Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.745
Filtrar
Mais filtros

Coleção SES
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 93(1): 529-564, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38669516

RESUMO

The complex carbohydrate structures decorating human proteins and lipids, also called glycans, are abundantly present at cell surfaces and in the secretome. Glycosylation is vital for biological processes including cell-cell recognition, immune responses, and signaling pathways. Therefore, the structural and functional characterization of the human glycome is gaining more and more interest in basic biochemistry research and in the context of developing new therapies, diagnostic tools, and biotechnology applications. For glycomics to reach its full potential in these fields, it is critical to appreciate the specific factors defining the function of the human glycome. Here, we review the glycosyltransferases (the writers) that form the glycome and the glycan-binding proteins (the readers) with an essential role in decoding glycan functions. While abundantly present throughout different cells and tissues, the function of specific glycosylation features is highly dependent on their context. In this review, we highlight the relevance of studying the glycome in the context of specific carrier proteins, cell types, and subcellular locations. With this, we hope to contribute to a richer understanding of the glycome and a more systematic approach to identifying the roles of glycosylation in human physiology.


Assuntos
Glicômica , Glicosiltransferases , Polissacarídeos , Humanos , Glicosilação , Polissacarídeos/metabolismo , Polissacarídeos/química , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Glicômica/métodos , Glicoproteínas/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Animais , Processamento de Proteína Pós-Traducional
2.
Annu Rev Immunol ; 34: 243-64, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26907217

RESUMO

Galectins are a family of mammalian carbohydrate-binding proteins expressed by many cell types. Galectins can function intracellularly and can also be secreted to bind to cell surface glycoconjugate counterreceptors. Some galectins are made by immune cells, whereas other galectins are secreted by different cell types, such as endothelial or epithelial cells, and bind to immune cells to regulate immune responses. Galectin binding to a single glycan ligand is a low-affinity interaction, but the multivalency of galectins and the glycan ligands presented on cell surface glycoproteins results in high-avidity binding that can reversibly scaffold or cluster these glycoproteins. Galectin binding to a specific glycoprotein counterreceptor is regulated in part by the repertoire of glycosyltransferase enzymes (which make the glycan ligands) expressed by that cell, and the effect of galectin binding results from clustering or retention of specific glycoprotein counterreceptors bearing these specific ligands.


Assuntos
Galectinas/metabolismo , Glicosiltransferases/metabolismo , Imunidade , Animais , Carboidratos/imunologia , Citoesqueleto , Galectinas/imunologia , Glicoproteínas/metabolismo , Humanos , Ligação Proteica , Agregação de Receptores
3.
Cell ; 184(20): 5163-5178.e24, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34559985

RESUMO

Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.


Assuntos
Interações Hospedeiro-Patógeno , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Vírus da Febre do Vale do Rift/fisiologia , Internalização do Vírus , Animais , Especificidade de Anticorpos/imunologia , Sequência de Bases , Encéfalo/patologia , Encéfalo/virologia , Sistemas CRISPR-Cas/genética , Membrana Celular/metabolismo , Células Cultivadas , Glicoproteínas/metabolismo , Glicosaminoglicanos/metabolismo , Glicosilação , Humanos , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/metabolismo , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Glicoproteínas de Membrana/metabolismo , Camundongos , Ligação Proteica , Desnaturação Proteica , Febre do Vale de Rift/patologia , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/imunologia
4.
Nat Immunol ; 24(7): 1138-1148, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202490

RESUMO

Fibroblastic reticular cells (FRCs) direct the interaction and activation of immune cells in discrete microenvironments of lymphoid organs. Despite their important role in steering innate and adaptive immunity, the age- and inflammation-associated changes in the molecular identity and functional properties of human FRCs have remained largely unknown. Here, we show that human tonsillar FRCs undergo dynamic reprogramming during life and respond vigorously to inflammatory perturbation in comparison to other stromal cell types. The peptidase inhibitor 16 (PI16)-expressing reticular cell (PI16+ RC) subset of adult tonsils exhibited the strongest inflammation-associated structural remodeling. Interactome analysis combined with ex vivo and in vitro validation revealed that T cell activity within subepithelial niches is controlled by distinct molecular pathways during PI16+ RC-lymphocyte interaction. In sum, the topological and molecular definition of the human tonsillar stromal cell landscape reveals PI16+ RCs as a specialized FRC niche at the core of mucosal immune responses in the oropharynx.


Assuntos
Tonsila Palatina , Linfócitos T , Humanos , Fibroblastos , Linfócitos/metabolismo , Inflamação/metabolismo , Proteínas de Transporte/metabolismo , Glicoproteínas/metabolismo
5.
Immunity ; 57(3): 559-573.e6, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479361

RESUMO

Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with B cell lymphomas. EBV glycoprotein 42 (gp42) binds HLA class II and activates membrane fusion with B cells. We isolated gp42-specific monoclonal antibodies (mAbs), A10 and 4C12, which use distinct mechanisms to neutralize virus infection. mAb A10 was more potent than the only known neutralizing gp42 mAb, F-2-1, in neutralizing EBV infection and blocking binding to HLA class II. mAb 4C12 was similar to mAb A10 in inhibiting glycoprotein-mediated B cell fusion but did not block receptor binding, and it was less effective in neutralizing infection. Crystallographic structures of gH/gL/gp42/A10 and gp42/4C12 complexes revealed two distinct sites of vulnerability on gp42 for receptor binding and B cell fusion. Passive transfer of mAb A10 into humanized mice conferred nearly 100% protection from viremia and EBV lymphomas after EBV challenge. These findings identify vulnerable sites on EBV that may facilitate therapeutics and vaccines.


Assuntos
Benzenoacetamidas , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Piperidonas , Animais , Camundongos , Proteínas Virais/metabolismo , Glicoproteínas/metabolismo , Anticorpos Antivirais
6.
Cell ; 174(4): 870-883.e17, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30057120

RESUMO

The mitochondrial unfolded protein response (UPRmt) can be triggered in a cell-non-autonomous fashion across multiple tissues in response to mitochondrial dysfunction. The ability to communicate information about the presence of mitochondrial stress enables a global response that can ultimately better protect an organism from local mitochondrial challenges. We find that animals use retromer-dependent Wnt signaling to propagate mitochondrial stress signals from the nervous system to peripheral tissues. Specifically, the polyQ40-triggered activation of mitochondrial stress or reduction of cco-1 (complex IV subunit) in neurons of C. elegans results in the Wnt-dependent induction of cell-non-autonomous UPRmt in peripheral cells. Loss-of-function mutations of retromer complex components that are responsible for recycling the Wnt secretion-factor/MIG-14 prevent Wnt secretion and thereby suppress cell-non-autonomous UPRmt. Neuronal expression of the Wnt ligand/EGL-20 is sufficient to induce cell-non-autonomous UPRmt in a retromer complex-, Wnt signaling-, and serotonin-dependent manner, clearly implicating Wnt signaling as a strong candidate for the "mitokine" signal.


Assuntos
Animais Geneticamente Modificados/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Poliubiquitina/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Proteínas Wnt/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias/genética , Neurônios/citologia , Neurônios/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas Wnt/genética
7.
Annu Rev Biochem ; 86: 585-608, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28125290

RESUMO

Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.


Assuntos
Caseínas/química , Glicoproteínas/química , Proteínas de Membrana/química , Proteínas de Neoplasias/química , Fosfoproteínas/química , Surfactantes Pulmonares/química , Tensoativos/química , Animais , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Caseínas/genética , Caseínas/metabolismo , Fungos/química , Fungos/genética , Fungos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mamíferos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Conformação Proteica , Surfactantes Pulmonares/metabolismo , Propriedades de Superfície , Tensoativos/metabolismo , Água/química , Água/metabolismo
8.
Annu Rev Immunol ; 28: 389-411, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307212

RESUMO

B and T lymphocyte associated (BTLA) is an Ig domain superfamily protein with cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Its ligand, herpesvirus entry mediator (HVEM), is a tumor necrosis factor receptor superfamily member. The unique interaction between BTLA and HVEM allows for a system of bidirectional signaling that must be appropriately regulated to balance the outcome of the immune response. HVEM engagement of BTLA produces inhibitory signals through SH2 domain-containing protein tyrosine phosphatase 1 (Shp-1) and Shp-2 association, whereas BTLA engagement of HVEM produces proinflammatory signals via activation of NF-kappaB. The BTLA-HVEM interaction is intriguing and quite complex given that HVEM has four other ligands that also influence immune responses, the conventional TNF ligand LIGHT and lymphotoxin alpha, as well as herpes simplex virus glycoprotein D and the glycosylphosphatidylinositol-linked Ig domain protein CD160. BTLA-HVEM interactions have been shown to regulate responses in several pathogen and autoimmune settings, but our understanding of this complex system of interactions is certainly incomplete. Recent findings of spontaneous inflammation in BTLA-deficient mice may provide an important clue.


Assuntos
Glicoproteínas/imunologia , Receptores Imunológicos/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Animais , Glicoproteínas/metabolismo , Humanos , Imunoglobulinas/imunologia , Ligantes , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais
9.
Nat Rev Mol Cell Biol ; 21(12): 729-749, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33087899

RESUMO

Glycosylation is the most abundant and diverse form of post-translational modification of proteins that is common to all eukaryotic cells. Enzymatic glycosylation of proteins involves a complex metabolic network and different types of glycosylation pathways that orchestrate enormous amplification of the proteome in producing diversity of proteoforms and its biological functions. The tremendous structural diversity of glycans attached to proteins poses analytical challenges that limit exploration of specific functions of glycosylation. Major advances in quantitative transcriptomics, proteomics and nuclease-based gene editing are now opening new global ways to explore protein glycosylation through analysing and targeting enzymes involved in glycosylation processes. In silico models predicting cellular glycosylation capacities and glycosylation outcomes are emerging, and refined maps of the glycosylation pathways facilitate genetic approaches to address functions of the vast glycoproteome. These approaches apply commonly available cell biology tools, and we predict that use of (single-cell) transcriptomics, genetic screens, genetic engineering of cellular glycosylation capacities and custom design of glycoprotein therapeutics are advancements that will ignite wider integration of glycosylation in general cell biology.


Assuntos
Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteoma/metabolismo , Metabolismo dos Carboidratos/fisiologia , Glicosilação , Humanos , Redes e Vias Metabólicas/fisiologia , Polissacarídeos/química
10.
Nat Immunol ; 20(4): 493-502, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833792

RESUMO

Interferon-stimulated genes (ISGs) form the backbone of the innate immune system and are important for limiting intra- and intercellular viral replication and spread. We conducted a mass-spectrometry-based survey to understand the fundamental organization of the innate immune system and to explore the molecular functions of individual ISGs. We identified interactions between 104 ISGs and 1,401 cellular binding partners engaging in 2,734 high-confidence interactions. 90% of these interactions are unreported so far, and our survey therefore illuminates a far wider activity spectrum of ISGs than is currently known. Integration of the resulting ISG-interaction network with published datasets and functional studies allowed us to identify regulators of immunity and processes related to the immune system. Given the extraordinary robustness of the innate immune system, this ISG network may serve as a blueprint for therapeutic targeting of cellular systems to efficiently fight viral infections.


Assuntos
Imunidade Inata , Interferons/fisiologia , Mapeamento de Interação de Proteínas , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Expressão Gênica , Glicoproteínas/metabolismo , Células HEK293 , Células HeLa , Humanos , Imunidade Inata/genética , Espectrometria de Massas , Receptores CCR4/metabolismo , Receptores de Peptídeos/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo
11.
Cell ; 165(6): 1467-1478, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27238017

RESUMO

Niemann-Pick disease type C (NPC) is associated with mutations in NPC1 and NPC2, whose gene products are key players in the endosomal/lysosomal egress of low-density lipoprotein-derived cholesterol. NPC1 is also the intracellular receptor for Ebola virus (EBOV). Here, we present a 4.4 Å structure of full-length human NPC1 and a low-resolution reconstruction of NPC1 in complex with the cleaved glycoprotein (GPcl) of EBOV, both determined by single-particle electron cryomicroscopy. NPC1 contains 13 transmembrane segments (TMs) and three distinct lumenal domains A (also designated NTD), C, and I. TMs 2-13 exhibit a typical resistance-nodulation-cell division fold, among which TMs 3-7 constitute the sterol-sensing domain conserved in several proteins involved in cholesterol metabolism and signaling. A trimeric EBOV-GPcl binds to one NPC1 monomer through the domain C. Our structural and biochemical characterizations provide an important framework for mechanistic understanding of NPC1-mediated intracellular cholesterol trafficking and Ebola virus infection.


Assuntos
Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Glicoproteínas/química , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/ultraestrutura , Modelos Moleculares , Proteína C1 de Niemann-Pick , Doenças de Niemann-Pick/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Proteínas de Transporte Vesicular , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/ultraestrutura
12.
Nat Rev Genet ; 25(10): 715-729, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38724711

RESUMO

Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.


Assuntos
Polissacarídeos , Humanos , Glicosilação , Animais , Polissacarídeos/metabolismo , Polissacarídeos/genética , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Mamíferos/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo
13.
Cell ; 162(1): 211-20, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26140598

RESUMO

Specific binding proteins are crucial for the correct spatiotemporal expression of mRNA. To understand this process, a method is required to characterize RNA-protein interactions in single living cells with subcellular resolution. We combined endogenous single RNA and protein detection with two-photon fluorescence fluctuation analysis to measure the average number of proteins bound to mRNA at specific locations within live cells. We applied this to quantify the known binding of zipcode binding protein 1 (ZBP1) and ribosomes to ß-actin mRNA within subcellular compartments of primary fibroblasts and neurons. ZBP1-mRNA binding did not occur in nuclei, contrary to previous conclusions. ZBP1 interaction with ß-actin mRNA was enhanced perinuclearly in neurons compared to fibroblasts. Cytoplasmic ZBP1 and ribosome binding to the mRNA were anti-correlated depending on their location in the cell. These measurements support a mechanism whereby ZBP1 inhibits translation of localizing mRNA until its release from the mRNA peripherally, allowing ribosome binding.


Assuntos
Fibroblastos/metabolismo , Glicoproteínas/metabolismo , Neurônios/metabolismo , Análise de Célula Única/métodos , Actinas/genética , Actinas/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Fluorescência , Camundongos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Ribossomos/metabolismo
14.
Cell ; 161(5): 1175-1186, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000486

RESUMO

The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation.


Assuntos
Epêndima/citologia , Células-Tronco Neurais/metabolismo , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Diferenciação Celular , Movimento Celular , Epêndima/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Glicoproteínas/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Peptídeos/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Nature ; 633(8030): 695-703, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39232167

RESUMO

Viral glycoproteins drive membrane fusion in enveloped viruses and determine host range, tissue tropism and pathogenesis1. Despite their importance, there is a fragmentary understanding of glycoproteins within the Flaviviridae2, a large virus family that include pathogens such as hepatitis C, dengue and Zika viruses, and numerous other human, animal and emergent viruses. For many flaviviruses the glycoproteins have not yet been identified, for others, such as the hepaciviruses, the molecular mechanisms of membrane fusion remain uncharacterized3. Here we combine phylogenetic analyses with protein structure prediction to survey glycoproteins across the entire Flaviviridae. We find class II fusion systems, homologous to the Orthoflavivirus E glycoprotein in most species, including highly divergent jingmenviruses and large genome flaviviruses. However, the E1E2 glycoproteins of the hepaciviruses, pegiviruses and pestiviruses are structurally distinct, may represent a novel class of fusion mechanism, and are strictly associated with infection of vertebrate hosts. By mapping glycoprotein distribution onto the underlying phylogeny, we reveal a complex evolutionary history marked by the capture of bacterial genes and potentially inter-genus recombination. These insights, made possible through protein structure prediction, refine our understanding of viral fusion mechanisms and reveal the events that have shaped the diverse virology and ecology of the Flaviviridae.


Assuntos
Evolução Molecular , Flaviviridae , Glicoproteínas , Filogenia , Proteínas do Envelope Viral , Animais , Humanos , Flaviviridae/química , Flaviviridae/classificação , Glicoproteínas/química , Glicoproteínas/classificação , Glicoproteínas/metabolismo , Modelos Moleculares , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/classificação , Proteínas do Envelope Viral/metabolismo
16.
Nat Immunol ; 18(7): 762-770, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28504698

RESUMO

Trafficking of tissue dendritic cells (DCs) via lymph is critical for the generation of cellular immune responses in draining lymph nodes (LNs). In the current study we found that DCs docked to the basolateral surface of lymphatic vessels and transited to the lumen through hyaluronan-mediated interactions with the lymph-specific endothelial receptor LYVE-1, in dynamic transmigratory-cup-like structures. Furthermore, we show that targeted deletion of the gene Lyve1, antibody blockade or depletion of the DC hyaluronan coat not only delayed lymphatic trafficking of dermal DCs but also blunted their capacity to prime CD8+ T cell responses in skin-draining LNs. Our findings uncovered a previously unknown function for LYVE-1 and show that transit through the lymphatic network is initiated by the recognition of leukocyte-derived hyaluronan.


Assuntos
Células Dendríticas/imunologia , Células Endoteliais/metabolismo , Glicoproteínas/genética , Ácido Hialurônico/metabolismo , Vasos Linfáticos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Movimento Celular/imunologia , Células Dendríticas/metabolismo , Endotélio Linfático/citologia , Endotélio Linfático/metabolismo , Citometria de Fluxo , Glicoproteínas/metabolismo , Humanos , Imunidade Celular/imunologia , Linfonodos/imunologia , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia
17.
Immunity ; 53(2): 353-370.e8, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32735845

RESUMO

The formation of mammalian dendritic cells (DCs) is controlled by multiple hematopoietic transcription factors, including IRF8. Loss of IRF8 exerts a differential effect on DC subsets, including plasmacytoid DCs (pDCs) and the classical DC lineages cDC1 and cDC2. In humans, cDC2-related subsets have been described including AXL+SIGLEC6+ pre-DC, DC2 and DC3. The origin of this heterogeneity is unknown. Using high-dimensional analysis, in vitro differentiation, and an allelic series of human IRF8 deficiency, we demonstrated that cDC2 (CD1c+DC) heterogeneity originates from two distinct pathways of development. The lymphoid-primed IRF8hi pathway, marked by CD123 and BTLA, carried pDC, cDC1, and DC2 trajectories, while the common myeloid IRF8lo pathway, expressing SIRPA, formed DC3s and monocytes. We traced distinct trajectories through the granulocyte-macrophage progenitor (GMP) compartment showing that AXL+SIGLEC6+ pre-DCs mapped exclusively to the DC2 pathway. In keeping with their lower requirement for IRF8, DC3s expand to replace DC2s in human partial IRF8 deficiency.


Assuntos
Antígenos CD34/metabolismo , Células Dendríticas/citologia , Hematopoese/fisiologia , Fatores Reguladores de Interferon/metabolismo , Animais , Antígenos CD1/metabolismo , Linhagem Celular , Linhagem da Célula/imunologia , Células Dendríticas/imunologia , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Camundongos , Receptores Imunológicos/metabolismo
18.
Immunity ; 53(2): 335-352.e8, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32610077

RESUMO

Dendritic cells (DCs) are antigen-presenting cells controlling T cell activation. In humans, the diversity, ontogeny, and functional capabilities of DC subsets are not fully understood. Here, we identified circulating CD88-CD1c+CD163+ DCs (called DC3s) as immediate precursors of inflammatory CD88-CD14+CD1c+CD163+FcεRI+ DCs. DC3s develop via a specific pathway activated by GM-CSF, independent of cDC-restricted (CDP) and monocyte-restricted (cMoP) progenitors. Like classical DCs but unlike monocytes, DC3s drove activation of naive T cells. In vitro, DC3s displayed a distinctive ability to prime CD8+ T cells expressing a tissue homing signature and the epithelial homing alpha-E integrin (CD103) through transforming growth factor ß (TGF-ß) signaling. In vivo, DC3s infiltrated luminal breast cancer primary tumors, and DC3 infiltration correlated positively with CD8+CD103+CD69+ tissue-resident memory T cells. Together, these findings define DC3s as a lineage of inflammatory DCs endowed with a strong potential to regulate tumor immunity.


Assuntos
Antígenos CD1/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/citologia , Células Dendríticas/imunologia , Glicoproteínas/metabolismo , Cadeias alfa de Integrinas/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD , Fator de Crescimento Transformador beta1/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo
19.
EMBO J ; 43(20): 4625-4655, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39261662

RESUMO

Despite their role as innate sentinels, macrophages can serve as cellular reservoirs of chikungunya virus (CHIKV), a highly-pathogenic arthropod-borne alphavirus that has caused large outbreaks among human populations. Here, with the use of viral chimeras and evolutionary selection analysis, we define CHIKV glycoproteins E1 and E2 as critical for virion production in THP-1 derived human macrophages. Through proteomic analysis and functional validation, we further identify signal peptidase complex subunit 3 (SPCS3) and eukaryotic translation initiation factor 3 subunit K (eIF3k) as E1-binding host proteins with anti-CHIKV activities. We find that E1 residue V220, which has undergone positive selection, is indispensable for CHIKV production in macrophages, as its mutation attenuates E1 interaction with the host restriction factors SPCS3 and eIF3k. Finally, we show that the antiviral activity of eIF3k is translation-independent, and that CHIKV infection promotes eIF3k translocation from the nucleus to the cytoplasm, where it associates with SPCS3. These functions of CHIKV glycoproteins late in the viral life cycle provide a new example of an intracellular evolutionary arms race with host restriction factors, as well as potential targets for therapeutic intervention.


Assuntos
Vírus Chikungunya , Macrófagos , Proteínas do Envelope Viral , Vírus Chikungunya/metabolismo , Vírus Chikungunya/fisiologia , Vírus Chikungunya/genética , Humanos , Macrófagos/virologia , Macrófagos/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Vírion/metabolismo , Febre de Chikungunya/virologia , Febre de Chikungunya/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas/genética , Interações Hospedeiro-Patógeno , Replicação Viral , Células THP-1
20.
Immunity ; 50(1): 64-76.e4, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635240

RESUMO

As long-lived post-mitotic cells, neurons employ unique strategies to resist pathogen infection while preserving cellular function. Here, using a murine model of Zika virus (ZIKV) infection, we identified an innate immune pathway that restricts ZIKV replication in neurons and is required for survival upon ZIKV infection of the central nervous system (CNS). We found that neuronal ZIKV infection activated the nucleotide sensor ZBP1 and the kinases RIPK1 and RIPK3, core components of virus-induced necroptotic cell death signaling. However, activation of this pathway in ZIKV-infected neurons did not induce cell death. Rather, RIPK signaling restricted viral replication by altering cellular metabolism via upregulation of the enzyme IRG1 and production of the metabolite itaconate. Itaconate inhibited the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes. These findings demonstrate an immunometabolic mechanism of viral restriction during neuroinvasive infection.


Assuntos
Glicoproteínas/metabolismo , Hidroliases/metabolismo , Neurônios/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Infecção por Zika virus/imunologia , Zika virus/fisiologia , Animais , Morte Celular , Células Cultivadas , Modelos Animais de Doenças , Glicoproteínas/genética , Humanos , Hidroliases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroproteção , RNA Viral/imunologia , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Succinato Desidrogenase/metabolismo , Succinatos/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa