Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.336
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(3): 848-858.e6, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30318150

RESUMO

In familial searching in forensic genetics, a query DNA profile is tested against a database to determine whether it represents a relative of a database entrant. We examine the potential for using linkage disequilibrium to identify pairs of profiles as belonging to relatives when the query and database rely on nonoverlapping genetic markers. Considering data on individuals genotyped with both microsatellites used in forensic applications and genome-wide SNPs, we find that ∼30%-32% of parent-offspring pairs and ∼35%-36% of sib pairs can be identified from the SNPs of one member of the pair and the microsatellites of the other. The method suggests the possibility of performing familial searches of microsatellite databases using query SNP profiles, or vice versa. It also reveals that privacy concerns arising from computations across multiple databases that share no genetic markers in common entail risks, not only for database entrants, but for their close relatives as well.


Assuntos
Família , Genética Forense/métodos , Genética Populacional/métodos , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Desequilíbrio de Ligação , Masculino , Repetições de Microssatélites , Modelos Genéticos , Modelos Estatísticos , Linhagem
3.
Proc Natl Acad Sci U S A ; 119(40): e2121024119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36166477

RESUMO

A set of 20 short tandem repeats (STRs) is used by the US criminal justice system to identify suspects and to maintain a database of genetic profiles for individuals who have been previously convicted or arrested. Some of these STRs were identified in the 1990s, with a preference for markers in putative gene deserts to avoid forensic profiles revealing protected medical information. We revisit that assumption, investigating whether forensic genetic profiles reveal information about gene-expression variation or potential medical information. We find six significant correlations (false discovery rate = 0.23) between the forensic STRs and the expression levels of neighboring genes in lymphoblastoid cell lines. We explore possible mechanisms for these associations, showing evidence compatible with forensic STRs causing expression variation or being in linkage disequilibrium with a causal locus in three cases and weaker or potentially spurious associations in the other three cases. Together, these results suggest that forensic genetic loci may reveal expression levels and, perhaps, medical information.


Assuntos
Genética Forense , Loci Gênicos , Repetições de Microssatélites , Privacidade , Genética Forense/legislação & jurisprudência , Genética Forense/métodos , Frequência do Gene , Genética Populacional , Humanos , Desequilíbrio de Ligação
4.
BMC Genomics ; 25(1): 329, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566035

RESUMO

BACKGROUND: Previously, a novel multiplex system of 64 loci was constructed based on capillary electrophoresis platform, including 59 autosomal insertion/deletions (A-InDels), two Y-chromosome InDels, two mini short tandem repeats (miniSTRs), and an Amelogenin gene. The aim of this study is to evaluate the efficiencies of this multiplex system for individual identification, paternity testing and biogeographic ancestry inference in Chinese Hezhou Han (CHH) and Hubei Tujia (CTH) groups, providing valuable insights for forensic anthropology and population genetics research. RESULTS: The cumulative values of power of discrimination (CDP) and probability of exclusion (CPE) for the 59 A-InDels and two miniSTRs were 0.99999999999999999999999999754, 0.99999905; and 0.99999999999999999999999999998, 0.99999898 in CTH and CHH groups, respectively. When the likelihood ratio thresholds were set to 1 or 10, more than 95% of the full sibling pairs could be identified from unrelated individual pairs, and the false positive rates were less than 1.2% in both CTH and CHH groups. Biogeographic ancestry inference models based on 35 populations were constructed with three algorithms: random forest, adaptive boosting and extreme gradient boosting, and then 10-fold cross-validation analyses were applied to test these three models with the average accuracies of 86.59%, 84.22% and 87.80%, respectively. In addition, we also investigated the genetic relationships between the two studied groups with 33 reference populations using population statistical methods of FST, DA, phylogenetic tree, PCA, STRUCTURE and TreeMix analyses. The present results showed that compared to other continental populations, the CTH and CHH groups had closer genetic affinities to East Asian populations. CONCLUSIONS: This novel multiplex system has high CDP and CPE in CTH and CHH groups, which can be used as a powerful tool for individual identification and paternity testing. According to various genetic analysis methods, the genetic structures of CTH and CHH groups are relatively similar to the reference East Asian populations.


Assuntos
Genética Populacional , Irmãos , Humanos , Filogenia , China , Mutação INDEL , Repetições de Microssatélites , Genética Forense/métodos , Frequência do Gene
5.
Hum Genet ; 143(3): 371-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38499885

RESUMO

Massively parallel sequencing (MPS) has emerged as a promising technology for targeting multiple genetic loci simultaneously in forensic genetics. Here, a novel 193-plex panel was designed to target 28 A-STRs, 41 Y-STRs, 21 X-STRs, 3 sex-identified loci, and 100 A-SNPs by employing a single-end 400 bp sequencing strategy on the MGISEQ-2000™ platform. In the present study, a series of validations and sequencing of 1642 population samples were performed to evaluate the overall performance of the MPS-based panel and its practicality in forensic application according to the SWGDAM guidelines. In general, the 193-plex markers in our panel showed good performance in terms of species specificity, stability, and repeatability. Compared to commercial kits, this panel achieved 100% concordance for standard gDNA and 99.87% concordance for 14,560 population genotypes. Moreover, this panel detected 100% of the loci from 0.5 ng of DNA template and all unique alleles at a 1:4 DNA mixture ratio (0.2 ng minor contributor), and the applicability of the proposed approach for tracing and degrading DNA was further supported by case samples. In addition, several forensic parameters of STRs and SNPs were calculated in a population study. High CPE and CPD values greater than 0.9999999 were clearly demonstrated and these results could be useful references for the application of this panel in individual identification and paternity testing. Overall, this 193-plex MPS panel has been shown to be a reliable, repeatable, robust, inexpensive, and powerful tool sufficient for forensic practice.


Assuntos
Genética Forense , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Paternidade , Polimorfismo de Nucleotídeo Único , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites/genética , Genética Forense/métodos , Masculino , Feminino , Genótipo , Alelos , Genética Populacional/métodos
6.
Biochem Biophys Res Commun ; 711: 149909, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38615573

RESUMO

RNA analysis has shown great value in forensic science, such as body fluids and tissue identification, postmortem interval estimation, biological age prediction, etc. Currently, most RNA follow-up experiments involve reverse transcription (RT) procedures. It has been shown that the RT step is variable and has a greater impact on subsequent data analysis, especially for forensic trace samples. However, the pattern of variation between different RNA template inputs and complementary DNA (cDNA) yield is unclear. In this study, a series of 2-fold gradient dilutions of RNA standards (1 µg/µL - 0.24 ng/µL) and forensic samples (including blood samples, saliva samples, bloodstains, and saliva stains) were reverse-transcribed using EasyQuick RT MasterMix. The obtained cDNA was quantified by droplet digital PCR (ddPCR) to assess the RT yield of the ACTB gene. The results showed that the 125 ng RNA template had the highest RT yield in a 10 µL RT reaction system with the selected kit. For all stain samples, the RT yield improved as the amount of RNA template input increased since RNA quantities were below 125 ng. As many commercialized reverse transcription kits using different kinds of enzymes are available for forensic RNA research, we recommend that systematic experiments should be performed in advance to determine the amount of RNA input at the optimum RT yield when using any kit for reverse transcription experiments.


Assuntos
RNA , Humanos , RNA/genética , RNA/análise , Transcrição Reversa , Saliva/metabolismo , Saliva/química , Genética Forense/métodos , Genética Forense/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Padrões de Referência , DNA Complementar/genética , Manchas de Sangue , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/normas
7.
Electrophoresis ; 45(5-6): 505-516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38037287

RESUMO

Insertion/deletion polymorphisms (InDels) are a category of highly prevalent markers in the human genome, characterized by their distinctive attributes, including short amplicon sizes and low mutation rates, which have shown great potential in forensic applications. Multi-allelic InDel and multi-InDel markers, collectively abbreviated as MM-InDels, were developed to enhance polymorphism by the introduction of novel alleles. Nevertheless, the relatively low mutation rates of InDels, coupled with the founder effect, result in distinct allele frequency distributions among populations. The divergent characteristics of InDels in different populations also pose challenges to the establishment of universally efficient InDel multiplex assays. To enhance the system efficiency of the InDel assay and its applicability across diverse populations, 39 MM-InDels with high polymorphism in five different ancestry superpopulations were selected from the 1000 Genomes Project dataset and combined with an amelogenin gender marker to construct a multiplex assay (named MMIDplex). The combined power of discrimination and the cumulative probability of exclusion of 39 MM-InDels were 1 - 1.3 × 10-23 and 1 - 9.83 × 10-6 in the Chinese Han population, and larger than 1-10-19 and 1-10-4 in the reference populations, relatively. These results demonstrate that the MMIDplex assay has the potential to obtain sufficient power for individual identification and paternity test in global populations.


Assuntos
Genética Forense , Polimorfismo Genético , Humanos , Genética Forense/métodos , Frequência do Gene/genética , Povo Asiático , Mutação INDEL , Genética Populacional , China
8.
Electrophoresis ; 45(9-10): 916-932, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38419135

RESUMO

Biological material is routinely collected at crime scenes and from exhibits and is a key type of evidence during criminal investigations. Improvements in DNA technologies allow collection and profiling of trace samples, comprised of few cells, significantly expanding the types of exhibits targeted for DNA analysis to include touched surfaces. However, success rates from trace and touch DNA samples tend to be poorer compared to other biological materials such as blood. Simultaneously, there have been recent advances in the utility of environmental DNA collection (eDNA) in identification and tracking of different biological organisms and species from bacteria to naked mole rats in different environments, including, soil, ice, snow, air and aquatic. This paper examines the emerging methods and research into eDNA collection, with a special emphasis on the potential forensic applications of human DNA collection from air including challenges and further studies required to progress implementation.


Assuntos
DNA Ambiental , Humanos , Animais , DNA Ambiental/análise , Genética Forense/métodos , Manejo de Espécimes/métodos , Ar/análise , Ciências Forenses/métodos
9.
Electrophoresis ; 45(5-6): 489-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38037290

RESUMO

The continual investigation of novel genetic markers has yielded promising solutions for addressing the challenges encountered in forensic DNA analysis. In this study, we have introduced a custom-designed panel capable of simultaneously amplifying 41 novel Multi-insertion/deletion (Multi-InDel) markers and an amelogenin locus using the capillary electrophoresis platform. Through a developmental validation study conducted in accordance with guidelines recommended by the Scientific Working Group on DNA Analysis Methods, we demonstrated that the new Multi-InDel system exhibited the sensitivity to produce reliable genotyping profiles with as little as 62.5 pg of template DNA. Accurate and complete genotyping profiles could be obtained even in the presence of specific concentrations of PCR inhibitors. Furthermore, the maximum amplicon size for this system was limited to under 220 bp in the genotyping profile, resulting in its superior efficiency compared to commercially available short tandem repeat kits for both naturally and artificially degraded samples. In the context of mixed DNA analysis, the Multi-InDel system was proved informative in the identification of two-person DNA mixture, even when the template DNA of the minor contributor was as low as 50 pg. In conclusion, a series of performance evaluation studies have provided compelling evidence that the new Multi-InDel system holds promise as a valuable tool for forensic DNA analysis.


Assuntos
Impressões Digitais de DNA , DNA , Humanos , Genótipo , DNA/genética , Repetições de Microssatélites/genética , Primers do DNA , Genética Forense/métodos , Reação em Cadeia da Polimerase Multiplex/métodos
10.
Electrophoresis ; 45(9-10): 794-804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38161244

RESUMO

Facial image-based kinship verification represents a burgeoning frontier within the realms of computer vision and biomedicine. Recent genome-wide association studies have underscored the heritability of human facial morphology, revealing its predictability based on genetic information. These revelations form a robust foundation for advancing facial image-based kinship verification. Despite strides in computer vision, there remains a discernible gap between the biomedical and computer vision domains. Notably, the absence of family photo datasets established through biological paternity testing methods poses a significant challenge. This study addresses this gap by introducing the biological kinship visualization dataset, encompassing 5773 individuals from 2412 families with biologically confirmed kinship. Our analysis delves into the distribution and influencing factors of facial similarity among parent-child pairs, probing the potential association between forensic short tandem repeat polymorphisms and facial similarity. Additionally, we have developed a machine learning model for facial image-based kinship verification, achieving an accuracy of 0.80 in the dataset. To facilitate further exploration, we have established an online tool and database, accessible at http://120.55.161.230:88/.


Assuntos
Face , Humanos , Face/anatomia & histologia , Masculino , Feminino , Genética Forense/métodos , Aprendizado de Máquina , Estudos de Associação Genética/métodos , Repetições de Microssatélites , Estudo de Associação Genômica Ampla/métodos
11.
Electrophoresis ; 45(9-10): 897-905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38385810

RESUMO

In the context of forensic casework, it is imperative to both establish a DNA profile from biological specimens and accurately identify the specific bodily fluid source. To achieve this, DNA methylation markers have been developed for the differentiation of blood, semen, vaginal epithelial secretions, and saliva samples. Saliva, alternatively referred to as oral fluid, is recognized for its heterogeneous cellular composition, characterized by a mixture of epithelial, leukocytic, and bacterial cells. Consequently, our research has revealed variations in methylation percentages that correlate with the method employed for collecting saliva samples. To investigate these concepts, we scrutinized four CpG markers situated within or in proximity to the BCAS4, SLC12A8, SOX2OT, and FAM43A genes. Subsequently, we designed primers based on bioinformatically transformed reference sequences for these markers and rigorously assessed their quality by examining dimer and hairpin formation, melting temperature, and specificity. These loci were identified as saliva markers based on either buccal swabs or spit collection. Yet, there has been minimal or no research conducted to explore the variations in methylation between different collection methods. For this study, buccal, lip, tongue, spit, and nasal swabs were collected from 20 individuals (N = 100). Mock forensic samples, which include chewing gum (N = 10) and cigarettes (N = 10), were also tested. DNA was extracted, bisulfite converted, then amplified using in-house designed assays, and pyrosequenced. The methylation levels were compared to other body fluids (semen, blood, vaginal epithelia, and menstrual blood [N = 32]). A total of 608 pyrosequencing results demonstrated that sampling location and collection method can greatly influence the level of methylation, highlighting the importance of examining multiple collection/deposition methods for body fluids when developing epigenetic markers.


Assuntos
Metilação de DNA , Epigênese Genética , Saliva , Manejo de Espécimes , Humanos , Saliva/química , Epigênese Genética/genética , Manejo de Espécimes/métodos , Ilhas de CpG/genética , Feminino , Genética Forense/métodos , Masculino , Marcadores Genéticos/genética
12.
Electrophoresis ; 45(9-10): 805-813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38247192

RESUMO

The identification of human remains is of utmost importance in a variety of scenarios. One of the primary identification methods is DNA. DNA extraction from human remains could be difficult, particularly in situations where the remains have been exposed to environmental conditions and other insults. Several studies tried to improve extraction by applying different approaches. ForensicGEM Universal (MicroGem) is a single-tube approach to DNA extraction and a temperature-driven method that could have some advantages with respect to previous techniques, among them, reducing the risk of contamination, not requiring specialized equipment, or several steps to perform. The aim of this study was to assess, for the first time, the efficiency of DNA extraction and quality of STR profiles applying the MicroGem protocol and modifications of this protocol from tooth samples in comparison with automatic extraction (AE). Our results indicated that AE and MicroGem performed similar, though with variability depending on the MicroGem modifications, increasing the DNA yield and STR profile quality when DNA is concentrated with Microcon. These findings demonstrated the efficiency of this methodology for DNA extraction from human remains while also providing a simple and quick technique suitable to apply in a variety of forensic scenarios.


Assuntos
Impressões Digitais de DNA , DNA , Repetições de Microssatélites , Temperatura , Humanos , DNA/isolamento & purificação , DNA/análise , Impressões Digitais de DNA/métodos , Restos Mortais/química , Dente/química , Genética Forense/métodos , Reação em Cadeia da Polimerase/métodos
13.
Electrophoresis ; 45(9-10): 885-896, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38356010

RESUMO

Nanopore sequencing technology has broad application prospects in forensic medicine due to its small size, portability, fast speed, real-time result analysis capabilities, single-molecule sequencing abilities, and simple operation. Here, we demonstrate for the first time that nanopore sequencing platforms can be used to identify individuals in the field. Through scientific and reasonable design, a nanopore MinION MK1B device and other auxiliary devices are integrated into a portable detection box conducive to individual identification at the accident site. Individual identification of 12 samples could be completed within approximately 24 h by jointly detecting 23 short tandem repeat (STR) loci. Through double-blinded experiments, the genotypes of 49 samples were successfully determined, and the accuracy of the STR genotyping was verified by the gold standard. Specifically, the typing success rate for 1150 genotypes was 95.3%, and the accuracy rate was 86.87%. Although this study focused primarily on demonstrating the feasibility of full-process testing, it can be optimistically predicted that further improvements in bioinformatics workflows and nanopore sequencing technology will help enhance the feasibility of Oxford Nanopore Technologies equipment for real-time individual identification at accident sites.


Assuntos
Repetições de Microssatélites , Sequenciamento por Nanoporos , Humanos , Repetições de Microssatélites/genética , Sequenciamento por Nanoporos/métodos , Genética Forense/métodos , Projetos Piloto , Reprodutibilidade dos Testes , Genótipo , Análise de Sequência de DNA/métodos , Impressões Digitais de DNA/métodos , Desenho de Equipamento
14.
Electrophoresis ; 45(9-10): 852-866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38449358

RESUMO

The negative template control or negative amplification control has been an essential component of the forensic DNA analysis workflow that helps monitor contamination. As such, the inclusion of a negative control in forensic DNA analysis has been a requirement for all laboratories audited under the FBI's Quality Assurance Standards. As massively parallel sequencing (MPS) becomes more conventional in forensic laboratories, considerations for the inclusion of a negative control in every sequencing run can be evaluated. Although the inclusion of a negative control in library preparation and the first sequencing run has a practical function, there is less utility for its inclusion in all subsequent sequencing runs for that library preparation. Although this is universal to all MPS assays, it is most relevant for an assay that has a low sample multiplexing capacity, such as the ForenSeq Kintelligence Kit (Qiagen/Verogen, Inc.). The ForenSeq Kintelligence Kit is an investigative genetic genealogy (IGG) sequencing-based assay that targets 10,230 forensically relevant single-nucleotide polymorphisms. The manufacturer recommends multiplexing 3 libraries per sequencing run, which includes controls. The purpose of this study was to investigate the effect of the inclusion of a negative control in every Kintelligence sequencing run. We observed that the library generated from a negative amplification control will take 7%-14% of the run output. The loss of sequencing space taken by a negative control decreased the available output for DNA-containing samples, leading in some cases to allele or locus dropout and accompanying higher numbers of sixth to seventh order unknown associations in GEDmatch PRO.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/métodos , Impressões Digitais de DNA/métodos , Genética Forense/métodos , DNA/análise , DNA/genética
15.
Electrophoresis ; 45(9-10): 814-828, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38459798

RESUMO

Analysis of short tandem repeats (STRs) is a global standard method for human identification. Insertion/Deletion polymorphisms (DIPs) can be used for biogeographical ancestry inference. Current DNA typing involves a trained forensic worker operating several specialized instruments in a controlled laboratory environment, which takes 6-8 h. We developed the Quick TargSeq 1.0 integrated system (hereinafter abbreviated to Quick TargSeq) for automated generation of STR and DIP profiles from buccal swab samples and blood stains. The system fully integrates the processes of DNA extraction, polymerase chain reaction (PCR) amplification, and electrophoresis separation using microfluidic biochip technology. Internal validation studies were performed using RTyper 21 or DIP 38 chip cartridges with single-source reference samples according to the Scientific Working Group for DNA Analysis Methods guidelines. These results indicated that the Quick TargSeq system can process reference samples and generate STR or DIP profiles in approximately 2 h, and the profiles were concordant with those determined using traditional STR or DIP analysis methods. Thus, reproducible and concordant DNA profiles were obtained from reference samples. Throughout the study, no lane-to-lane or run-to-run contamination was observed. The Quick TargSeq system produced full profiles from buccal swabs with at least eight swipes, dried blood spot cards with two 2-mm disks, or 10 ng of purified DNA. Potential PCR inhibitors (i.e., coffee, smoking tobacco, and chewing tobacco) did not appear to affect the amplification reactions of the instrument. The overall success rate and concordance rate of 153 samples were 94.12% and 93.44%, respectively, which is comparable to other commercially available rapid DNA instruments. A blind test initiated by a DNA expert group showed that the system can correctly produce DNA profiles with 97.29% genotype concordance with standard bench-processing methods, and the profiles can be uploaded into the national DNA database. These results demonstrated that the Quick TargSeq system can rapidly generate reliable DNA profiles in an automated manner and has the potential for use in the field and forensic laboratories.


Assuntos
DNA , Repetições de Microssatélites , Humanos , Repetições de Microssatélites/genética , DNA/análise , DNA/genética , Técnicas de Genotipagem/métodos , Reação em Cadeia da Polimerase/métodos , Genética Forense/métodos , Reprodutibilidade dos Testes , Impressões Digitais de DNA/métodos , Mucosa Bucal/química , Genótipo
16.
Electrophoresis ; 45(9-10): 906-915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488745

RESUMO

Targeted bisulfite sequencing using single-base extension (SBE) can be used to measure DNA methylation via capillary electrophoresis on genetic analyzers in forensic labs. Several accurate age prediction models have been reported using this method. However, using different genetic analyzers with different software settings can generate different methylation values, leading to significant errors in age prediction. To address this issue, the study proposes and compares four methods as follows: (1) adjusting methylation values using numerous actual body fluid DNA samples, (2) adjusting methylation values using control DNAs with varying methylation ratios, (3) constructing new age prediction models for each genetic analyzer type, and (4) constructing new age prediction models that could be applied to all types of genetic analyzers. To test the methods for adjusting values using actual body fluid DNA samples, previously reported adjusting equations were used for blood/saliva DNA age prediction markers (ELOVL2, FHL2, KLF14, MIR29B2CHG/C1orf132, and TRIM59). New equations were generated for semen DNA age prediction markers (TTC7B, LOC401324/cg12837463, and LOC729960/NOX4) by drawing polynomial regression lines between the results of the three types of genetic analyzers (3130, 3500, and SeqStudio). The same method was applied to obtain adjustment equations using 11 control DNA samples. To develop new age prediction models for each genetic analyzer type, linear regression analysis was conducted using DNA methylation data from 150 blood, 150 saliva, and 62 semen samples. For the genetic analyzer-independent models, control DNAs were used to formulate equations for calibrating the bias of the data from each genetic analyzer, and linear regression analysis was performed using calibrated body fluid DNA data. In the comparison results, the genetic analyzer-specific models showed the highest accuracy. However, genetic analyzer-independent models through bias adjustment also provided accurate age prediction results, suggesting its use as an alternative in situations with multiple constraints.


Assuntos
Metilação de DNA , DNA , Humanos , Masculino , DNA/análise , DNA/genética , Adulto , Eletroforese Capilar/métodos , Genética Forense/métodos , Pessoa de Meia-Idade , Análise de Sequência de DNA/métodos , Envelhecimento/genética , Adulto Jovem , Sêmen/química , Saliva/química , Idoso , Marcadores Genéticos/genética
17.
Electrophoresis ; 45(9-10): 877-884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38196015

RESUMO

Macrohaplotype combines multiple types of phased DNA variants, increasing forensic discrimination power. High-quality long-sequencing reads, for example, PacBio HiFi reads, provide data to detect macrohaplotypes in multiploidy and DNA mixtures. However, the bioinformatics tools for detecting macrohaplotypes are lacking. In this study, we developed a bioinformatics software, MacroHapCaller, in which targeted loci (i.e., short TRs [STRs], single nucleotide polymorphisms, and insertion and deletions) are genotyped and combined with novel algorithms to call macrohaplotypes from long reads. MacroHapCaller uses physical phasing (i.e., read-backed phasing) to identify macrohaplotypes, and thus it can detect multi-allelic macrohaplotypes for a given sample. MacroHapCaller was validated with data generated from our designed targeted PacBio HiFi sequencing pipeline, which sequenced ∼8-kb amplicon regions harboring 20 core forensic STR loci in human benchmark samples HG002 and HG003. MacroHapCaller also was validated in whole-genome long-read sequencing data. Robust and accurate genotyping and phased macrohaplotypes were obtained with MacroHapCaller compared with the known ground truth. MacroHapCaller achieved a higher or consistent genotyping accuracy and faster speed than existing tools HipSTR and DeepVar. MacroHapCaller enables efficient macrohaplotype analysis from high-throughput sequencing data and supports applications using discriminating macrohaplotypes.


Assuntos
Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Poliploidia , Análise de Sequência de DNA , Software , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Algoritmos , Biologia Computacional/métodos , DNA/genética , DNA/análise , Repetições de Microssatélites/genética , Genética Forense/métodos , Técnicas de Genotipagem/métodos
18.
Electrophoresis ; 45(9-10): 867-876, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38651903

RESUMO

Short tandem repeat analysis is challenging when dealing with unbalanced mixtures in forensic cases due to the presence of stutter peaks and large amplicons. In this research, we propose a novel genetic marker called DIP-TriSNP, which combines deletion/insertion polymorphism (DIP) with tri-allelic single nucleotide polymorphism in less than 230 bp length of human genome. Based on multiplex PCR and SNaPShot, a panel, including 14 autosomal DIP-TriSNPs and one Y chromosomal DIP-SNP, had been developed and applied to genotyping 102 unrelated Han Chinese individuals in Sichuan of China and simulated a mixture study. The panel sensitivity can reach as low as 0.1 ng DNA template, and the minor contributor of DNA can be detected with the highest ratio of 19:1, as indicated by the obtained results. In the Sichuan Han population, the cumulative probability of informative genotypes reached 0.997092, with a combined power of discrimination of 0.999999998801. The panel was estimated to detect more than two alleles in at least one locus in 99.69% of mixtures of the Sichuan Han population. In conclusion, DIP-TriSNPs have shown promising as an innovative DNA marker for identifying the minor contributor in unbalanced DNA mixtures, offering advantages such as short amplifications, increased polymorphism, and heightened sensitivity.


Assuntos
DNA , Genética Forense , Reação em Cadeia da Polimerase Multiplex , Polimorfismo de Nucleotídeo Único , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Genética Forense/métodos , Marcadores Genéticos/genética , DNA/genética , DNA/análise , China , Povo Asiático/genética , Genótipo , Reprodutibilidade dos Testes , Mutação INDEL , Repetições de Microssatélites/genética , Masculino , Técnicas de Genotipagem/métodos
19.
Hum Genomics ; 17(1): 107, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008719

RESUMO

BACKGROUND: In this study, we present a NGS-based panel designed for sequencing 1993 SNP loci for forensic DNA investigation. This panel addresses unique challenges encountered in forensic practice and allows for a comprehensive population genetic study of the Chinese Korean ethnic group. To achieve this, we combine our results with datasets from the 1000 Genomes Project and the Human Genome Diversity Panel. RESULTS: We demonstrate that this panel is a reliable tool for individual identification and parentage testing, even when dealing with degraded DNA samples featuring exceedingly low SNP detection rates. The performance of this panel for complex kinship determinations, such as half-sibling and grandparent-grandchild scenarios, is also validated by various kinship simulations. Population genetic studies indicate that this panel can uncover population substructures on both global and regional scales. Notably, the Han population can be distinguished from the ethnic minorities in the northern and southern regions of East Asia, suggesting its potential for regional ancestry inference. Furthermore, we highlight that the Chinese Korean ethnic group, along with various Han populations from different regional areas and certain northern ethnic minorities (Daur, Tujia, Japanese, Mongolian, Xibo), exhibit a higher degree of genetic affinities when examined from a genomic perspective. CONCLUSION: This study provides convincing evidence that the NGS-based panel can serve as a reliable tool for various forensic applications. Moreover, it has helped to enhance our knowledge about the genetic landscape of the Chinese Korean ethnic group.


Assuntos
População do Leste Asiático , Etnicidade , Genética Forense , Polimorfismo de Nucleotídeo Único , Humanos , China , DNA , População do Leste Asiático/genética , Etnicidade/genética , Frequência do Gene/genética , Genética Populacional , Polimorfismo de Nucleotídeo Único/genética , República da Coreia , Genética Forense/métodos
20.
Int J Legal Med ; 138(3): 1205-1219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37853302

RESUMO

Blood-containing mixtures often appear in murder and robbery cases, and their identification plays a significant role in solving crimes. In recent years, the co-detection of DNA methylation markers (CpG) and single nucleotide polymorphism (SNP) markers has been shown to be a promising tool for the identification of semen and its donor. However, similar research on blood stains that are frequently found at crime scenes has not yet been reported. In this study, we employed blood-specific CpG-linked SNP markers (CpG-SNP) for blood-specific genotyping and the linking of blood and its donor. The tissue-specific CpG markers were screened from the literature and further verified by combining bisulfite conversion with amplification-refractory mutation system (ARMS) technology. Meanwhile, adjacent SNP markers with a minor allele frequency (MAF) greater than 0.1 were selected within 400 bp upstream and downstream of the CpG markers. SNP genotyping was performed using SNaPshot technology on a capillary electrophoresis (CE) platform. Finally, a multiplex panel, including 19 blood-specific CpG linked to 23 SNP markers, as well as 1 semen-specific CpG, 1 vaginal secretion-specific CpG, and 1 saliva-specific CpG marker, was constructed successfully. The panel showed good tissue specificity and blood stains stored at room temperature for up to nine months and moderately degraded (4 < DI < 10) could be effectively identified. Moreover, it could also be detected when blood content in the mixed stains was as low as 1%. In addition, 15 ng of DNA used for bisulfite conversion was required for obtaining a complete profile. The cumulative discrimination power of the panel among the Han population of northern China could reach 0.999983. This is the first investigation conducted for the simultaneous identification of blood and its donor regardless of other body fluids included in mixed stains. The successful construction of the panel will play a vital role in the comprehensive analysis of blood-containing mixtures in forensic practice.


Assuntos
Líquidos Corporais , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Sulfitos , Saliva , Metilação de DNA , Marcadores Genéticos , Genética Forense/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa