Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Mol Cell ; 81(12): 2640-2655.e8, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34019811

RESUMO

ARH3/ADPRHL2 and PARG are the primary enzymes reversing ADP-ribosylation in vertebrates, yet their functions in vivo remain unclear. ARH3 is the only hydrolase able to remove serine-linked mono(ADP-ribose) (MAR) but is much less efficient than PARG against poly(ADP-ribose) (PAR) chains in vitro. Here, by using ARH3-deficient cells, we demonstrate that endogenous MARylation persists on chromatin throughout the cell cycle, including mitosis, and is surprisingly well tolerated. Conversely, persistent PARylation is highly toxic and has distinct physiological effects, in particular on active transcription histone marks such as H3K9ac and H3K27ac. Furthermore, we reveal a synthetic lethal interaction between ARH3 and PARG and identify loss of ARH3 as a mechanism of PARP inhibitor resistance, both of which can be exploited in cancer therapy. Finally, we extend our findings to neurodegeneration, suggesting that patients with inherited ARH3 deficiency suffer from stress-induced pathogenic increase in PARylation that can be mitigated by PARP inhibition.


Assuntos
Glicosídeo Hidrolases/metabolismo , Poli ADP Ribosilação/fisiologia , ADP-Ribosilação , Adenosina Difosfato Ribose/metabolismo , Linhagem Celular Tumoral , Cromatina , DNA , Dano ao DNA , Fibroblastos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/fisiologia , Células HEK293 , Células HeLa , Humanos , Poli Adenosina Difosfato Ribose/metabolismo , Cultura Primária de Células
2.
Plant Physiol ; 187(2): 963-980, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608953

RESUMO

Myrosinases are ß-thioglucoside glucosidases that are unique to the Brassicales order. These enzymes hydrolyze glucosinolates to produce compounds that have direct antibiotic effects or that function as signaling molecules in the plant immune system, protecting plants from pathogens and insect pests. However, the effects of jasmonic acid (JA), a plant hormone that is crucial for plant disease resistance, on myrosinase activity remain unclear. Here, we systematically studied the effects of JA on myrosinase activity and explored the associated internal transcriptional regulation mechanisms. Exogenous application of JA significantly increased myrosinase activity, while the inhibition of endogenous JA biosynthesis and signaling reduced myrosinase activity. In addition, some myrosinase genes in Arabidopsis (Arabidopsis thaliana) were upregulated by JA. Further genetic and biochemical evidence showed that transcription factor FAMA interacted with a series of JASMONATE ZIM-DOMAIN proteins and affected JA-mediated myrosinase activity. However, among the JA-upregulated myrosinase genes, only THIOGLUCOSIDE GLUCOHYDROLASE 1 (TGG1) was positively regulated by FAMA. Further biochemical analysis showed that FAMA bound to the TGG1 promoter to directly mediate TGG1 expression in conjunction with Mediator complex subunit 8 (MED8). Together, our results provide evidence that JA acts as an important signal upstream of the FAMA/MED8-TGG1 pathway to positively regulate myrosinase activity in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Ciclopentanos/metabolismo , Glicosídeo Hidrolases/fisiologia , Oxilipinas/metabolismo , Transdução de Sinais , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Complexo Mediador/metabolismo
3.
Infect Immun ; 89(11): e0034321, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34424752

RESUMO

The ability of Enterococcus faecalis to colonize host anatomical sites is dependent on its adaptive response to host conditions. Three glycosyl hydrolase gene clusters, each belonging to glycosyl hydrolase family 18 (GH18) (ef0114, ef0361, and ef2863), in E. faecalis were previously found to be upregulated under glucose-limiting conditions. The GH18 catalytic domain is present in proteins that are classified as either chitinases or ß-1,4 endo-ß-N-acetylglucosaminidases (ENGases) based on their ß-1,4 endo-N-acetyl-ß-d-glucosaminidase activity, and ENGase activity is commonly associated with cleaving N-linked glycoprotein, an abundant glycan structure on host epithelial surfaces. Here, we show that all three hydrolases are negatively regulated by the transcriptional regulator carbon catabolite protein A (CcpA). Additionally, we demonstrate that a constitutively active CcpA variant represses the expression of CcpA-regulated genes irrespective of glucose availability. Previous studies showed that the GH18 catalytic domains of EndoE (EF0114) and EfEndo18A (EF2863) were capable of deglycosylating RNase B, a model high-mannose-type glycoprotein. However, it remained uncertain which glycosidase is primarily responsible for the deglycosylation of high-mannose-type glycoproteins. In this study, we show by mutation analysis as well as a dose-dependent analysis of recombinant protein expression that EfEndo18A is primarily responsible for deglycosylating high-mannose glycoproteins and that the glycans removed by EfEndo18A support growth under nutrient-limiting conditions in vitro. In contrast, IgG is representative of a complex-type glycoprotein, and we demonstrate that the GH18 domain of EndoE is primarily responsible for the removal of this glycan decoration. Finally, our data highlight the combined contribution of glycosidases to the virulence of E. faecalis in vivo.


Assuntos
Enterococcus faecalis/metabolismo , Glicosídeo Hidrolases/fisiologia , Proteínas de Bactérias/fisiologia , Biofilmes , Domínio Catalítico , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidade , Regulação Bacteriana da Expressão Gênica , Manose/metabolismo , Nutrientes/metabolismo , Polissacarídeos/metabolismo , Ribonucleases/metabolismo , Sítio de Iniciação de Transcrição
4.
Biochem Soc Trans ; 49(1): 531-540, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33449071

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are mononuclear copper enzymes that catalyse the oxidative cleavage of glycosidic bonds. They are characterised by two histidine residues that coordinate copper in a configuration termed the Cu-histidine brace. Although first identified in bacteria and fungi, LPMOs have since been found in all biological kingdoms. LPMOs are now included in commercial enzyme cocktails used in industrial biorefineries. This has led to increased process yield due to the synergistic action of LPMOs with glycoside hydrolases. However, the introduction of LPMOs makes control of the enzymatic step in industrial stirred-tank reactors more challenging, and the operational stability of the enzymes is reduced. It is clear that much is still to be learned about the interaction between LPMOs and their complex natural and industrial environments, and fundamental scientific studies are required towards this end. Several atomic-resolution structures have been solved providing detailed information on the Cu-coordination sphere and the interaction with the polysaccharide substrate. However, the molecular mechanisms of LPMOs are still the subject of intense investigation; the key question being how the proteinaceous environment controls the copper cofactor towards the activation of the O-O bond in O2 and cleavage of the glycosidic bonds in polysaccharides. The need for biochemical characterisation of each putative LPMO is discussed based on recent reports showing that not all proteins with a Cu-histidine brace are enzymes.


Assuntos
Enzimas/fisiologia , Histidina/análogos & derivados , Oxigenases de Função Mista/fisiologia , Compostos Organometálicos/química , Animais , Biotecnologia/métodos , Biotecnologia/tendências , Cobre/química , Enzimas/química , Enzimas/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/fisiologia , Histidina/química , Humanos , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Oxigênio/metabolismo , Polissacarídeos/metabolismo , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Especificidade por Substrato
5.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502268

RESUMO

Phytopathogenic fungi need to secrete different hydrolytic enzymes to break down complex polysaccharides in the plant cell wall in order to enter the host and develop the disease. Fungi produce various types of cell wall degrading enzymes (CWDEs) during infection. Most of the characterized CWDEs belong to glycoside hydrolases (GHs). These enzymes hydrolyze glycosidic bonds and have been identified in many fungal species sequenced to date. Many studies have shown that CWDEs belong to several GH families and play significant roles in the invasion and pathogenicity of fungi and oomycetes during infection on the plant host, but their mode of function in virulence is not yet fully understood. Moreover, some of the CWDEs that belong to different GH families act as pathogen-associated molecular patterns (PAMPs), which trigger plant immune responses. In this review, we summarize the most important GHs that have been described in eukaryotic phytopathogens and are involved in the establishment of a successful infection.


Assuntos
Fungos/enzimologia , Fungos/patogenicidade , Glicosídeo Hidrolases/fisiologia , Oomicetos/enzimologia , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Parede Celular/química , Parede Celular/metabolismo , Parede Celular/microbiologia , Células Vegetais/microbiologia , Virulência
6.
J Biol Chem ; 294(28): 10760-10772, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31167793

RESUMO

During infection, the fungal pathogen Aspergillus fumigatus forms biofilms that enhance its resistance to antimicrobials and host defenses. An integral component of the biofilm matrix is galactosaminogalactan (GAG), a cationic polymer of α-1,4-linked galactose and partially deacetylated N-acetylgalactosamine (GalNAc). Recent studies have shown that recombinant hydrolase domains from Sph3, an A. fumigatus glycoside hydrolase involved in GAG synthesis, and PelA, a multifunctional protein from Pseudomonas aeruginosa involved in Pel polysaccharide biosynthesis, can degrade GAG, disrupt A. fumigatus biofilms, and attenuate fungal virulence in a mouse model of invasive aspergillosis. The molecular mechanisms by which these enzymes disrupt biofilms have not been defined. We hypothesized that the hydrolase domains of Sph3 and PelA (Sph3h and PelAh, respectively) share structural and functional similarities given their ability to degrade GAG and disrupt A. fumigatus biofilms. MALDI-TOF enzymatic fingerprinting and NMR experiments revealed that both proteins are retaining endo-α-1,4-N-acetylgalactosaminidases with a minimal substrate size of seven residues. The crystal structure of PelAh was solved to 1.54 Å and structure alignment to Sph3h revealed that the enzymes share similar catalytic site residues. However, differences in the substrate-binding clefts result in distinct enzyme-substrate interactions. PelAh hydrolyzed partially deacetylated substrates better than Sph3h, a finding that agrees well with PelAh's highly electronegative binding cleft versus the neutral surface present in Sph3h Our insight into PelAh's structure and function necessitate the creation of a new glycoside hydrolase family, GH166, whose structural and mechanistic features, along with those of GH135 (Sph3), are reported here.


Assuntos
Biofilmes/efeitos dos fármacos , Glicosídeo Hidrolases/metabolismo , Polissacarídeo-Liases/ultraestrutura , Anti-Infecciosos/metabolismo , Aspergillus fumigatus/metabolismo , Biofilmes/crescimento & desenvolvimento , Domínio Catalítico , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Glicosídeo Hidrolases/fisiologia , Hidrólise , Polissacarídeo-Liases/metabolismo , Polissacarídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Especificidade por Substrato/fisiologia , Virulência
7.
PLoS Biol ; 15(12): e2004310, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29283991

RESUMO

Auxin controls a myriad of plant developmental processes and plant response to environmental conditions. Precise trafficking of auxin transporters is essential for auxin homeostasis in plants. Here, we report characterization of Arabidopsis CTL1, which controls seedling growth and apical hook development by regulating intracellular trafficking of PIN-type auxin transporters. The CTL1 gene encodes a choline transporter-like protein with an expression pattern highly correlated with auxin distribution and is enriched in shoot and root apical meristems, lateral root primordia, the vascular system, and the concave side of the apical hook. The choline transporter-like 1 (CTL1) protein is localized to the trans-Golgi network (TGN), prevacuolar compartment (PVC), and plasma membrane (PM). Disruption of CTL1 gene expression alters the trafficking of 2 auxin efflux transporters-Arabidopsis PM-located auxin efflux transporter PIN-formed 1 (PIN1) and Arabidopsis PM-located auxin efflux transporter PIN-formed 3 (PIN3)-to the PM, thereby affecting auxin distribution and plant growth and development. We further found that phospholipids, sphingolipids, and other membrane lipids were significantly altered in the ctl1 mutant, linking CTL1 function to lipid homeostasis. We propose that CTL1 regulates protein sorting from the TGN to the PM through its function in lipid homeostasis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Glicosídeo Hidrolases/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Transporte Proteico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Homeostase , Metabolismo dos Lipídeos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
8.
PLoS Biol ; 15(12): e2002978, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29284002

RESUMO

Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Glicosídeo Hidrolases/fisiologia , Transporte de Íons/genética , Proteínas de Membrana Transportadoras/fisiologia , Adenosina Trifosfatases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Clonagem Molecular , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Homeostase , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Transporte Proteico , Simportadores/metabolismo
9.
J Struct Biol ; 205(1): 1-10, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30553858

RESUMO

Galactooligosaccharides (GOS) are prebiotic compounds synthesized from lactose using bacterial enzymes and are known to stimulate growth of beneficial bifidobacteria in the human colon. Bacteroides thetaiotaomicron is a prominent human colon commensal bacterial species that hydrolyzes GOS using an extracellular Glycosyl Hydrolase (GH) family GH53 endo-galactanase enzyme (BTGH53), releasing galactose-based products for growth. Here we dissect the molecular basis for GOS activity of this B. thetaiotaomicron GH53 endo-galactanase. Elucidation of its X-ray crystal structure revealed that BTGH53 has a relatively open active site cleft which was not observed with the bacterial enzyme from Bacillus licheniformis (BLGAL). BTGH53 acted on GOS with degree of polymerization ≤3 and therefore more closely resembles activity of fungal GH53 enzymes (e.g. Aspergillus aculeatus AAGAL and Meripileus giganteus MGGAL). Probiotic lactobacilli that lack galactan utilization systems constitute a group of bacteria with relevance for a healthy (infant) gut. The strains tested were unable to use GOS ≥ DP3. However, they completely consumed GOS in the presence of BTGH53, resulting in clear stimulation of their extent of growth. The extracellular BTGH53 enzyme thus may play an important role in carbohydrate metabolism in complex microbial environments such as the human colon. It also may find application for the development of synergistic synbiotics.


Assuntos
Bacteroides thetaiotaomicron/enzimologia , Glicosídeo Hidrolases/química , Prebióticos , Galactose/química , Glicosídeo Hidrolases/fisiologia , Humanos , Oligossacarídeos/química
10.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31182616

RESUMO

The peptidoglycan in Gram-negative bacteria is a dynamic structure in constant remodeling. This dynamism, achieved through synthesis and degradation, is essential because the peptidoglycan is necessary to maintain the structure of the cell but has to have enough plasticity to allow the transport and assembly of macromolecular complexes in the periplasm and outer membrane. In addition, this remodeling has to be coordinated with the division process. Among the multiple mechanisms bacteria have to degrade the peptidoglycan are the lytic transglycosidases, enzymes of the lysozyme family that cleave the glycan chains generating gaps in the mesh structure increasing its permeability. Because these enzymes can act as autolysins, their activity has to be tightly regulated, and one of the mechanisms bacteria have evolved is the synthesis of membrane bound or periplasmic inhibitors. In the present study, we identify a periplasmic lytic transglycosidase inhibitor (PhiA) in Brucella abortus and demonstrate that it inhibits the activity of SagA, a lytic transglycosidase we have previously shown is involved in the assembly of the type IV secretion system. A phiA deletion mutant results in a strain with the incapacity to synthesize a complete lipopolysaccharide but with a higher replication rate than the wild-type parental strain, suggesting a link between peptidoglycan remodeling and speed of multiplication.


Assuntos
Brucella abortus/patogenicidade , N-Acetil-Muramil-L-Alanina Amidase/antagonistas & inibidores , Glicosídeo Hidrolases/fisiologia , Lipopolissacarídeos/biossíntese , Complexos Multienzimáticos/fisiologia , Peptidoglicano/metabolismo , Transferases/fisiologia , Sistemas de Secreção Tipo IV/fisiologia , Virulência
11.
Biochem Biophys Res Commun ; 509(4): 892-897, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30642629

RESUMO

Pyrococcus furiosus exoamylase-cum-4-α-glucanotransferase (4-α-GTase; PF0272; PfuAmyGT) is reported to both (i) act upon starch, and (ii) catalyze 'disproportionation' of maltooligosaccharides (with glucose as the smallest product). PfuAmyGT shares ∼65% sequence identity with a homo-dimeric Thermococcus litoralis 4-α-GTase, for which structures are available in complex with a non-hydrolysable analog of maltotetraose (acarbose) bound to one subunit and maltose (of unknown origin) bound to the other subunit. We structurally transposed the maltose onto the acarbose-bound subunit and discovered that the two molecules lie juxtaposed in what could be perfect 'acceptor' and 'donor' substrate-binding sites, respectively. We also discovered that there is a loop between the two sites which could use an available aspartate to excise a glucose from the donor, and an available tryptophan to transfer the glucose to the non-reducing end of the acceptor glucan. We derived a structure for PfuAmyGT through homology-based modeling, identified the potential donor site, acceptor site, glucan-transferring loop, and catalytically important residues, and mutated these to alanine to examine effect(s) upon activity. Mutation D362A abolished creation of shorter, or longer, maltooligosaccharides. Mutation W365A abolished creation of longer oligosaccharides. Mutation H366A had no effect on activity. We propose that D362 facilitates glucose excision, and that W365 facilitates its transfer, either (a) directly into solution (allowing PfuAmyGT to act as an exoamylase), or (b) by glycoside bond formation with an acceptor (allowing PfuAmyGT to act as a 4-α-glucanotransferase), depending upon whether the acceptor site is vacant or occupied in a reaction cycle.


Assuntos
Glicosídeo Hidrolases/fisiologia , Mutação , Engenharia de Proteínas/métodos , Pyrococcus furiosus/enzimologia , Amilases/fisiologia , Sítios de Ligação , Glucose/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/fisiologia , Estrutura Molecular , Mutagênese , Oligossacarídeos/metabolismo , Amido/metabolismo
12.
J Invertebr Pathol ; 154: 102-108, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29678695

RESUMO

Lysozyme-like proteins (LLPs) are members of the glycoside hydrolase family 22 (CAZY GH22). Unlike conventional c-type lysozymes (EC 3.2.1.17), LLPs lack specific catalytic amino acid residues essential for muramidase activity. Previous reports indicated upregulation of LLPs upon bacterial infection in the wild silkworm, Antheraea mylitta as well as in the domesticated silkworm, Bombyx mori. In the present work, we studied the signaling pathways mediating the production of LLPs using RNA interference-mediated knockdown of Spätzle, Relish and STAT, the key regulators of Toll, IMD (Immune deficiency) and JAK/STAT pathways, respectively. We observed that knockdown of the Relish variant RD1 resulted in reduced expression levels of the ALLP1. We also showed that recombinant LLP has antiviral activity. We infer that LLPs showing both antibacterial and antiviral activity are regulated by the conventional IMD pathway in the silkmoths.


Assuntos
Sistema Imunitário/fisiologia , Proteínas de Insetos/fisiologia , Mariposas/imunologia , Animais , Técnicas de Silenciamento de Genes , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Interferência de RNA , Transdução de Sinais
13.
J Basic Microbiol ; 58(4): 302-309, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29411882

RESUMO

AgaM1, a ß-agarase belonging to glycoside hydrolases family 16 (GH16), was cloned from the environmental DNA of mangrove sediments. The gene agaM1 is 2136 bp in length and encodes a protein of 712 amino acids. The properties of recombinant AgaM1 (rAgaM1) were studied using prokaryotic expression. The optimum temperature and pH were 50 °C and 7.0, respectively, and rAgaM1 exhibited a high adaptability to wide ranges of temperature and pH. A relatively high activity was retained at from 30 to 60 °C and from pH 6.0 to 9.0. Thermal stability was showed more than 70% relative activity after pre-incubation at 40 °C for 60 h. Outstanding pH stability were observed for rAgaM1 from pH 5.0 to 10.0 after pre-incubation for 60 h. Thin-layer chromatography revealed neoagarotetraose (NA4) and neoagarohexaose (NA6) were the end-products of rAgaM1-degraded agarose. Besides, rAgaM1 were found with a Km of 1.82 mg ml-1 and a Vm of 357.14 U mg-1 for agarose. The Km was smaller than those of most agarases reported previously. This discrepancy revealed the high affinity of rAgaM1 to agarose. Overall, the results indicated the potential of rAgaM1 in future industrial application.


Assuntos
Proteínas de Bactérias/fisiologia , Sedimentos Geológicos/química , Glicosídeo Hidrolases/fisiologia , Áreas Alagadas , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Glicosídeo Hidrolases/classificação , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Metagenômica , Sefarose/metabolismo , Especificidade por Substrato , Temperatura
14.
EMBO J ; 32(9): 1225-37, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23481255

RESUMO

Adenosine diphosphate (ADP)-ribosylation is a post-translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP-ribosylation reactions are the poly(ADP-ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP-ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP-ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP-ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP-interacting protein that removes mono(ADP-ribosyl)ation on glutamate amino acid residues in PARP-modified proteins. X-ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl-(ADP-ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP-ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans.


Assuntos
Glicosídeo Hidrolases/fisiologia , Doenças Neurodegenerativas/enzimologia , Poli Adenosina Difosfato Ribose/fisiologia , Tioléster Hidrolases/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Células Cultivadas , Criança , Pré-Escolar , Família , Feminino , Glicosídeo Hidrolases/genética , Células HEK293 , Células HeLa , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Doenças Neurodegenerativas/genética , Linhagem , Poli Adenosina Difosfato Ribose/genética , Processamento de Proteína Pós-Traducional/genética , Homologia de Sequência de Aminoácidos , Tioléster Hidrolases/genética
15.
Biochim Biophys Acta Proteins Proteom ; 1865(12): 1758-1769, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28890404

RESUMO

Carbohydrate-Active Enzymes are key enzymes for biomass-to-bioproducts conversion. α-l-Arabinofuranosidases that belong to the Glycoside Hydrolase family 62 (GH62) have important applications in biofuel production from plant biomass by hydrolyzing arabinoxylans, found in both the primary and secondary cell walls of plants. In this work, we identified a GH62 α-l-arabinofuranosidase (AnAbf62Awt) that was highly secreted when Aspergillus nidulans was cultivated on sugarcane bagasse. The gene AN7908 was cloned and transformed in A. nidulans for homologous production of AnAbf62Awt, and we confirmed that the enzyme is N-glycosylated at asparagine 83 by mass spectrometry analysis. The enzyme was also expressed in Escherichia coli and the studies of circular dichroism showed that the melting temperature and structural profile of AnAbf62Awt and the non-glycosylated enzyme from E. coli (AnAbf62Adeglyc) were highly similar. In addition, the designed glycomutant AnAbf62AN83Q presented similar patterns of secretion and activity to the AnAbf62Awt, indicating that the N-glycan does not influence the properties of this enzyme. The crystallographic structure of AnAbf62Adeglyc was obtained and the 1.7Å resolution model showed a five-bladed ß-propeller fold, which is conserved in family GH62. Mutants AnAbf62AY312F and AnAbf62AY312S showed that Y312 was an important substrate-binding residue. Molecular dynamics simulations indicated that the loop containing Y312 could access different conformations separated by moderately low energy barriers. One of these conformations, comprising a local minimum, is responsible for placing Y312 in the vicinity of the arabinose glycosidic bond, and thus, may be important for catalytic efficiency.


Assuntos
Aspergillus nidulans/enzimologia , Celulose/farmacologia , Glicosídeo Hidrolases/química , Aspergillus nidulans/crescimento & desenvolvimento , Cristalografia , Glicosídeo Hidrolases/fisiologia , Glicosilação , Simulação de Dinâmica Molecular
16.
Cell Microbiol ; 18(9): 1285-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27306610

RESUMO

The fungal cell wall is a rigid structure because of fibrillar and branched ß-(1,3)-glucan linked to chitin. Softening of the cell wall is an essential phenomenon during fungal morphogenesis, wherein rigid cell wall structures are cleaved by glycosylhydrolases. During the search for glycosylhydrolases acting on ß-(1,3)-glucan, we identified seven genes in the Aspergillus fumigatus genome coding for potential endo-ß-(1,3)-glucanase. ENG1 (previously characterized and named ENGL1, Mouyna et al., ), belongs to the Glycoside-Hydrolase 81 (GH81) family, while ENG2 to ENG7, to GH16 family. ENG1 and four GH16 genes (ENG2-5) were expressed in the resting conidia as well as during germination, suggesting an essential role during A. fumigatus morphogenesis. Here, we report the effect of sequential deletion of AfENG2-5 (GH16) followed by AfENG1 (GH81) deletion in the Δeng2,3,4,5 mutant. The Δeng1,2,3,4,5 mutant showed conidial defects, with linear chains of conidia unable to separate while the germination rate was not affected. These results show, for the first time in a filamentous fungus, that endo ß-(1,3)-glucanases are essential for proper conidial cell wall assembly and thus segregation of conidia during conidiation.


Assuntos
Aspergillus fumigatus/enzimologia , Parede Celular/enzimologia , Proteínas Fúngicas/fisiologia , Glicosídeo Hidrolases/fisiologia , Esporos Fúngicos/enzimologia , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/ultraestrutura , Configuração de Carboidratos , Parede Celular/ultraestrutura , Glicosilação , Morfogênese , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/ultraestrutura
17.
Methods ; 93: 51-63, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26564235

RESUMO

Thousands of protein structures of unknown or uncertain function have been reported as a result of high-throughput structure determination techniques developed by Structural Genomics (SG) projects. However, many of the putative functional assignments of these SG proteins in the Protein Data Bank (PDB) are incorrect. While high-throughput biochemical screening techniques have provided valuable functional information for limited sets of SG proteins, the biochemical functions for most SG proteins are still unknown or uncertain. Therefore, computational methods for the reliable prediction of protein function from structure can add tremendous value to the existing SG data. In this article, we show how computational methods may be used to predict the function of SG proteins, using examples from the six-hairpin glycosidase (6-HG) and the concanavalin A-like lectin/glucanase (CAL/G) superfamilies. Using a set of predicted functional residues, obtained from computed electrostatic and chemical properties for each protein structure, it is shown that these superfamilies may be sorted into functional families according to biochemical function. Within these superfamilies, a total of 18 SG proteins were analyzed according to their predicted, local functional sites: 13 from the 6-HG superfamily, five from the CAL/G superfamily. Within the 6-HG superfamily, an uncharacterized protein BACOVA_03626 from Bacteroides ovatus (PDB 3ON6) and a hypothetical protein BT3781 from Bacteroides thetaiotaomicron (PDB 2P0V) are shown to have very strong active site matches with exo-α-1,6-mannosidases, thus likely possessing this function. Also in this superfamily, it is shown that protein BH0842, a putative glycoside hydrolase from Bacillus halodurans (PDB 2RDY), has a predicted active site that matches well with a known α-L-galactosidase. In the CAL/G superfamily, an uncharacterized glycosyl hydrolase family 16 protein from Mycobacterium smegmatis (PDB 3RQ0) is shown to have local structural similarity at the predicted active site with the known members of the GH16 family, with the closest match to the endoglucanase subfamily. The method discussed herein can predict whether an SG protein is correctly or incorrectly annotated and can sometimes provide a reliable functional annotation. Examples of application of the method across folds, comparing active sites between two proteins of different structural folds, are also given.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/fisiologia , Previsões , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/fisiologia
18.
J Biol Chem ; 290(46): 27438-50, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26342082

RESUMO

Aspergillus fumigatus is the most virulent species within the Aspergillus genus and causes invasive infections with high mortality rates. The exopolysaccharide galactosaminogalactan (GAG) contributes to the virulence of A. fumigatus. A co-regulated five-gene cluster has been identified and proposed to encode the proteins required for GAG biosynthesis. One of these genes, sph3, is predicted to encode a protein belonging to the spherulin 4 family, a protein family with no known function. Construction of an sph3-deficient mutant demonstrated that the gene is necessary for GAG production. To determine the role of Sph3 in GAG biosynthesis, we determined the structure of Aspergillus clavatus Sph3 to 1.25 Å. The structure revealed a (ß/α)8 fold, with similarities to glycoside hydrolase families 18, 27, and 84. Recombinant Sph3 displayed hydrolytic activity against both purified and cell wall-associated GAG. Structural and sequence alignments identified three conserved acidic residues, Asp-166, Glu-167, and Glu-222, that are located within the putative active site groove. In vitro and in vivo mutagenesis analysis demonstrated that all three residues are important for activity. Variants of Asp-166 yielded the greatest decrease in activity suggesting a role in catalysis. This work shows that Sph3 is a glycoside hydrolase essential for GAG production and defines a new glycoside hydrolase family, GH135.


Assuntos
Aspergillus fumigatus/metabolismo , Coccidioidina/química , Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Polissacarídeos/biossíntese , Sequência de Aminoácidos , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Catálise , Domínio Catalítico , Parede Celular/enzimologia , Coccidioidina/genética , Coccidioidina/fisiologia , Sequência Conservada , Cristalografia por Raios X , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/fisiologia , Hidrólise , Dados de Sequência Molecular , Mutação , Polissacarídeos/genética , Conformação Proteica , Alinhamento de Sequência
19.
Nucleic Acids Res ; 42(12): 7776-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24906880

RESUMO

Poly(ADP-ribosyl)ation is involved in numerous bio-logical processes including DNA repair, transcription and cell death. Cellular levels of poly(ADP-ribose) (PAR) are regulated by PAR polymerases (PARPs) and the degrading enzyme PAR glycohydrolase (PARG), controlling the cell fate decision between life and death in response to DNA damage. Replication stress is a source of DNA damage, leading to transient stalling of replication forks or to their collapse followed by the generation of double-strand breaks (DSB). The involvement of PARP-1 in replicative stress response has been described, whereas the consequences of a deregulated PAR catabolism are not yet well established. Here, we show that PARG-deprived cells showed an enhanced sensitivity to the replication inhibitor hydroxyurea. PARG is dispensable to recover from transient replicative stress but is necessary to avoid massive PAR production upon prolonged replicative stress, conditions leading to fork collapse and DSB. Extensive PAR accumulation impairs replication protein A association with collapsed forks resulting in compromised DSB repair via homologous recombination. Our results highlight the critical role of PARG in tightly controlling PAR levels produced upon genotoxic stress to prevent the detrimental effects of PAR over-accumulation.


Assuntos
Reparo do DNA , Replicação do DNA , Glicosídeo Hidrolases/fisiologia , Poli Adenosina Difosfato Ribose/metabolismo , Linhagem Celular , Cromatina/metabolismo , DNA de Cadeia Simples/análise , Células HeLa , Histonas/metabolismo , Humanos , Hidroxiureia/farmacologia , Fosforilação , Inibidores de Poli(ADP-Ribose) Polimerases , Reparo de DNA por Recombinação , Proteína de Replicação A/metabolismo , Fase S/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular , Estresse Fisiológico/genética
20.
World J Microbiol Biotechnol ; 32(2): 30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26748807

RESUMO

α-1,3-Glucanases hydrolyze α-1,3-glucan which is an insoluble linear α-1,3-linked homopolymer of glucose and these enzymes are classified into two families of glycoside hydrolases on the basis of amino acid sequence similarity; type-71 α-1,3-glucanases found in fungi and type-87 enzymes in bacteria. α-1,3-Glucan (also called 'mutan') is a major component of dental plaque formed by oral Streptococci and has important physiological roles in various fungal species, including as a component of cell walls, an endogenous carbon source for sexual development, and a virulent factor. Considering these backgrounds, α-1,3-glucanases have been investigated from the perspectives of applications to dental care and development of cell-wall lytic enzymes. Compared with information regarding other glycoside hydrolases such as amylases, cellulases, chitinases, and ß-glucanases, there is limited biochemical and structural information available regarding α-1,3-glucanase. Further research on α-1,3-glucanases on enzyme application to dental care and biological control of pathogenic fungi is expected. In this mini-review, we briefly describe how α-1,3-glucanases are categorized and characterized and present our study findings regarding α-1,3-glucanase from Bacillus circulans KA-304. Furthermore, we briefly discuss potential future applications of α-1,3-glucanases.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/fisiologia , Sequência de Aminoácidos , Bacillus/enzimologia , Bactérias/enzimologia , Parede Celular/química , Parede Celular/enzimologia , Fungos/enzimologia , Glicosídeo Hidrolases/farmacologia , Hidrólise , Mutação , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa