, seemingly strong correlations between brain gene expression and microbiota composition, physical environment, age, and behavior became weak when controlling for the social environment. Consistent with this, a machine learning analysis revealed that from brain gene expression data, an individual's social environment can be more accurately predicted than any other behavioral metric. These results indicate that social environment is a key regulator of behavior and physiology.


Assuntos
Formigas , Microbiota , Animais , Formigas/genética , Comportamento Social , Microbiota/genética , Encéfalo , Expressão Gênica/genética , Rede Social
19.
Nature ; 585(7824): 239-244, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879485

RESUMO

Obligate endosymbiosis, in which distantly related species integrate to form a single replicating individual, represents a major evolutionary transition in individuality1-3. Although such transitions are thought to increase biological complexity1,2,4-6, the evolutionary and developmental steps that lead to integration remain poorly understood. Here we show that obligate endosymbiosis between the bacteria Blochmannia and the hyperdiverse ant tribe Camponotini7-11 originated and also elaborated through radical alterations in embryonic development, as compared to other insects. The Hox genes Abdominal A (abdA) and Ultrabithorax (Ubx)-which, in arthropods, normally function to differentiate abdominal and thoracic segments after they form-were rewired to also regulate germline genes early in development. Consequently, the mRNAs and proteins of these Hox genes are expressed maternally and colocalize at a subcellular level with those of germline genes in the germplasm and three novel locations in the freshly laid egg. Blochmannia bacteria then selectively regulate these mRNAs and proteins to make each of these four locations functionally distinct, creating a system of coordinates in the embryo in which each location performs a different function to integrate Blochmannia into the Camponotini. Finally, we show that the capacity to localize mRNAs and proteins to new locations in the embryo evolved before obligate endosymbiosis and was subsequently co-opted by Blochmannia and Camponotini. This pre-existing molecular capacity converged with a pre-existing ecological mutualism12,13 to facilitate both the horizontal transfer10 and developmental integration of Blochmannia into Camponotini. Therefore, the convergence of pre-existing molecular capacities and ecological interactions-as well as the rewiring of highly conserved gene networks-may be a general feature that facilitates the origin and elaboration of major transitions in individuality.


Assuntos
Formigas/embriologia , Formigas/microbiologia , Bactérias , Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento/genética , Individualidade , Simbiose/genética , Animais , Formigas/citologia , Formigas/genética , Desenvolvimento Embrionário/genética , Feminino , Genes Homeobox/genética , Herança Materna/genética , Oócitos/citologia , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Proc Natl Acad Sci U S A ; 120(29): e2216217120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428910

RESUMO

Animals are often faced with time-critical decisions without prior information about their actions' outcomes. In such scenarios, individuals budget their investment into the task to cut their losses in case of an adverse outcome. In animal groups, this may be challenging because group members can only access local information, and consensus can only be achieved through distributed interactions among individuals. Here, we combined experimental analyses with theoretical modeling to investigate how groups modulate their investment into tasks in uncertain conditions. Workers of the arboreal weaver ant Oecophylla smaragdina form three-dimensional chains using their own bodies to bridge vertical gaps between existing trails and new areas to explore. The cost of a chain increases with its length because ants participating in the structure are prevented from performing other tasks. The payoffs of chain formation, however, remain unknown to the ants until the chain is complete and they can explore the new area. We demonstrate that weaver ants cap their investment into chains, and do not form complete chains when the gap is taller than 90 mm. We show that individual ants budget the time they spend in chains depending on their distance to the ground, and propose a distance-based model of chain formation that explains the emergence of this tradeoff without the need to invoke complex cognition. Our study provides insights into the proximate mechanisms that lead individuals to engage (or not) in collective actions and furthers our knowledge of how decentralized groups make adaptive decisions in uncertain conditions.


Assuntos
Formigas , Cognição , Animais , Incerteza , Consenso
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa