Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.193
Filtrar
1.
J Neurosci ; 44(28)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38830761

RESUMO

The vagal ganglia, comprised of the superior (jugular) and inferior (nodose) ganglia of the vagus nerve, receive somatosensory information from the head and neck or viscerosensory information from the inner organs, respectively. Developmentally, the cranial neural crest gives rise to all vagal glial cells and to neurons of the jugular ganglia, while the epibranchial placode gives rise to neurons of the nodose ganglia. Crest-derived nodose glial progenitors can additionally generate autonomic neurons in the peripheral nervous system, but how these progenitors generate neurons is unknown. Here, we found that some Sox10+ neural crest-derived cells in, and surrounding, the nodose ganglion transiently expressed Phox2b, a master regulator of autonomic nervous system development, during early embryonic life. Our genetic lineage-tracing analysis in mice of either sex revealed that despite their common developmental origin and extreme spatial proximity, a substantial proportion of glial cells in the nodose, but not in the neighboring jugular ganglia, have a history of Phox2b expression. We used single-cell RNA-sequencing to demonstrate that these progenitors give rise to all major glial subtypes in the nodose ganglia, including Schwann cells, satellite glia, and glial precursors, and mapped their spatial distribution by in situ hybridization. Lastly, integration analysis revealed transcriptomic similarities between nodose and dorsal root ganglia glial subtypes and revealed immature nodose glial subtypes. Our work demonstrates that these crest-derived nodose glial progenitors transiently express Phox2b, give rise to the entire complement of nodose glial cells, and display a transcriptional program that may underlie their bipotent nature.


Assuntos
Proteínas de Homeodomínio , Crista Neural , Neuroglia , Gânglio Nodoso , Fatores de Transcrição , Animais , Gânglio Nodoso/citologia , Gânglio Nodoso/metabolismo , Camundongos , Neuroglia/metabolismo , Neuroglia/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Feminino , Masculino , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Camundongos Endogâmicos C57BL
2.
Cell Tissue Res ; 396(3): 313-327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38383905

RESUMO

Understanding how the gut communicates with the brain, via sensory nerves, is of significant interest to medical science. Enteroendocrine cells (EEC) that line the mucosa of the gastrointestinal tract release neurochemicals, including the largest quantity of 5-hydroxytryptamine (5-HT). How the release of substances, like 5-HT, from enterochromaffin (EC) cells activates vagal afferent nerve endings is unresolved. We performed anterograde labelling from nodose ganglia in vivo and identified vagal afferent axons and nerve endings in the mucosa of whole-mount full-length preparations of mouse colon. We then determined the spatial relationship between mucosal-projecting vagal afferent nerve endings and EC cells in situ using 3D imaging. The mean distances between vagal afferent nerve endings in the mucosa, or nearest varicosities along vagal afferent axon branches, and the nearest EC cell were 29.6 ± 19.2 µm (n = 107, N = 6) and 25.7 ± 15.2 µm (n = 119, N = 6), respectively. No vagal afferent endings made close contacts with EC cells. The distances between EC cells and vagal afferent endings are many hundreds of times greater than known distances between pre- and post-synaptic membranes (typically 10-20 nm) that underlie synaptic transmission in vertebrates. The absence of any close physical contacts between 5-HT-containing EC cells and vagal afferent nerve endings in the mucosa leads to the inescapable conclusion that the mechanism by which 5-HT release from ECs in the colonic mucosa occurs in a paracrine fashion, to activate vagal afferents.


Assuntos
Colo , Células Enterocromafins , Nervo Vago , Animais , Células Enterocromafins/metabolismo , Colo/inervação , Nervo Vago/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Terminações Nervosas , Gânglio Nodoso/citologia , Neurônios Aferentes
3.
J Physiol ; 601(6): 1139-1150, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36750759

RESUMO

The influence of NaV 1.9 on inflammatory mediator-induced activation of airway vagal nodose C-fibres was evaluated by comparing responses in wild-type versus NaV 1.9-/- mice. A single-cell RT-PCR analysis indicated that virtually all nodose C-fibre neurons expressed NaV 1.9 (SCN11A) mRNA. Using extracellular electrophysiological recordings in an isolated vagally innervated mouse trachea-lung preparation, it was noted that mediators acting via G protein-coupled receptors (PAR2), or ionotropic receptors (P2×3) were 70-85% less effective in evoking action potential discharge in the absence of NaV 1.9. However, there was no difference in action potential discharge between wild-type and NaV 1.9-/- when the stimulus was a rapid punctate mechanical stimulus. An analysis of the passive and active properties of isolated nodose neurons revealed no difference between neurons from wild-type and NaV 1.9-/- mice, with the exception of a modest difference in the duration of the afterhyperpolarization. There was also no difference in the amount of current required to evoke action potentials (rheobase) or the action potential voltage threshold. The inward current evoked by the chemical mediator by a P2×3 agonist was the same in wild-type versus NaV 1.9-/- neurons. However, the current was sufficient to evoke action potential only in the wild-type neurons. The data support the speculation that NaV 1.9 could be an attractive therapeutic target for inflammatory airway disease by selectively inhibiting inflammatory mediator-associated vagal C-fibre activation. KEY POINTS: Inflammatory mediators were much less effective in activating the terminals of vagal airway C-fibres in mice lacking NaV 1.9. The active and passive properties of nodose neurons were the same between wild-type neurons and NaV 1.9-/- neurons. Nerves lacking NaV 1.9 responded, normally, with action potential discharge to rapid punctate mechanical stimulation of the terminals or the rapid stimulation of the cell bodies with inward current injections. NaV 1.9 channels could be an attractive target to selectively inhibit vagal nociceptive C-fibre activation evoked by inflammatory mediators without blocking the nerves' responses to the potentially hazardous stimuli associated with aspiration.


Assuntos
Pulmão , Nervo Vago , Animais , Camundongos , Nervo Vago/fisiologia , Pulmão/fisiologia , Neurônios , Potenciais de Ação/fisiologia , Traqueia/inervação , Gânglio Nodoso/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.9
4.
J Physiol ; 601(10): 1881-1896, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36975145

RESUMO

Circadian regulation of autonomic reflex pathways pairs physiological function with the daily light cycle. The brainstem nucleus of the solitary tract (NTS) is a key candidate for rhythmic control of the autonomic nervous system. Here we investigated circadian regulation of NTS neurotransmission and synaptic throughput using patch-clamp electrophysiology in brainstem slices from mice. We found that spontaneous quantal glutamate release onto NTS neurons showed strong circadian rhythmicity, with the highest rate of release during the light phase and the lowest in the dark, that were sufficient to drive day/night differences in constitutive postsynaptic action potential firing. In contrast, afferent evoked action potential throughput was enhanced during the dark and diminished in the light. Afferent-driven synchronous release pathways showed a similar decrease in release probability that did not explain the enhanced synaptic throughput during the night. However, analysis of postsynaptic membrane properties revealed diurnal changes in conductance, which, when coupled with the circadian changes in glutamate release pathways, tuned synaptic throughput between the light and dark phases. These coordinated pre-/postsynaptic changes encode nuanced control over synaptic performance and pair NTS action potential firing and vagal throughput with time of day. KEY POINTS: Vagal afferent neurons relay information from peripheral organs to the brainstem nucleus of the solitary tract (NTS) to initiate autonomic reflex pathways as well as providing important controls of food intake, digestive function and energy balance. Vagally mediated reflexes and behaviours are under strong circadian regulation. Diurnal fluctuations in presynaptic vesicle release pathways and postsynaptic membrane conductances provide nuanced control over NTS action potential firing and vagal synaptic throughput. Coordinated pre-/postsynaptic changes represent a fundamental mechanism mediating daily changes in vagal afferent signalling and autonomic function.


Assuntos
Ritmo Circadiano , Ácido Glutâmico , Núcleo Solitário , Sinapses , Ritmo Circadiano/fisiologia , Ácido Glutâmico/metabolismo , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Sinapses/metabolismo , Neurônios Aferentes/metabolismo , Nervo Vago/citologia , Nervo Vago/fisiologia , Potenciais de Ação , Masculino , Animais , Camundongos , Gânglio Nodoso/metabolismo , Transdução de Sinais , Condutividade Elétrica , Técnicas de Patch-Clamp
5.
Cell Mol Neurobiol ; 43(6): 2801-2813, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36680690

RESUMO

Vagus nerve innervates several organs including the heart, stomach, and pancreas among others. Somas of sensory neurons that project through the vagal nerve are located in the nodose ganglion. The presence of purinergic receptors has been reported in neurons and satellite glial cells in several sensory ganglia. In the nodose ganglion, calcium depletion-induced increases in neuron activity can be partly reversed by P2X7 blockers applied directly into the ganglion. The later suggest a possible role of P2X7 receptors in the modulation of neuronal activity within this sensory ganglion. We aimed to characterize the response to P2X7 activation in nodose ganglion neurons under physiological conditions. Using an ex vivo preparation for electrophysiological recordings of the neural discharges of nodose ganglion neurons, we found that treatments with ATP induce transient neuronal activity increases. Also, we found a concentration-dependent increase in neural activity in response to Bz-ATP (ED50 = 0.62 mM, a selective P2X7 receptor agonist), with a clear desensitization pattern when applied every ~ 30 s. Electrophysiological recordings from isolated nodose ganglion neurons reveal no differences in the responses to Bz-ATP and ATP. Finally, we showed that the P2X7 receptor was expressed in the rat nodose ganglion, both in neurons and satellite glial cells. Additionally, a P2X7 receptor negative allosteric modulator decreased the duration of Bz-ATP-induced maximal responses without affecting their amplitude. Our results show the presence of functional P2X7 receptors under physiological conditions within the nodose ganglion of the rat, and suggest that ATP modulation of nodose ganglion activity may be in part mediated by the activation of P2X7 receptors.


Assuntos
Gânglio Nodoso , Receptores Purinérgicos P2X7 , Ratos , Animais , Gânglio Nodoso/fisiologia , Nervo Vago/fisiologia , Trifosfato de Adenosina/farmacologia , Células Receptoras Sensoriais
6.
Nature ; 541(7636): 176-181, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28002412

RESUMO

Respiratory dysfunction is a notorious cause of perinatal mortality in infants and sleep apnoea in adults, but the mechanisms of respiratory control are not clearly understood. Mechanical signals transduced by airway-innervating sensory neurons control respiration; however, the physiological significance and molecular mechanisms of these signals remain obscured. Here we show that global and sensory neuron-specific ablation of the mechanically activated ion channel Piezo2 causes respiratory distress and death in newborn mice. Optogenetic activation of Piezo2+ vagal sensory neurons causes apnoea in adult mice. Moreover, induced ablation of Piezo2 in sensory neurons of adult mice causes decreased neuronal responses to lung inflation, an impaired Hering-Breuer mechanoreflex, and increased tidal volume under normal conditions. These phenotypes are reproduced in mice lacking Piezo2 in the nodose ganglion. Our data suggest that Piezo2 is an airway stretch sensor and that Piezo2-mediated mechanotransduction within various airway-innervating sensory neurons is critical for establishing efficient respiration at birth and maintaining normal breathing in adults.


Assuntos
Apneia/fisiopatologia , Canais Iônicos/metabolismo , Pulmão/fisiologia , Pulmão/fisiopatologia , Mecanotransdução Celular/fisiologia , Reflexo/fisiologia , Animais , Animais Recém-Nascidos , Apneia/genética , Morte , Feminino , Canais Iônicos/deficiência , Canais Iônicos/genética , Masculino , Mecanotransdução Celular/genética , Camundongos , Gânglio Nodoso/metabolismo , Reflexo/genética , Respiração , Células Receptoras Sensoriais/metabolismo , Volume de Ventilação Pulmonar
7.
Can J Physiol Pharmacol ; 101(10): 521-528, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37311256

RESUMO

Vagal afferents convey signals of mechanical stimulation in the gut to the brain, which is essential for the regulation of food intake. However, ion channels sensing mechanical stimuli are not fully understood. This study aimed to examine the ionic currents activated by mechanical stimulation and a possible neuro-modulatory role of nitric oxide on vagal afferents. Nodose neuronal currents and potentials, and intestinal afferent firing by mechanical stimulation were measured by whole-cell patch clamp, and in vitro afferent recording, respectively. Osmotically activated cation and two-pore domain K+ currents were identified in nodose neurons. The membrane potential displayed a biphasic change under hypotonic stimulation. Cation channel-mediated depolarization was followed by a hyperpolarization mediated by K+ channels. The latter was inhibited by l-methionine (TREK1 channel inhibitor) and l-NNA (nitric oxide synthase inhibitor). Correspondingly, mechanical stimulation activated opposing cation and TREK1 currents. NOS inhibition decreased TREK1 currents and potentiated jejunal afferent nerve firing induced by mechanical stimuli. This study suggested a novel activation mechanism of ion channels underlying adaptation under mechanical distension in vagal afferent neurons. The guts' ability to perceive mechanical stimuli is vital in determining how it responds to food intake. The mechanosensation through ion channels could initiate and control gut function.


Assuntos
Óxido Nítrico , Gânglio Nodoso , Gânglio Nodoso/fisiologia , Nervo Vago , Neurônios Aferentes/fisiologia , Neurônios
8.
J Physiol ; 600(12): 2953-2971, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430729

RESUMO

The KV 1/D-type potassium current (ID ) is an important determinant of neuronal excitability. This study explored whether and how ID channels regulate the activation of bronchopulmonary vagal afferent nerves. The single-neuron RT-PCR assay revealed that nearly all mouse bronchopulmonary nodose neurons expressed the transcripts of α-dendrotoxin (α-DTX)-sensitive, ID channel-forming KV 1.1, KV 1.2 and/or KV 1.6 α-subunits, with the expression of KV 1.6 being most prevalent. Patch-clamp recordings showed that ID , defined as the α-DTX-sensitive K+ current, activated at voltages slightly more negative than the resting membrane potential in lung-specific nodose neurons and displayed little inactivation at subthreshold voltages. Inhibition of ID channels by α-DTX depolarized the lung-specific nodose neurons and caused an increase in input resistance, decrease in rheobase, as well as increase in action potential number and firing frequency in response to suprathreshold current steps. Application of α-DTX to the lungs via trachea in the mouse ex vivo vagally innervated trachea-lungs preparation led to action potential discharges in nearly half of bronchopulmonary nodose afferent nerve fibres, including nodose C-fibres, as detected by the two-photon microscopic Ca2+ imaging technique and extracellular electrophysiological recordings. In conclusion, ID channels act as a critical brake on the activation of bronchopulmonary vagal afferent nerves by stabilizing the membrane potential, counterbalancing the subthreshold depolarization and promoting the adaptation of action potential firings. Down-regulation of ID channels, as occurs in various inflammatory diseases, may contribute to the enhanced C-fibre activity in airway diseases that are associated with excessive coughing, dyspnoea, and reflex bronchospasm and secretions. KEY POINTS: The α-dendrotoxin (α-DTX)-sensitive D-type K+ current (ID ) is an important determinant of neuronal excitability. Nearly all bronchopulmonary nodose afferent neurons in the mouse express ID and the transcripts of α-DTX-sensitive, ID channel-forming KV 1.1, KV 1.2 and/or KV 1.6 α-subunits. Inhibition of ID channels by α-DTX depolarizes the bronchopulmonary nodose neurons, reduces the minimal depolarizing current needed to evoke an action potential (AP) and increases AP number and AP firing frequency in response to suprathreshold stimulations. Application of α-DTX to the lungs ex vivo elicits AP discharges in about half of bronchopulmonary nodose C-fibre terminals. Our novel finding that ID channels act as a critical brake on the activation of bronchopulmonary vagal afferent nerves suggests that their down-regulation, as occurs in various inflammatory diseases, may contribute to the enhanced C-fibre activity in airway inflammation associated with excessive respiratory symptoms.


Assuntos
Canais de Potássio , Nervo Vago , Potenciais de Ação/fisiologia , Animais , Potenciais da Membrana/fisiologia , Camundongos , Neurônios Aferentes , Gânglio Nodoso , Técnicas de Patch-Clamp , Canais de Potássio/metabolismo , Nervo Vago/fisiologia
9.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L50-L63, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755535

RESUMO

Known as the gas exchange organ, the lung is also critical for responding to the aerosol environment in part through interaction with the nervous system. The diversity and specificity of lung innervating neurons remain poorly understood. Here, we interrogated the cell body location and molecular signature and projection pattern of lung innervating sensory neurons. Retrograde tracing from the lung coupled with whole tissue clearing highlighted neurons primarily in the vagal ganglia. Centrally, they project specifically to the nucleus of the solitary tract in the brainstem. Peripherally, they enter the lung alongside branching airways. Labeling of nociceptor Trpv1+ versus peptidergic Tac1+ vagal neurons showed shared and distinct terminal morphology and targeting to airway smooth muscles, vasculature including lymphatics, and alveoli. Notably, a small population of vagal neurons that are Calb1+ preferentially innervate pulmonary neuroendocrine cells, a demonstrated airway sensor population. This atlas of lung innervating neurons serves as a foundation for understanding their function in lung.


Assuntos
Pulmão/inervação , Células Receptoras Sensoriais/fisiologia , Células Epiteliais Alveolares/metabolismo , Animais , Tronco Encefálico/fisiologia , Calbindinas/metabolismo , Perfilação da Expressão Gênica , Integrases/metabolismo , Pulmão/irrigação sanguínea , Camundongos , Modelos Biológicos , Músculo Liso/fisiologia , Células Neuroendócrinas/metabolismo , Gânglio Nodoso/fisiologia , Traqueia/inervação , Nervo Vago/fisiologia
10.
Gastroenterology ; 160(3): 875-888.e11, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33121946

RESUMO

BACKGROUND AND AIMS: Destroying visceral sensory nerves impacts pancreatic islet function, glucose metabolism, and diabetes onset, but how islet endocrine cells interact with sensory neurons has not been studied. METHODS: We characterized the anatomical pattern of pancreatic sensory innervation by combining viral tracing, immunohistochemistry, and reporter mouse models. To assess the functional interactions of ß-cells with vagal sensory neurons, we recorded Ca2+ responses in individual nodose neurons in vivo while selectively stimulating ß-cells with chemogenetic and pharmacologic approaches. RESULTS: We found that pancreatic islets are innervated by vagal sensory axons expressing Phox2b, substance P, calcitonin-gene related peptide, and the serotonin receptor 5-HT3R. Centrally, vagal neurons projecting to the pancreas terminate in the commissural nucleus of the solitary tract. Nodose neurons responded in vivo to chemogenetic stimulation of ß-cells and to pancreas infusion with serotonin, but were not sensitive to insulin. Responses to chemogenetic and pharmacologic stimulation of ß-cells were blocked by a 5-HT3R antagonist and were enhanced by increasing serotonin levels in ß-cells. We further confirmed directly in living pancreas slices that sensory terminals in the islet were sensitive to serotonin. CONCLUSIONS: Our study establishes that pancreatic ß-cells communicate with vagal sensory neurons, likely using serotonin signaling as a transduction mechanism. Serotonin is coreleased with insulin and may therefore convey information about the secretory state of ß-cells via vagal afferent nerves.


Assuntos
Vias Aferentes/fisiologia , Comunicação Celular , Células Secretoras de Insulina/fisiologia , Gânglio Nodoso/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Feminino , Insulina/metabolismo , Microscopia Intravital , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Modelos Animais , Gânglio Nodoso/citologia , Serotonina/metabolismo , Transdução de Sinais/fisiologia
11.
Biochem Biophys Res Commun ; 608: 66-72, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35390674

RESUMO

Enteroendocrine cells (EECs) are the primary sensory cells that sense the gut luminal environment and secret hormones to regulate organ function. Recent studies revealed that vagal afferent neurons are connected to EECs and relay sensory information from EECs to the brain stem. To date, however, the identity of vagal afferent neurons connected to a given EEC subtype and the mode of their gene responses to its intestinal hormone have remained unknown. Hypothesizing that EEC-associated vagal afferent neurons change their gene expression in response to the microbiota-related extracellular stimuli, we conducted comparative gene expression analyses of the nodose-petrosal ganglion complex (NPG) using specific pathogen-free (SPF) and germ-free (GF) mice. We report here that the Uts2b gene, which encodes a functionally unknown neuropeptide, urotensin 2B (UTS2B), is expressed in a microbiota-dependent manner in NPG neurons. In cultured NPG neurons, expression of Uts2b was induced by AR420626, the selective agonist for FFAR3. Moreover, distinct gastrointestinal hormones exerted differential effects on Uts2b expression in NPG neurons, where cholecystokinin (CCK) significantly increased its expression. The majority of Uts2b-expressing NPG neurons expressed CCK-A, the receptor for CCK, which comprised approximately 25% of all CCK-A-expressing NPG neurons. Selective fluorescent labeling of Uts2b-expressing NPG neurons revealed a direct contact of their nerve fibers to CCK-expressing EECs. This study identifies the Uts2b as a microbiota-regulated gene, demonstrates that Uts2b-expressing vagal afferent neurons transduce sensory information from CCK-expressing EECs to the brain, and suggests potential involvement of UTS2B in a modality of CCK actions.


Assuntos
Colecistocinina , Peptídeos e Proteínas de Sinalização Intracelular , Microbiota , Neurônios Aferentes , Hormônios Peptídicos , Nervo Vago , Animais , Colecistocinina/genética , Colecistocinina/metabolismo , Células Enteroendócrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Neurônios Aferentes/metabolismo , Gânglio Nodoso/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Nervo Vago/metabolismo
12.
Int J Obes (Lond) ; 46(6): 1212-1221, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35241786

RESUMO

BACKGROUND/OBJECTIVES: Disrupted leptin signaling in vagal afferent neurons contributes to hyperphagia and obesity. Thus, we tested the hypothesis that intrinsic negative regulators of leptin signaling, suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) underlie dysfunctional leptin-mediated vagal afferent satiety signaling during obesity. METHODS: Experiments were performed on standard chow-fed control mice, high-fat fed (HFF), or low-fat fed (LFF) mice. SOCS3 and PTP1B expression were quantified using western blot and quantitative PCR. Nodose ganglion neuronal excitability and jejunal afferent sensitivity were measured by patch clamp and extracellular afferent recordings, respectively. RESULTS: Increased expression of SOCS3 and PTP1B were observed in the jejunum of HFF mice. Prolonged incubation with leptin attenuated nodose ganglion neuronal excitability, and this effect was reversed by inhibition of SOCS3. Leptin potentiated jejunal afferent nerve responses to CCK in LFF mice but decreased them in HFF mice. Inhibition of SOCS3 restored impaired vagal afferent neuronal excitability and afferent nerve responses to satiety mediators during obesity. Two-pore domain K+ channel (K2P) conductance and nitric oxide (NO) production that we previously demonstrated were elevated during obesity were decreased by inhibitions of SOCS3 or PTP1B. CONCLUSIONS: This study suggests that obesity impairs vagal afferent sensitivity via SOCS3 and PTP1B, likely as a consequence of obesity-induced hyperleptinemia. The mechanisms underlying leptin resistance appear also to cause a more global impairment of satiety-related vagal afferent responsiveness.


Assuntos
Leptina , Obesidade , Animais , Leptina/metabolismo , Camundongos , Gânglio Nodoso/metabolismo , Obesidade/metabolismo , Saciação/fisiologia , Nervo Vago/fisiologia
13.
J Anat ; 241(2): 230-244, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396708

RESUMO

Vagal afferents regulate numerous physiological functions including arterial blood pressure, heart rate, breathing, and nociception. Cell bodies of vagal afferents reside in the inferior vagal (nodose) ganglia and their stimulation by various means is being considered as a way to regulate cardiorespiratory responses and control pain sensations. Stimulation of the nodose by exposure to infrared light is recently being considered as a precise way to elicit responses. These responses would likely involve the activity of temperature-sensitive membrane-bound channels. While papers have been published to track the expression of these transient receptor potential ion channels (TRPs), further studies are warranted to determine the in situ expression of the endogenous TRP proteins in the nodose ganglia to fully understand their pattern of expression, subcellular locations, and functions in this animal model. TRP ion channels are a superfamily of Na+ /Ca2+ -channels whose members are temperature- and/or mechano-sensitive and therefore represent a potential set of proteins that will be activated directly or indirectly by infrared light. Here, we report the spatial localization of six TRP channels, TRPV1, TRPV4, TRPM3, TRPM8, TRPA1, and TRPC1, from nodose ganglia taken from juvenile male Sprague-Dawley rats. The channels were detected using immunohistology with fluorescent tags on cryosections and imaged using confocal microscopy. All six TRP channels were detected with different levels of intensity in neuronal cell bodies and some were also detected in axonal fibers and blood vessels. The TRP receptors differed in their prevalence, in their patterns of expression, and in subcellular expression/localization. More specifically, TRPV1, TRPV4, TRPA1, TRPM8, TRPC1, and TRPM3 were found in vagal afferent cell bodies with a wide range of immunostaining intensity from neuron to neuron. Immunostaining for TRPV1, TRPV4, and TRPA1 appeared as fine particles scattered throughout the cytoplasm of the cell body. Intense TRPV1 immunostaining was also evident in a subset of axonal fibers. TRPM8 and TRPC1 were expressed in courser particles suggesting different subcellular compartments than for TRPV1. The localization of TRPM3 differed markedly from the other TRP channels with an immunostaining pattern that was localized to the periphery of a subset of cell bodies, whereas a scattering or no immunostaining was detected within the bulk of the cytoplasm. TRPV4 and TRPC1 were also expressed on the walls of blood vessels. The finding that all six TRP channels (representing four subfamilies) were present in the nodose ganglia provides the basis for studies designed to understand the roles of these channels in sensory transmission within vagal afferent fibers and in the responses elicited by exposure of nodose ganglia to infrared light and other stimuli. Depending on the location and functionality of the TRP channels, they may regulate the flux of Na+ /Ca2+ -across the membranes of cell bodies and axons of sensory afferents, efferent (motor) fibers coursing through the ganglia, and in vascular smooth muscle.


Assuntos
Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Animais , Masculino , Gânglio Nodoso/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório/metabolismo , Nervo Vago/metabolismo
14.
J Neurosci ; 40(38): 7216-7228, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817244

RESUMO

Viscera receive innervation from sensory ganglia located adjacent to multiple levels of the brainstem and spinal cord. Here we examined whether molecular profiling could be used to identify functional clusters of colon afferents from thoracolumbar (TL), lumbosacral (LS), and nodose ganglia (NG) in male and female mice. Profiling of TL and LS bladder afferents was also performed. Visceral afferents were back-labeled using retrograde tracers injected into proximal and distal regions of colon or bladder, followed by single-cell qRT-PCR and analysis via an automated hierarchical clustering method. Genes were chosen for assay (32 for bladder; 48 for colon) based on their established role in stimulus detection, regulation of sensitivity/function, or neuroimmune interaction. A total of 132 colon afferents (from NG, TL, and LS ganglia) and 128 bladder afferents (from TL and LS ganglia) were analyzed. Retrograde labeling from the colon showed that NG and TL afferents innervate proximal and distal regions of the colon, whereas 98% of LS afferents only project to distal regions. There were clusters of colon and bladder afferents, defined by mRNA profiling, that localized to either TL or LS ganglia. Mixed TL/LS clustering also was found. In addition, transcriptionally, NG colon afferents were almost completely segregated from colon TL and LS neurons. Furthermore, colon and bladder afferents expressed genes at similar levels, although different gene combinations defined the clusters. These results indicate that genes implicated in both homeostatic regulation and conscious sensations are found at all anatomic levels, suggesting that afferents from different portions of the neuraxis have overlapping functions.SIGNIFICANCE STATEMENT Visceral organs are innervated by sensory neurons whose cell bodies are located in multiple ganglia associated with the brainstem and spinal cord. For the colon, this overlapping innervation is proposed to facilitate visceral sensation and homeostasis, where sensation and pain are mediated by spinal afferents and fear and anxiety (the affective aspects of visceral pain) are the domain of nodose afferents. The transcriptomic analysis performed here reveals that genes implicated in both homeostatic regulation and pain are found in afferents across all ganglia types, suggesting that conscious sensation and homeostatic regulation are the result of convergence, and not segregation, of sensory input.


Assuntos
Sistema Nervoso Autônomo/citologia , Neurônios Aferentes/metabolismo , Transcriptoma , Animais , Sistema Nervoso Autônomo/metabolismo , Sistema Nervoso Autônomo/fisiologia , Células Cultivadas , Colo/inervação , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Condução Nervosa , Técnicas de Rastreamento Neuroanatômico , Neurônios Aferentes/citologia , Neurônios Aferentes/fisiologia , Gânglio Nodoso/citologia , Gânglio Nodoso/metabolismo , Gânglio Nodoso/fisiologia , RNA-Seq , Bexiga Urinária/inervação , Vísceras/inervação
15.
J Neurophysiol ; 125(5): 2000-2012, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881911

RESUMO

This study demonstrates that the action potential discharge in vagal afferent A-fiber neurons is about 20 times more sensitive to the rate of membrane depolarization compared to C-fiber neurons. The sensitivity of action potential generation to the depolarization rate in vagal sensory neurons is independent of the intensity of current stimuli but nearly abrogated by inhibiting the D-type potassium channel. These findings help better understand the mechanisms that control the activation of vagal afferent nerves.


Assuntos
Potenciais de Ação/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Neurônios Aferentes/fisiologia , Gânglio Nodoso/fisiologia , Superfamília Shaker de Canais de Potássio/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores
16.
J Neuroinflammation ; 18(1): 115, 2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-33993886

RESUMO

BACKGROUND: Mood and metabolic disorders are interrelated and may share common pathological processes. Autonomic neurons link the brain with the gastrointestinal tract and constitute a likely pathway for peripheral metabolic challenges to affect behaviors controlled by the brain. The activities of neurons along these pathways are regulated by glia, which exhibit phenotypic shifts in response to changes in their microenvironment. How glial changes might contribute to the behavioral effects of consuming a high-fat diet (HFD) is uncertain. Here, we tested the hypothesis that anxiogenic and depressive-like behaviors driven by consuming a HFD involve compromised duodenal barrier integrity and subsequent phenotypic changes to glia and neurons along the gut-brain axis. METHODS: C57Bl/6 male mice were exposed to a standard diet or HFD for 20 weeks. Bodyweight was monitored weekly and correlated with mucosa histological damage and duodenal expression of tight junction proteins ZO-1 and occludin at 0, 6, and 20 weeks. The expression of GFAP, TLR-4, BDNF, and DCX were investigated in duodenal myenteric plexus, nodose ganglia, and dentate gyrus of the hippocampus at the same time points. Dendritic spine number was measured in cultured neurons isolated from duodenal myenteric plexuses and hippocampi at weeks 0, 6, and 20. Depressive and anxiety behaviors were also assessed by tail suspension, forced swimming, and open field tests. RESULTS: HFD mice exhibited duodenal mucosa damage with marked infiltration of immune cells and decreased expression of ZO-1 and occludin that coincided with increasing body weight. Glial expression of GFAP and TLR4 increased in parallel in the duodenal myenteric plexuses, nodose ganglia, and hippocampus in a time-dependent manner. Glial changes were associated with a progressive decrease in BDNF, and DCX expression, fewer neuronal dendritic spines, and anxiogenic/depressive symptoms in HFD-treated mice. Fluorocitrate (FC), a glial metabolic poison, abolished these effects both in the enteric and central nervous systems and prevented behavioral alterations at week 20. CONCLUSIONS: HFD impairs duodenal barrier integrity and produces behavioral changes consistent with depressive and anxiety phenotypes. HFD-driven changes in both peripheral and central nervous systems are glial-dependent, suggesting a potential glial role in the alteration of the gut-brain signaling that occurs during metabolic disorders and psychiatric co-morbidity.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Depressão/etiologia , Dieta Hiperlipídica/efeitos adversos , Duodeno/patologia , Transtornos Mentais/etiologia , Neuroglia/metabolismo , Animais , Peso Corporal , Duodeno/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plexo Mientérico/metabolismo , Plexo Mientérico/patologia , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Gânglio Nodoso/metabolismo , Gânglio Nodoso/patologia
17.
J Anat ; 238(1): 20-35, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32790077

RESUMO

Neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) plays a major role in the neural control of circulation and in many cardiovascular diseases. However, the exact mechanism of how NO regulates these processes is still not fully understood. This study was designed to determine the possible sources of nitrergic nerve fibres supplying the heart attempting to imply their role in the cardiac neural control. Sections of medulla oblongata, vagal nerve, its rootlets and nodose ganglia, vagal cardiac branches, Th1 -Th5 spinal cord segments, dorsal root ganglia of C8 -Th5 spinal nerves, and stellate ganglia from 28 Wistar rats were examined applying double immunohistochemical staining for nNOS combined with choline acetyltransferase (ChAT), peripherin, substance P, calcitonin gene-related peptide, tyrosine hydroxylase or myelin basic protein. Our findings show that the most abundant population of purely nNOS-immunoreactive (IR) neuronal somata (NS) was observed in the nodose ganglia (37.4 ± 1.3%). A high number of nitrergic NFs spread along the vagal nerve and entered its cardiac branches. All nitrergic neuronal somata (NS) in the nucleus ambiguus were simultaneously immunoreactive (IR) to ChAT and composed only a small subset of neurons (6%). In the dorsal nucleus of vagal nerve, biphenotypic nNOS-IR/ChAT-IR neurons composed 7.0 ± 1.0%, while small purely nNOS-IR neurons were scarce. Nitrergic NS were plentifully distributed within the nuclei of solitary tract. In the examined dorsal root and stellate ganglia, a few nitrergic NS were sporadically present. The majority of sympathetic NS in the intermediolateral nucleus were simultaneously immunoreactive for nNOS and ChAT. In conclusion, an abundant population of nitrergic NS in the nodose ganglion implies that neuronal NO is involved in afferent cardiac innervation. Nevertheless, nNOS-IR neurons identified within vagal nuclei may play a role in the transmission of preganglionic parasympathetic nerve impulses.


Assuntos
Gânglios Espinais/metabolismo , Sistema de Condução Cardíaco/metabolismo , Coração/inervação , Neurônios Nitrérgicos/metabolismo , Gânglio Nodoso/metabolismo , Nervo Vago/metabolismo , Animais , Colina O-Acetiltransferase/metabolismo , Feminino , Masculino , Fibras Nervosas/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos , Ratos Wistar
18.
Pharmacol Res ; 164: 105391, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33352230

RESUMO

Baroreflex plays a crucial role in regulation of arterial blood pressure (BP). Recently, Piezo1 and Piezo2, the mechanically-activated (MA) ion channels, have been identified as baroreceptors. However, the underlying molecular mechanism for regulating these baroreceptors in hypertension remains unknown. In this study, we used spontaneously hypertensive rats (SHR) and NG-Nitro-l-Arginine (L-NNA)- and Angiotensin II (Ang II)-induced hypertensive model rats to determine the role and mechanism of Piezo1 and Piezo2 in hypertension. We found that Piezo2 was dominantly expressed in baroreceptor nodose ganglia (NG) neurons and aortic nerve endings in Wistar-Kyoto (WKY) rats. The expression of Piezo2 not Piezo1 was significantly downregulated in these regions in SHR and hypertensive model rats. Electrophysiological results showed that the rapidly adapting mechanically-activated (RA-MA) currents and the responsive neuron numbers were significantly reduced in baroreceptor NG neurons in SHR. In WKY rats, the arterial BP was elevated by knocking down the expression of Piezo2 or inhibiting MA channel activity by GsMTx4 in NG. Knockdown of Piezo2 in NG also attenuated the baroreflex and increased serum norepinephrine (NE) concentration in WKY rats. Co-immunoprecipitation experiment suggested that Piezo2 interacted with Neural precursor cell-expressed developmentally downregulated gene 4 type 2 (Nedd4-2, also known as Nedd4L); Electrophysiological results showed that Nedd4-2 inhibited Piezo2 MA currents in co-expressed HEK293T cells. Additionally, Nedd4-2 was upregulated in NG baroreceptor neurons in SHR. Collectively, our results demonstrate that Piezo2 not Piezo1 may act as baroreceptor to regulate arterial BP in rats. Nedd4-2 induced downregulation of Piezo2 in baroreceptor NG neurons leads to hypertension in rats. Our findings provide a novel insight into the molecular mechanism for the regulation of baroreceptor Piezo2 and its critical role in the pathogenesis of hypertension.


Assuntos
Hipertensão/fisiopatologia , Canais Iônicos/fisiologia , Ubiquitina-Proteína Ligases Nedd4/fisiologia , Neurônios/fisiologia , Gânglio Nodoso/fisiologia , Pressorreceptores/fisiologia , Animais , Aorta Torácica/inervação , Barorreflexo , Células Cultivadas , Humanos , Masculino , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais
19.
Acta Pharmacol Sin ; 42(6): 898-908, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33154555

RESUMO

Hydrogen sulfide (H2S), which is closely related to various cardiovascular disorders, lowers blood pressure (BP), but whether this action is mediated via the modification of baroreflex afferent function has not been elucidated. Therefore, the current study aimed to investigate the role of the baroreflex afferent pathway in H2S-mediated autonomic control of BP regulation. The results showed that baroreflex sensitivity (BRS) was increased by acute intravenous NaHS (a H2S donor) administration to renovascular hypertensive (RVH) and control rats. Molecular expression data also showed that the expression levels of critical enzymes related to H2S were aberrantly downregulated in the nodose ganglion (NG) and nucleus tractus solitarius (NTS) in RVH rats. A clear reduction in BP by the microinjection of NaHS or L-cysteine into the NG was confirmed in both RVH and control rats, and a less dramatic effect was observed in model rats. Furthermore, the beneficial effects of NaHS administered by chronic intraperitoneal infusion on dysregulated systolic blood pressure (SBP), cardiac parameters, and BRS were verified in RVH rats. Moreover, the increase in BRS was attributed to activation and upregulation of the ATP-sensitive potassium (KATP) channels Kir6.2 and SUR1, which are functionally expressed in the NG and NTS. In summary, H2S plays a crucial role in the autonomic control of BP regulation by improving baroreflex afferent function due at least in part to increased KATP channel expression in the baroreflex afferent pathway under physiological and hypertensive conditions.


Assuntos
Vias Aferentes/metabolismo , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Sulfeto de Hidrogênio/metabolismo , Hipertensão/fisiopatologia , Animais , Anti-Hipertensivos/farmacologia , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Cardiotônicos/farmacologia , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hipertensão/tratamento farmacológico , Masculino , Gânglio Nodoso/efeitos dos fármacos , Gânglio Nodoso/enzimologia , Gânglio Nodoso/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos Sprague-Dawley , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/enzimologia , Núcleo Solitário/metabolismo , Sulfetos/farmacologia , Receptores de Sulfonilureias/metabolismo , Sulfurtransferases/metabolismo
20.
Acta Pharmacol Sin ; 42(12): 2173-2180, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34267344

RESUMO

Female-specific subpopulation of myelinated Ah-type baroreceptor neurons (BRNs) in nodose ganglia is the neuroanatomical base of sexual-dimorphic autonomic control of blood pressure regulation, and KCa1.1 is a key player in modulating the neuroexcitation in nodose ganglia. In this study we investigated the exact mechanisms underlying KCa1.1-mediated neuroexcitation of myelinated Ah-type BRNs in the presence or absence of estrogen. BRNs were isolated from adult ovary intact (OVI) or ovariectomized (OVX) female rats, and identified electrophysiologically and fluorescently. Action potential (AP) and potassium currents were recorded using whole-cell recording. Consistently, myelinated Ah-type BRNs displayed a characteristic discharge pattern and significantly reduced excitability after OVX with narrowed AP duration and faster repolarization largely due to an upregulated iberiotoxin (IbTX)-sensitive component; the changes in AP waveform and repetitive discharge of Ah-types from OVX female rats were reversed by G1 (a selective agonist for estrogen membrane receptor GPR30, 100 nM) and/or IbTX (100 nM). In addition, the effect of G1 on repetitive discharge could be completely blocked by G15 (a selective antagonist for estrogen membrane receptor GPR30, 3 µM). These data suggest that estrogen deficiency by removing ovaries upregulates KCa1.1 channel protein in Ah-type BRNs, and subsequently increases AP repolarization and blunts neuroexcitation through estrogen membrane receptor signaling. Intriguingly, this upregulated KCa1.1 predicted electrophysiologically was confirmed by increased mean fluorescent intensity that was abolished by estrogen treatment. These electrophysiological findings combined with immunostaining and pharmacological manipulations reveal the crucial role of KCa1.1 in modulation of neuroexcitation especially in female-specific subpopulation of myelinated Ah-type BRNs and extend our current understanding of sexual dimorphism of neurocontrol of BP regulation.


Assuntos
Estrogênios/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Neurônios/metabolismo , Gânglio Nodoso/metabolismo , Pressorreceptores/metabolismo , Animais , Estrogênios/deficiência , Feminino , Neurônios/efeitos dos fármacos , Ovariectomia , Ovário/citologia , Ovário/cirurgia , Pressorreceptores/efeitos dos fármacos , Quinolinas/farmacologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa