Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nature ; 610(7930): 199-204, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071162

RESUMO

Selenium is an essential micronutrient in diverse organisms. Two routes are known for its insertion into proteins and nucleic acids, via selenocysteine and 2-selenouridine, respectively1. However, despite its importance, pathways for specific incorporation of selenium into small molecules have remained elusive. Here we use a genome-mining strategy in various microorganisms to uncover a widespread three-gene cluster that encodes a dedicated pathway for producing selenoneine, the selenium analogue of the multifunctional molecule ergothioneine2,3. We elucidate the reactions of all three proteins and uncover two novel selenium-carbon bond-forming enzymes and the biosynthetic pathway for production of a selenosugar, which is an unexpected intermediate en route to the final product. Our findings expand the scope of biological selenium utilization, suggest that the selenometabolome is more diverse than previously thought, and set the stage for the discovery of other selenium-containing natural products.


Assuntos
Vias Biossintéticas , Genes Microbianos , Histidina/análogos & derivados , Compostos Organosselênicos , Selênio , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Vias Biossintéticas/genética , Carbono/metabolismo , Enzimas , Ergotioneína , Genes Microbianos/genética , Histidina/biossíntese , Metaboloma/genética , Micronutrientes/biossíntese , Família Multigênica/genética , Proteínas , Selênio/metabolismo
2.
Nature ; 606(7915): 754-760, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35614211

RESUMO

Microbial communities and their associated bioactive compounds1-3 are often disrupted in conditions such as the inflammatory bowel diseases (IBD)4. However, even in well-characterized environments (for example, the human gastrointestinal tract), more than one-third of microbial proteins are uncharacterized and often expected to be bioactive5-7. Here we systematically identified more than 340,000 protein families as potentially bioactive with respect to gut inflammation during IBD, about half of which have not to our knowledge been functionally characterized previously on the basis of homology or experiment. To validate prioritized microbial proteins, we used a combination of metagenomics, metatranscriptomics and metaproteomics to provide evidence of bioactivity for a subset of proteins that are involved in host and microbial cell-cell communication in the microbiome; for example, proteins associated with adherence or invasion processes, and extracellular von Willebrand-like factors. Predictions from high-throughput data were validated using targeted experiments that revealed the differential immunogenicity of prioritized Enterobacteriaceae pilins and the contribution of homologues of von Willebrand factors to the formation of Bacteroides biofilms in a manner dependent on mucin levels. This methodology, which we term MetaWIBELE (workflow to identify novel bioactive elements in the microbiome), is generalizable to other environmental communities and human phenotypes. The prioritized results provide thousands of candidate microbial proteins that are likely to interact with the host immune system in IBD, thus expanding our understanding of potentially bioactive gene products in chronic disease states and offering a rational compendium of possible therapeutic compounds and targets.


Assuntos
Proteínas de Bactérias , Microbioma Gastrointestinal , Genes Microbianos , Doenças Inflamatórias Intestinais , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Doença Crônica , Microbioma Gastrointestinal/genética , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Metagenômica , Proteômica , Reprodutibilidade dos Testes , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 121(17): e2318380121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635629

RESUMO

The gene content in a metagenomic pool defines the function potential of a microbial community. Natural selection, operating on the level of genomes or genes, shapes the evolution of community functions by enriching some genes while depriving the others. Despite the importance of microbiomes in the environment and health, a general metric to evaluate the community-wide fitness of microbial genes remains lacking. In this work, we adapt the classic neutral model of species and use it to predict how the abundances of different genes will be shaped by selection, regardless of at which level the selection acts. We establish a simple metric that quantitatively infers the average survival capability of each gene in a microbiome. We then experimentally validate the predictions using synthetic communities of barcoded Escherichia coli strains undergoing neutral assembly and competition. We further show that this approach can be applied to publicly available metagenomic datasets to gain insights into the environment-function interplay of natural microbiomes.


Assuntos
Microbiota , Microbiota/genética , Metagenoma/genética , Seleção Genética , Genes Microbianos
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38747283

RESUMO

The analysis and comparison of gene neighborhoods is a powerful approach for exploring microbial genome structure, function, and evolution. Although numerous tools exist for genome visualization and comparison, genome exploration across large genomic databases or user-generated datasets remains a challenge. Here, we introduce AnnoView, a web server designed for interactive exploration of gene neighborhoods across the bacterial and archaeal tree of life. Our server offers users the ability to identify, compare, and visualize gene neighborhoods of interest from 30 238 bacterial genomes and 1672 archaeal genomes, through integration with the comprehensive Genome Taxonomy Database and AnnoTree databases. Identified gene neighborhoods can be visualized using pre-computed functional annotations from different sources such as KEGG, Pfam and TIGRFAM, or clustered based on similarity. Alternatively, users can upload and explore their own custom genomic datasets in GBK, GFF or CSV format, or use AnnoView as a genome browser for relatively small genomes (e.g. viruses and plasmids). Ultimately, we anticipate that AnnoView will catalyze biological discovery by enabling user-friendly search, comparison, and visualization of genomic data. AnnoView is available at http://annoview.uwaterloo.ca.


Assuntos
Software , Bases de Dados Genéticas , Genoma Bacteriano , Genoma Arqueal , Genômica/métodos , Archaea/genética , Genes Microbianos/genética , Biologia Computacional/métodos , Bactérias/genética , Bactérias/classificação
5.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38291951

RESUMO

SUMMARY: GeNLP is a web application that enables exploring microbial gene "semantics" and predictions of uncharacterized gene families based on their genomic context. It utilizes a pre-trained language model to uncover gene relationships and allows users to access and utilize the data as well as make their own predictions through an interactive interface. AVAILABILITY AND IMPLEMENTATION: The web application is accessible from all browsers at: http://gnlp.bursteinlab.org/. All source codes are freely available from GitHub under the MIT license here: https://github.com/burstein-lab/genomic-nlp-server.


Assuntos
Genômica , Software , Genoma , Genes Microbianos , Idioma
7.
Environ Microbiol ; 25(8): 1465-1483, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36907986

RESUMO

Microbes drive the biogeochemical cycles of marine ecosystems through their vast metabolic diversity. While we have a fairly good understanding of the spatial distribution of these metabolic processes in various ecosystems, less is known about their seasonal dynamics. We investigated the annual patterns of 21 biogeochemical relevant functions in an oligotrophic coastal ocean site by analysing the presence of key genes, analysing high-rank gene taxonomy and the dynamics of nucleotide variants. Most genes presented seasonality: photoheterotrophic processes were enriched during spring, phosphorous-related genes were dominant during summer, coinciding with potential phosphate limitation, and assimilatory nitrate reductases appeared mostly during summer and autumn, correlating negatively with nitrate availability. Additionally, we identified the main taxa driving each function at each season and described the role of underrecognized taxa such as Litoricolaceae in carbon fixation (rbcL), urea degradation (ureC), and CO oxidation (coxL). Finally, the seasonality of single variants of some families presented a decoupling between the taxonomic abundance patterns and the functional gene patterns, implying functional specialization of the different genera. Our study unveils the seasonality of key biogeochemical functions and the main taxonomic groups that harbour these relevant functions in a coastal ocean ecosystem.


Assuntos
Ecossistema , Microbiota , Humanos , Microbiota/genética , Genes Microbianos , Oceanos e Mares
8.
Microbiology (Reading) ; 169(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37083497

RESUMO

Neonicotinoids, a class of systemic insecticides, have been widely used for decades against various insect pests. Previous studies have reported non-target effects of neonicotinoids on some beneficial macro- and micro-organisms. Considering the crucial role the soil microbiota plays in sustaining soil fertility, it is critical to understand how neonicotinoid exposure affects the microbial taxonomic composition and gene expression. However, most studies to date have evaluated soil microbial taxonomic compositions or assessed microbial functions based on soil biochemical analysis. In this study, we have applied a metatranscriptomic approach to quantify the variability in soil microbial gene expression in a 2 year soybean/corn crop rotation in Quebec, Canada. We identified weak and temporally inconsistent effects of neonicotinoid application on soil microbial gene expression, as well as a strong temporal variation in soil microbial gene expression among months and years. Neonicotinoid seed treatment altered the expression of a small number of microbial genes, including genes associated with heat shock proteins, regulatory functions, metabolic processes and DNA repair. These changes in gene expression varied during the growing season and between years. Overall, the composition of soil microbial expressed genes seems to be more resilient and less affected by neonicotinoid application than soil microbial taxonomic composition. Our study is among the first to document the effects of neonicotinoid seed treatment on microbial gene expression and highlights the strong temporal variability of soil microbial gene expression and its responses to neonicotinoid seed treatments.


Assuntos
Inseticidas , Microbiota , Neonicotinoides/farmacologia , Neonicotinoides/análise , Solo/química , Microbiologia do Solo , Inseticidas/farmacologia , Inseticidas/análise , Sementes/genética , Sementes/química , Genes Microbianos , Expressão Gênica
9.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33834201

RESUMO

Microorganisms in deep-sea hydrothermal vents provide valuable insights into life under extreme conditions. Mass spectrometry-based proteomics has been widely used to identify protein expression and function. However, the metaproteomic studies in deep-sea microbiota have been constrained largely by the low identification rates of protein or peptide. To improve the efficiency of metaproteomics for hydrothermal vent microbiota, we firstly constructed a microbial gene database (HVentDB) based on 117 public metagenomic samples from hydrothermal vents and proposed a metaproteomic analysis strategy, which takes the advantages of not only the sample-matched metagenome, but also the metagenomic information released publicly in the community of hydrothermal vents. A two-stage false discovery rate method was followed up to control the risk of false positive. By applying our community-supported strategy to a hydrothermal vent sediment sample, about twice as many peptides were identified when compared with the ways against the sample-matched metagenome or the public reference database. In addition, more enriched and explainable taxonomic and functional profiles were detected by the HVentDB-based approach exclusively, as well as many important proteins involved in methane, amino acid, sugar, glycan metabolism and DNA repair, etc. The new metaproteomic analysis strategy will enhance our understanding of microbiota, including their lifestyles and metabolic capabilities in extreme environments. The database HVentDB is freely accessible from http://lilab.life.sjtu.edu.cn:8080/HventDB/main.html.


Assuntos
Fontes Hidrotermais/microbiologia , Metagenoma , Metagenômica/métodos , Microbiota/genética , Peptídeos/genética , Proteogenômica/métodos , Proteoma/genética , Sequência de Aminoácidos/genética , DNA Ribossômico/genética , Bases de Dados Genéticas , Genes Microbianos , Filogenia
10.
Nucleic Acids Res ; 48(14): 7681-7689, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32619234

RESUMO

Genome-enabled approaches to molecular epidemiology have become essential to public health agencies and the microbial research community. We developed the algorithm STing to provide turn-key solutions for molecular typing and gene detection directly from next generation sequence data of microbial pathogens. Our implementation of STing uses an innovative k-mer search strategy that eliminates the computational overhead associated with the time-consuming steps of quality control, assembly, and alignment, required by more traditional methods. We compared STing to six of the most widely used programs for genome-based molecular typing and demonstrate its ease of use, accuracy, speed and efficiency. STing shows superior accuracy and performance for standard multilocus sequence typing schemes, along with larger genome-scale typing schemes, and it enables rapid automated detection of antimicrobial resistance and virulence factor genes. STing determines the sequence type of traditional 7-gene MLST with 100% accuracy in less than 10 seconds per isolate. We hope that the adoption of STing will help to democratize microbial genomics and thereby maximize its benefit for public health.


Assuntos
Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala , Tipagem de Sequências Multilocus/métodos , Resistência Microbiana a Medicamentos/genética , Genes Microbianos , Genômica/métodos , Software , Fatores de Virulência/genética
11.
J Infect Dis ; 223(12 Suppl 2): S209-S213, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33326581

RESUMO

This review will consider the gut as a reservoir for antimicrobial resistance, colonization resistance, and how disruption of the microbiome can lead to colonization by pathogenic organisms. There is a focus on the gut as a reservoir for ß-lactam and plasmid-mediated quinolone resistance. Finally, the role of functional metagenomics and long-read sequencing technologies to detect and understand antimicrobial resistance genes within the gut microbiome is discussed, along with the potential for future microbiome-directed methods to detect and prevent infection.


Assuntos
Resistência Microbiana a Medicamentos/genética , Microbioma Gastrointestinal/genética , Anti-Infecciosos/farmacologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Genes Microbianos/genética , Humanos , Metagenômica , Plasmídeos/efeitos dos fármacos , Plasmídeos/genética
12.
BMC Genomics ; 22(1): 173, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33706718

RESUMO

BACKGROUND: Genetic resources are important natural assets. Discovery of new enzyme gene sequences has been an ongoing effort in biotechnology industry. In the genomic age, genomes of microorganisms from various environments have been deciphered. Increasingly, it has become more and more difficult to find novel enzyme genes. In this work, we attempted to use the easily accessible banknotes to search for novel microbial gene sequences. RESULTS: We used high-throughput genomic sequencing technology to comprehensively characterize the diversity of microorganisms on the US dollars and Chinese Renminbis (RMBs). In addition to finding a vast diversity of microbes, we found a significant number of novel gene sequences, including an unreported superoxide dismutase (SOD) gene, whose catalytic activity was further verified by experiments. CONCLUSIONS: We demonstrated that banknotes could be a good and convenient genetic resource for finding economically valuable biologicals.


Assuntos
Metagenoma , Metagenômica , Genes Microbianos , Genômica
13.
Environ Microbiol ; 23(2): 1199-1209, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33283951

RESUMO

Soil aggregates, with complex spatial and nutritional heterogeneity, are clearly important for regulating microbial community ecology and biogeochemistry in soils. However, how the taxonomic composition and functional attributes of N-cycling-microbes within different soil particle-size fractions under a long-term fertilization treatment remains largely unknown. Here, we examined the composition and metabolic potential for urease activity, nitrification, N2 O production and reduction of the microbial communities attached to different sized soil particles (2000-250, 250-53 and <53 µm) using a functional gene microarray (GeoChip) and functional assays. We found that urease activity and nitrification were higher in <53 µm fractions, whereas N2 O production and reduction rates were greater in 2000-250 and 250-53 µm across different fertilizer regimes. The abundance of key N-cycling genes involved in anammox, ammonification, assimilatory and dissimilatory N reduction, denitrification, nitrification and N2 -fixation detected by GeoChip increased as soil aggregate size decreased; and the particular key genes abundance (e.g., ureC, amoA, narG, nirS/K) and their corresponding activity were uncoupled. Aggregate fraction exerted significant impacts on N-cycling microbial taxonomic composition, which was significantly shaped by soil nutrition. Taken together, these findings indicate the important roles of soil aggregates in differentiating N-cycling metabolic potential and taxonomic composition, and provide empirical evidence that nitrogen metabolism potential and community are uncoupled due to aggregate heterogeneity.


Assuntos
Microbiota/fisiologia , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Microbiologia do Solo , Fertilizantes/análise , Genes Microbianos , Microbiota/genética , Nitrificação/genética , Nitrogênio/análise , Ciclo do Nitrogênio/genética , Óxido Nitroso/metabolismo , Solo/química , Urease/genética , Urease/metabolismo
14.
Microb Ecol ; 81(4): 1029-1041, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33170351

RESUMO

Nitrogen removal is an important process for wastewater ponds prior to effluent release. Bacteria and archaea can drive nitrogen removal if they possess the genes required to metabolize nitrogen. In the tropical savanna of northern Australia, we identified the previously unresolved microbial communities responsible for nitrogen cycling in a multi-pond wastewater stabilization system by measuring genomic DNA and cDNA for the following: nifH (nitrogen fixation); nosZ (denitrification); hzsA (anammox); archaeal AamoA and bacterial BamoA (ammonia oxidation); nxrB (nitrite oxidation); and nrfA (dissimilatory NO3 reduction to NH3). By collecting 160 DNA and 40 cDNA wastewater samples and measuring nitrogen (N)-cycling genes using a functional gene array, we found that genes from all steps of the N cycle were present and, except for nxrB, were also expressed. As expected, N-cycling communities showed daily, seasonal, and yearly shifts. However, contrary to our prediction, probes from most functional groups, excluding nosZ and AamoA, were different between ponds. Further, different genes that perform the same N-cycling role sometimes had different trends over space and time, resulting in only weak correlations between the different functional communities. Although N-cycling communities were correlated with wastewater nitrogen levels and physico-chemistry, the relationship was not strong enough to reliably predict the presence or diversity of N-cycling microbes. The complex and dynamic response of these genes to other functional groups and the changing physico-chemical environment provides insight into why altering wastewater pond conditions can result an abundance of some gene variants while others are lost.


Assuntos
Nitrogênio , Lagoas , Archaea/genética , Desnitrificação , Genes Microbianos , Nitrogênio/análise , Ciclo do Nitrogênio , Oxirredução , Águas Residuárias
15.
Mol Biol Rep ; 48(12): 8111-8122, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34716867

RESUMO

Transgenic technology could hold the key to help farmers to fulfill the ever increasing fast-paced global demand for food. Microbes have always wondered us by their potentials and thriving abilities in the extreme conditions. The use of microorganisms as a gene source in transgenic development is a promising option for crop improvement. The aforesaid approach has already for improving the characteristics of food, industrial, horticulture, and floriculture crops. Many transgenic crops containing microbial genes have been accepted by the farmers and consumers worldwide over the last few decades. The acceptance has brought remarkable changes in the status of society by providing food safety, economic, and health benefits. Among transgenic plants harboring microbial genes, Bacillus thuringiensis (Bt) based transgenic were more focused and documented owing to its significant performance in controlling insects. However, other microbial gene-based transgenic plants have also reserved their places in the farmer's field globally. Therefore, in this review, we have thrown some light on successful transgenic plants harboring microbial genes other than Bt, having application in agriculture. Also, we presented the role of microbial genetic element and product thereof in the inception of biotechnology and discussed the potential of microbial genes in crop improvement.


Assuntos
Agricultura/tendências , Controle Biológico de Vetores/tendências , Plantas Geneticamente Modificadas/metabolismo , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Produtos Agrícolas/genética , Endotoxinas , Genes Microbianos , Humanos , Insetos/genética , Resistência a Inseticidas , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/genética
16.
Can J Microbiol ; 67(2): 174-187, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32910858

RESUMO

Quantifying genes in soil is important to relate the abundance of soil bacteria to biogeochemical cycles. Quantitative real-time PCR is widely used for quantification, but its use with environmental samples is limited by poor reaction efficiencies or by PCR inhibition through co-purified soil substances. Droplet digital PCR (ddPCR) is a technology for absolute, sensitive quantification of genes. This study optimized eight ddPCR assays to quantify total bacteria and archaea as well as the nitrification (bacterial and archaeal amoA) and denitrification (nirS, nirK, nosZI, nosZII) genes involved in the generation or reduction of the greenhouse gas nitrous oxide. Detection and quantification thresholds were compared with those of quantitative real-time PCR and were equal to, or improved, in ddPCR. To validate the assays using environmental samples, soil DNA was isolated from two vineyards in the Okanagan valley in British Columbia, Canada, over the 2017 growing season. Soil properties related to the observed gene abundances were determined. Total bacteria, nirK, and nosZII increased with time and the soil C/N ratio and NH4+-N concentration affected total archaea and archaeal amoA negatively. The results, compared with those of other studies, showed that ddPCR is a valid alternative to qPCR to quantify genes involved in nitrification or denitrification.


Assuntos
Desnitrificação/genética , Nitrificação/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia do Solo , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Canadá , Fazendas , Genes Microbianos , Solo/química
17.
Can J Microbiol ; 67(6): 464-475, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33301360

RESUMO

Experiments were carried out to elucidate linkage between methane consumption and mineralization of phosphorous (P) from different P sources. The treatments were (i) no CH4 + no P amendment (absolute control), (ii) with CH4 + no P amendment (control), (iii) with CH4 + inorganic P as Ca3(PO4)2, and (iv) with CH4 + organic P as sodium phytate. P sources were added at 25 µg P·(g soil)-1. Soils were incubated to undergo three repeated CH4 feeding cycles, referred to as feeding cycle I, feeding cycle II, and feeding cycle III. CH4 consumption rate k (µg CH4 consumed·(g soil)-1·day-1) was 0.297 ± 0.028 in no P amendment control, 0.457 ± 0.016 in Ca3(PO4)2, and 0.627 ± 0.013 in sodium phytate. Rate k was stimulated by 2 to 6 times over CH4 feeding cycles and followed the trend of sodium phytate > Ca3(PO4)2 > no P amendment control. CH4 consumption stimulated P solubilization from Ca3(PO4)2 by a factor of 2.86. Acid phosphatase (µg paranitrophenol released·(g soil)-1·h-1) was higher in sodium phytate than the no P amendment control. Abundance of 16S rRNA and pmoA genes increased with CH4 consumption rates. The results of the study suggested that CH4 consumption drives mineralization of unavailable inorganic and organic P sources in the soil ecosystem.


Assuntos
Ecossistema , Metano/metabolismo , Fósforo/metabolismo , Solo , Fosfatase Ácida/análise , Fosfatase Ácida/metabolismo , Disponibilidade Biológica , Genes Microbianos/genética , Metano/análise , Oxigenases/genética , Fósforo/análise , Fósforo/farmacocinética , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
18.
BMC Genomics ; 21(1): 334, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32349659

RESUMO

BACKGROUND: The rnpB gene encodes for an essential catalytic RNA (RNase P). Like other essential RNAs, RNase P's sequence is highly variable. However, unlike other essential RNAs (i.e. tRNA, 16 S, 6 S,...) its structure is also variable with at least 5 distinct structure types observed in prokaryotes. This structural variability makes it labor intensive and challenging to create and maintain covariance models for the detection of RNase P RNA in genomic and metagenomic sequences. The lack of a facile and rapid annotation algorithm has led to the rnpB gene being the most grossly under annotated essential gene in completed prokaryotic genomes with only a 24% annotation rate. Here we describe the coupling of the largest RNase P RNA database with the local alignment scoring algorithm to create the most sensitive and rapid prokaryote rnpB gene identification and annotation algorithm to date. RESULTS: Of the 2772 completed microbial genomes downloaded from GenBank only 665 genomes had an annotated rnpB gene. We applied P Finder to these genomes and were able to identify 2733 or nearly 99% of the 2772 microbial genomes examined. From these results four new rnpB genes that encode the minimal T-type P RNase P RNAs were identified computationally for the first time. In addition, only the second C-type RNase P RNA was identified in Sphaerobacter thermophilus. Of special note, no RNase P RNAs were detected in several obligate endosymbionts of sap sucking insects suggesting a novel evolutionary adaptation. CONCLUSIONS: The coupling of the largest RNase P RNA database and associated structure class identification with the P Finder algorithm is both sensitive and rapid, yielding high quality results to aid researchers annotating either genomic or metagenomic data. It is the only algorithm to date that can identify challenging RNAse P classes such as C-type and the minimal T-type RNase P RNAs. P Finder is written in C# and has a user-friendly GUI that can run on multiple 64-bit windows platforms (Windows Vista/7/8/10). P Finder is free available for download at https://github.com/JChristopherEllis/P-Finder as well as a small sample RNase P RNA file for testing.


Assuntos
Genes Microbianos , Genômica/métodos , Ribonuclease P/genética , Algoritmos , Chloroflexi/enzimologia , Chloroflexi/genética , Bases de Dados Genéticas , Genoma Microbiano/genética , Metagenômica/métodos , Conformação de Ácido Nucleico , Células Procarióticas/enzimologia , RNA Catalítico/química , RNA Catalítico/classificação , RNA Catalítico/genética , Ribonuclease P/química , Ribonuclease P/classificação , Software
19.
Mol Biol Evol ; 35(4): 899-913, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29346651

RESUMO

Extensive microbial gene flows affect how we understand virology, microbiology, medical sciences, genetic modification, and evolutionary biology. Phylogenies only provide a narrow view of these gene flows: plasmids and viruses, lacking core genes, cannot be attached to cellular life on phylogenetic trees. Yet viruses and plasmids have a major impact on cellular evolution, affecting both the gene content and the dynamics of microbial communities. Using bipartite graphs that connect up to 149,000 clusters of homologous genes with 8,217 related and unrelated genomes, we can in particular show patterns of gene sharing that do not map neatly with the organismal phylogeny. Homologous genes are recycled by lateral gene transfer, and multiple copies of homologous genes are carried by otherwise completely unrelated (and possibly nested) genomes, that is, viruses, plasmids and prokaryotes. When a homologous gene is present on at least one plasmid or virus and at least one chromosome, a process of "gene externalization," affected by a postprocessed selected functional bias, takes place, especially in Bacteria. Bipartite graphs give us a view of vertical and horizontal gene flow beyond classic taxonomy on a single very large, analytically tractable, graph that goes beyond the cellular Web of Life.


Assuntos
Transferência Genética Horizontal , Genes Microbianos , Fluxo Gênico , Plasmídeos/genética , Vírus/genética
20.
Microbiology (Reading) ; 165(12): 1252-1264, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31184575

RESUMO

The rationale of our bioprospecting campaigns is that the extremobiosphere, particularly the deep sea and hyper-arid deserts, harbours undiscovered biodiversity that is likely to express novel chemistry and biocatalysts thereby providing opportunities for therapeutic drug and industrial process development. We have focused on actinobacteria because of their frequent role as keystone species in soil ecosystems and their unrivalled track record as a source of bioactive compounds. Population numbers and diversity of actinobacteria in the extremobiosphere are traditionally considered to be low, although they often comprise the dominant bacterial biota. Recent metagenomic evaluation of 'the uncultured microbial majority' has now revealed enormous taxonomic diversity among 'dark' and 'rare' actinobacteria in samples as diverse as sediments from the depths of the Mariana Trench and soils from the heights of the Central Andes. The application of innovative culture and screening options that emphasize rigorous dereplication at each stage of the analysis, and strain prioritization to identify 'gifted' organisms, have been deployed to detect and characterize bioactive hit compounds and sought-after catalysts from this hitherto untapped resource. The rewards include first-in-a-class chemical entities with novel modes of action, as well as a growing microbial seed bank that represents a potentially enormous source of biotechnological and therapeutic innovation.


Assuntos
Bioprospecção , Ambientes Extremos , Microbiota/genética , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/metabolismo , Produtos Biológicos/metabolismo , Descoberta de Drogas , Ecossistema , Genes Microbianos , Genoma Bacteriano/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa