Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 805
Filtrar
1.
Cell ; 163(7): 1565-6, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687345

RESUMO

Microbial metabolism of dietary components has been causally linked to cardiovascular disease and atherosclerosis. Now, Wang et al. demonstrate that inhibition of microbial TMA lyases, essential for production of pro-atherogenic trimethylamines, prevents atherosclerosis in vivo.


Assuntos
Aterosclerose/tratamento farmacológico , Colina/análogos & derivados , Trato Gastrointestinal/microbiologia , Hexanóis/administração & dosagem , Liases/antagonistas & inibidores , Metilaminas/metabolismo , Animais , Humanos
2.
Cell ; 163(7): 1585-95, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687352

RESUMO

Trimethylamine (TMA) N-oxide (TMAO), a gut-microbiota-dependent metabolite, both enhances atherosclerosis in animal models and is associated with cardiovascular risks in clinical studies. Here, we investigate the impact of targeted inhibition of the first step in TMAO generation, commensal microbial TMA production, on diet-induced atherosclerosis. A structural analog of choline, 3,3-dimethyl-1-butanol (DMB), is shown to non-lethally inhibit TMA formation from cultured microbes, to inhibit distinct microbial TMA lyases, and to both inhibit TMA production from physiologic polymicrobial cultures (e.g., intestinal contents, human feces) and reduce TMAO levels in mice fed a high-choline or L-carnitine diet. DMB inhibited choline diet-enhanced endogenous macrophage foam cell formation and atherosclerotic lesion development in apolipoprotein e(-/-) mice without alterations in circulating cholesterol levels. The present studies suggest that targeting gut microbial production of TMA specifically and non-lethal microbial inhibitors in general may serve as a potential therapeutic approach for the treatment of cardiometabolic diseases.


Assuntos
Aterosclerose/tratamento farmacológico , Colina/análogos & derivados , Trato Gastrointestinal/microbiologia , Hexanóis/administração & dosagem , Liases/antagonistas & inibidores , Metilaminas/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Colina/metabolismo , Dieta , Fezes/química , Células Espumosas/metabolismo , Humanos , Liases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microbiota
3.
New Phytol ; 241(5): 2275-2286, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327027

RESUMO

Plant-derived volatiles mediate interactions among plants, pathogenic viruses, and viral vectors. These volatile-dependent mechanisms have not been previously demonstrated belowground, despite their likely significant role in soil ecology and agricultural pest impacts. We investigated how the plant virus, tobacco rattle virus (TRV), attracts soil nematode vectors to infected plants. We infected Nicotiana benthamiana with TRV and compared root growth relative to that of uninfected plants. We tested whether TRV-infected N. benthamiana was more attractive to nematodes 7 d post infection and identified a compound critical to attraction. We also infected N. benthamiana with mutated TRV strains to identify virus genes involved in vector nematode attraction. Virus titre and associated impacts on root morphology were greatest 7 d post infection. Tobacco rattle virus infection enhanced 2-ethyl-1-hexanol production. Nematode chemotaxis and 2-ethyl-1-hexanol production correlated strongly with viral load. Uninfected plants were more attractive to nematodes after the addition of 2-ethyl-1-hexanol than were untreated plants. Mutation of TRV RNA2-encoded genes reduced the production of 2-ethyl-1-hexanol and nematode attraction. For the first time, this demonstrates that virus-driven alterations in root volatile emissions lead to increased chemotaxis of the virus's nematode vector, a finding with implications for sustainable management of both nematodes and viral pathogens in agricultural systems.


Assuntos
Hexanóis , Nematoides , Vírus de Plantas , Animais , Solo , Vírus de Plantas/genética
4.
Pestic Biochem Physiol ; 203: 106005, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084800

RESUMO

Odorant-binding proteins (OBPs) play key roles in host plant location by insects, and can accordingly serve as important targets for the development of attractants. In this study, we detected the high expression of SlitOBP34 in male antennae of Spodoptera litura. Subsequently, the fluorescence competitive binding experiments displayed that the SlitOBP34 protein has binding affinity for different ligands. Then, protein-ligand interaction analyses found the presence of six amino acid residues may serve as key recognition sites. Further electroantennographic and biobehavioral assessments revealed that the electrophysiological responses of male antennae were evoked in response to stimulation with the six identified host volatiles, and that these volatiles attracted male moths to varying extents. Notably, low concentrations of benzaldehyde, 1-hexanol, and cis-3-hexenyl acetate were found to have significant attractant effects on male moths, thereby identifying these three host volatiles as potential candidates for the development of male attractants. These findings advance our current understanding of the olfactory-encoded mechanisms of host plants selection in S. litura and have enabled us to develop novel adult attractants for controlling the pest in the future.


Assuntos
Antenas de Artrópodes , Proteínas de Insetos , Receptores Odorantes , Spodoptera , Compostos Orgânicos Voláteis , Animais , Spodoptera/efeitos dos fármacos , Masculino , Receptores Odorantes/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Antenas de Artrópodes/metabolismo , Hexanóis/farmacologia , Hexanóis/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Benzaldeídos
5.
Physiol Plant ; 175(5): e14016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882258

RESUMO

Iris lactea var. chinensis (Fisch.) Koidz has a unique floral fragrance that differs from that of other Iris spp.; however, its characteristic aroma composition remains unknown. This study aimed to identify the floral fragrance components of I. lactea var. chinensis during different flowering stages using headspace solid-phase microextraction in conjunction with gas chromatography mass spectrometry, electronic nose, and sensory evaluation. During the three flowering phases (bud stage, bloom stage, and decay stage), 70 volatile organic compounds (VOCs), including 13 aldehydes, 13 esters, 11 alcohols, 10 alkanes, 8 ketones, 7 terpenes, 7 benzenoids, and 1 nitrogenous compound, were identified. According to principal component analysis, the primary VOCs were (-)-pinene, ß-irone, methyl heptenone, phenylethanol, hexanol, and 2-pinene. A comparison of the differential VOCs across the different flowering stages using orthogonal partial least squares discriminant analysis and hierarchical clustering analysis revealed that 3-carene appeared only in the bud stage, whereas hexanol, ethyl caprate, ethyl caproate, linalool, (-)-pinene, and 2-pinene appeared or were present at significantly increased levels during the bloom stage. The phenylethanol, methyl heptenone, 3-methylheptane, and ß-irone reached a peak in the decay stage. The odor activity value and sensory evaluation suggested that "spicy" is the most typical odor of I. lactea var. chinensis, mainly due to 2-methoxy-3-sec-butylpyrazine, which is rare in floral fragrances.


Assuntos
Gênero Iris , Álcool Feniletílico , Compostos Orgânicos Voláteis , Gênero Iris/química , Odorantes/análise , Norisoprenoides , Hexanóis
6.
Molecules ; 28(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838768

RESUMO

The study of chemical reactions in multiple liquid phase systems is becoming more and more relevant in industry and academia. The ability to predict combined chemical and phase equilibria is interesting from a scientific point of view but is also crucial to design innovative separation processes. In this work, an algorithm to perform the combined chemical and liquid-liquid phase equilibrium calculation was implemented in the PC-SAFT framework in order to predict the thermodynamic equilibrium behavior of two multicomponent esterification systems. Esterification reactions involve hydrophobic reacting agents and water, which might cause liquid-liquid phase separation along the reaction coordinate, especially if long-chain alcoholic reactants are used. As test systems, the two quaternary esterification systems starting from the reactants acetic acid + 1-pentanol and from the reactants acetic acid + 1-hexanol were chosen. It is known that both quaternary systems exhibit composition regions of overlapped chemical and liquid-liquid equilibrium. To the best of our knowledge, this is the first time that PC-SAFT was used to calculate simultaneous chemical and liquid-liquid equilibria. All the binary subsystems were studied prior to evaluating the predictive capability of PC-SAFT toward the simultaneous chemical equilibria and phase equilibria. Overall, PC-SAFT proved its excellent capabilities toward predicting chemical equilibrium composition in the homogeneous composition range of the investigated systems as well as liquid-liquid phase behavior. This study highlights the potential of a physical sound model to perform thermodynamic-based modeling of chemical reacting systems undergoing liquid-liquid phase separation.


Assuntos
Algoritmos , Água , Esterificação , Termodinâmica , Hexanóis
7.
Molecules ; 28(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37175252

RESUMO

The pitaya (dragon fruit) Hylocereus is a genus which belongs to the Cactaceae family. It is native to Mexico, occurring also in other regions of Central and South America. Pitaya fruit is mainly intended for consumption and for this reason the species is grown commercially. The fruit is a rich source of vitamins, biologically active compounds, and dietary fibre. Using in vitro culture can accelerate the process of reproduction and growth of pitaya plants. Profiling of volatile compounds contained in the stem of Hylocereus undatus was carried out using the SPME-GC-MS technique. The main compounds present were hexanal, 2-hexenal and 1-hexanol. The results showed differences in the occurrence of volatile compounds between plants grown in media with an addition of BA (6-benzylaminopurine) and IAA (indole-3-acetic acid), which have been used as plant growth regulators. Statistically significant differences between the contents of volatile compounds were observed in the case of 2-hexenal and 1-hexanol. The effect of BA on reducing the amount of volatile compounds was observed. However, introduction of IAA to the in vitro medium resulted in more compounds being synthesized. This study is the first to describe the volatile compounds in the pitaya stem. The results indicate that plant hormones are able to modify the profile of volatile compounds.


Assuntos
Cactaceae , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Hexanóis , Frutas
8.
Hepatology ; 74(4): 1737-1749, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33704806

RESUMO

BACKGROUND AND AIMS: In patients with chronic hepatitis B (CHB) infection, activation of toll-like receptor 8 may induce antiviral immunity and drive functional cure. Selgantolimod, a toll-like receptor 8 agonist, was evaluated in patients with CHB who were virally suppressed on oral antiviral treatment or viremic and not on oral antiviral treatment. APPROACH AND RESULTS: In this phase 1b study, patients were randomized 4:1 to receive either selgantolimod or placebo once weekly. Virally suppressed patients received either 1.5 mg (for 2 weeks) or 3 mg (for 2 weeks or 4 weeks). Viremic patients received 3 mg for 2 weeks. The primary endpoint was safety, as assessed by adverse events (AEs), laboratory abnormalities, and vital sign examination. Pharmacokinetic and pharmacodynamic parameters were assessed by plasma analysis. A total of 38 patients (28 virally suppressed, 10 viremic) were enrolled from six sites in Australia, New Zealand, and South Korea. Twenty patients (53%) experienced an AE and 32 (84%) had laboratory abnormalities, all of which were mild or moderate in severity. The most common AEs were headache (32%), nausea (24%), and dizziness (13%). With a half-life of 5 hours, no accumulation of selgantolimod was observed with multiple dosing. Selgantolimod induced transient dose-dependent increases in serum cytokines, including IL-12p40 and IL-1RA, which are important for the expansion and activity of multiple T- cell subsets and innate immunity. CONCLUSION: Selgantolimod was safe and well-tolerated in virally suppressed and viremic patients with CHB and elicited cytokine responses consistent with target engagement. Further studies with longer durations of selgantolimod treatment are required to evaluate efficacy.


Assuntos
Antivirais/uso terapêutico , Hepatite B Crônica/tratamento farmacológico , Hexanóis/uso terapêutico , Pirimidinas/uso terapêutico , Receptor 8 Toll-Like/agonistas , Adulto , Tontura/induzido quimicamente , Relação Dose-Resposta a Droga , Feminino , Cefaleia/induzido quimicamente , Hepatite B Crônica/sangue , Hexanóis/farmacologia , Humanos , Proteína Antagonista do Receptor de Interleucina 1/sangue , Subunidade p40 da Interleucina-12/sangue , Masculino , Pessoa de Meia-Idade , Náusea/induzido quimicamente , Pirimidinas/farmacologia , Resposta Viral Sustentada
9.
Hepatology ; 73(1): 53-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32246499

RESUMO

BACKGROUND AND AIMS: GS-9688 (selgantolimod) is an oral selective small molecule agonist of toll-like receptor 8 in clinical development for the treatment of chronic hepatitis B. In this study, we evaluated the antiviral efficacy of GS-9688 in woodchucks chronically infected with woodchuck hepatitis virus (WHV), a hepadnavirus closely related to hepatitis B virus. APPROACH AND RESULTS: WHV-infected woodchucks received eight weekly oral doses of vehicle, 1 mg/kg GS-9688, or 3 mg/kg GS-9688. Vehicle and 1 mg/kg GS-9688 had no antiviral effect, whereas 3 mg/kg GS-9688 induced a >5 log10 reduction in serum viral load and reduced WHV surface antigen (WHsAg) levels to below the limit of detection in half of the treated woodchucks. In these animals, the antiviral response was maintained until the end of the study (>5 months after the end of treatment). GS-9688 treatment reduced intrahepatic WHV RNA and DNA levels by >95% in animals in which the antiviral response was sustained after treatment cessation, and these woodchucks also developed detectable anti-WHsAg antibodies. The antiviral efficacy of weekly oral dosing with 3 mg/kg GS-9688 was confirmed in a second woodchuck study. The antiviral response to GS-9688 did not correlate with systemic GS-9688 or cytokine levels but was associated with transient elevation of liver injury biomarkers and enhanced proliferative response of peripheral blood mononuclear cells to WHV peptides. Transcriptomic analysis of liver biopsies taken prior to treatment suggested that T follicular helper cells and various other immune cell subsets may play a role in the antiviral response to GS-9688. CONCLUSIONS: Finite, short-duration treatment with a clinically relevant dose of GS-9688 is well tolerated and can induce a sustained antiviral response in WHV-infected woodchucks; the identification of a baseline intrahepatic transcriptional signature associated with response to GS-9688 treatment provides insights into the immune mechanisms that mediate this antiviral effect.


Assuntos
Antivirais/uso terapêutico , Vírus da Hepatite B da Marmota/efeitos dos fármacos , Vírus da Hepatite B da Marmota/genética , Hepatite B Crônica/tratamento farmacológico , Hexanóis/uso terapêutico , Pirimidinas/uso terapêutico , Receptor 8 Toll-Like/agonistas , Animais , Antivirais/farmacologia , DNA Viral/sangue , Modelos Animais de Doenças , Anticorpos Anti-Hepatite/sangue , Antígenos de Hepatite/sangue , Vírus da Hepatite B da Marmota/imunologia , Hepatite B Crônica/complicações , Hepatite B Crônica/imunologia , Hexanóis/farmacologia , Humanos , Marmota , Pirimidinas/farmacologia , Replicação Viral/efeitos dos fármacos
10.
Hepatology ; 74(1): 55-71, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368377

RESUMO

BACKGROUND AND AIMS: GS-9688 (selgantolimod) is a toll-like receptor 8 agonist in clinical development for the treatment of chronic hepatitis B (CHB). Antiviral activity of GS-9688 has previously been evaluated in vitro in HBV-infected hepatocytes and in vivo in the woodchuck model of CHB. Here we evaluated the potential of GS-9688 to boost responses contributing to viral control and to modulate regulatory mediators. APPROACH AND RESULTS: We characterized the effect of GS-9688 on immune cell subsets in vitro in peripheral blood mononuclear cells of healthy controls and patients with CHB. GS-9688 activated dendritic cells and mononuclear phagocytes to produce IL-12 and other immunomodulatory mediators, inducing a comparable cytokine profile in healthy controls and patients with CHB. GS-9688 increased the frequency of activated natural killer (NK) cells, mucosal-associated invariant T cells, CD4+ follicular helper T cells, and, in about 50% of patients, HBV-specific CD8+ T cells expressing interferon-γ. Moreover, in vitro stimulation with GS-9688 induced NK-cell expression of interferon-γ and TNF-α, and promoted hepatocyte lysis. We also assessed whether GS-9688 inhibited immunosuppressive cell subsets that might enhance antiviral efficacy. Stimulation with GS-9688 reduced the frequency of CD4+ regulatory T cells and monocytic myeloid-derived suppressor cells (MDSCs). Residual MDSCs expressed higher levels of negative immune regulators, galectin-9 and programmed death-ligand 1. Conversely, GS-9688 induced an expansion of immunoregulatory TNF-related apoptosis-inducing ligand+ NK cells and degranulation of arginase-I+ polymorphonuclear MDSCs. CONCLUSIONS: GS-9688 induces cytokines in human peripheral blood mononuclear cells that are able to activate antiviral effector function by multiple immune mediators (HBV-specific CD8+ T cells, CD4+ follicular helper T cells, NK cells, and mucosal-associated invariant T cells). Although reducing the frequency of some immunoregulatory subsets, it enhances the immunosuppressive potential of others, highlighting potential biomarkers and immunotherapeutic targets to optimize the antiviral efficacy of GS-9688.


Assuntos
Antivirais/farmacologia , Hepatite B Crônica/tratamento farmacológico , Hexanóis/farmacologia , Pirimidinas/farmacologia , Receptor 8 Toll-Like/antagonistas & inibidores , Adulto , Idoso , Animais , Antivirais/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Voluntários Saudáveis , Células Hep G2 , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Hexanóis/uso terapêutico , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares , Masculino , Marmota , Pessoa de Meia-Idade , Cultura Primária de Células , Pirimidinas/uso terapêutico , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Receptor 8 Toll-Like/metabolismo , Adulto Jovem
11.
Microb Cell Fact ; 21(1): 85, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568911

RESUMO

BACKGROUND: The replacement of fossil fuels and petrochemicals with sustainable alternatives is necessary to mitigate the effects of climate change and also to counteract diminishing fossil resources. Acetogenic microorganisms such as Clostridium spp. are promising sources of fuels and basic chemical precursors because they efficiently utilize CO and CO2 as carbon source. However the conversion into high titers of butanol and hexanol is challenging. RESULTS: Using a metabolic engineering approach we transferred a 17.9-kb gene cluster via conjugation, containing 13 genes from C. kluyveri and C. acetobutylicum for butanol and hexanol biosynthesis, into C. ljungdahlii. Plasmid-based expression resulted in 1075 mg L-1 butanol and 133 mg L-1 hexanol from fructose in complex medium, and 174 mg L-1 butanol and 15 mg L-1 hexanol from gaseous substrate (20% CO2 and 80% H2) in minimal medium. Product formation was increased by the genomic integration of the heterologous gene cluster. We confirmed the expression of all 13 enzymes by targeted proteomics and identified potential rate-limiting steps. Then, we removed the first-round selection marker using CRISPR/Cas9 and integrated an additional 7.8 kb gene cluster comprising 6 genes from C. carboxidivorans. This led to a significant increase in the hexanol titer (251 mg L-1) at the expense of butanol (158 mg L-1), when grown on CO2 and H2 in serum bottles. Fermentation of this strain at 2-L scale produced 109 mg L-1 butanol and 393 mg L-1 hexanol. CONCLUSIONS: We thus confirmed the function of the butanol/hexanol biosynthesis genes and achieved hexanol biosynthesis in the syngas-fermenting species C. ljungdahlii for the first time, reaching the levels produced naturally by C. carboxidivorans. The genomic integration strain produced hexanol without selection and is therefore suitable for continuous fermentation processes.


Assuntos
Butanóis , Engenharia Metabólica , 1-Butanol/metabolismo , Butanóis/metabolismo , Dióxido de Carbono/metabolismo , Clostridium/genética , Clostridium/metabolismo , Fermentação , Hexanóis/metabolismo , Engenharia Metabólica/métodos
12.
Anal Bioanal Chem ; 414(4): 1609-1622, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34783880

RESUMO

An electrochemical aptamer-based sensor was developed for glutamate, the major excitatory neurotransmitter in the central nervous system. Determining glutamic acid release and glutamic acid levels is crucial for studying signal transmission and for diagnosing pathological conditions in the brain. Glutamic acid-selective oligonucleotides were isolated from an ssDNA library using the Capture-SELEX protocol in complex medium. The selection permitted the isolation of an aptamer 1d04 with a dissociation constant of 12 µM. The aptamer sequence was further used in the development of an electrochemical aptamer sensor. For this purpose, a truncated aptamer sequence named glu1 was labelled with a ferrocene redox tag at the 3'-end and immobilized on a gold electrode surface via Au-thiol bonds. Using 6-mercapto-1-hexanol as the backfill, the sensor performance was characterized by alternating current voltammetry. The glu1 aptasensor showed a limit of detection of 0.0013 pM, a wide detection range between 0.01 pM and 1 nM, and good selectivity for glutamate in tenfold diluted human serum. With this enzyme-free aptasensor, the highly selective and sensitive detection of glutamate was demonstrated, which possesses great potential for implementation in microelectrodes and for in vitro as well as in vivo monitoring of neurotransmitter release.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Ácido Glutâmico/sangue , Técnicas Biossensoriais/métodos , Ácido Glutâmico/análise , Hexanóis/química , Humanos , Limite de Detecção , Compostos de Sulfidrila/química
13.
Can J Physiol Pharmacol ; 100(1): 61-67, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34793682

RESUMO

Trimethylamine N-oxide (TMAO), a metabolite of gut microbiota, is involved in the regulation of lipid metabolism and inflammatory response; however, the role of TMAO in hyperlipidemia acute pancreatitis (HAP) is not clear. In this study, HAP mice were used as an animal model to explore the effects and possible mechanism of TMAO on HAP, which may provide new ideas for the treatment of HAP. Results found that the levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol, nonestesterified fatty acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, α-amylase, TMAO, and flavin-containing monooxygenase 3 were significantly increased, the levels of high-density lipoprotein cholesterol and insulin were significantly decreased, and there was an obvious pancreatic injury and inflammatory response in the model group. The choline analogue 3,3-dimethyl-1-butanol (DMB) treatment reversed the changes of serum biochemical parameters, alleviated the pancreatic tissue injury, and reduced the levels of inflammatory cytokines. Further studies of toll-like receptor (TLR)/p-glycoprotein 65 (p65) pathway found that the expressions of TLR2, TLR4, and p-p65/p65 in the model group were significantly increased, which was more obvious after Escherichia coli (Migula) Castellani & Chalmers treatment, while activation of the TLR/p65 pathway was inhibited by DMB. The results indicated that TMAO promotes HAP by promoting inflammatory response through TLR/p65 signaling pathway, suggesting that TMAO may be a potential target of HAP.


Assuntos
Hiperlipidemias/etiologia , Metilaminas/efeitos adversos , Pancreatite/etiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal/fisiologia , Hexanóis/farmacologia , Hexanóis/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Inflamação , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Metilaminas/metabolismo , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo
14.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566227

RESUMO

The application of methyl jasmonate (MeJ) as an elicitor to enhance secondary metabolites in grapes and wines has been studied, but there is little information about its use in conjunction with nanotechnology and no information about its effects on wine volatile compounds. This led us to study the impact of nanoparticles doped with MeJ (Nano-MeJ, 1mM MeJ) on the volatile composition of Monastrell wines over three seasons, compared with the application of MeJ in a conventional way (10 mM MeJ). The results showed how both treatments enhanced fruity esters in wines regardless of the vintage year, although the increase was more evident when grapes were less ripe. These treatments also achieved these results in 2019 in the cases of 1-propanol, ß-phenyl-ethanol, and methionol, in 2020 in the cases of hexanol and methionol, and in 2021, but only in the case of hexanol. On the other hand, MeJ treatment also increased the terpene fraction, whereas Nano-MeJ, at the applied concentration, did not increase it in any of the seasons. In summary, although not all families of volatile compounds were increased by Nano-MeJ, the Nano-MeJ treatment generally increased the volatile composition to an extent similar to that obtained with MeJ used in a conventional way, but at a 10 times lower dose. Therefore, the use of nanotechnology could be a good option for improving the quality of wines from an aromatic point of view, while reducing the necessary dosage of agrochemicals, in line with more sustainable agricultural practices.


Assuntos
Vitis , Compostos Orgânicos Voláteis , Vinho , Acetatos , Ciclopentanos , Frutas/química , Hexanóis/metabolismo , Odorantes/análise , Oxilipinas/metabolismo , Vitis/química , Compostos Orgânicos Voláteis/análise , Vinho/análise
15.
Plant J ; 104(3): 631-644, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32786123

RESUMO

Fatty acid-derived volatile organic compounds (FA-VOCs) make significant contributions to tomato (Solanum lycopersicum) fruit flavor and human preferences. Short-chain FA-VOCs (C5 and C6) are among the most abundant and important volatile compounds in tomato fruits. The precursors of these volatiles, linoleic acid (18:2) and linolenic acid (18:3), are derived from cleavage of glycerolipids. However, the initial step in synthesis of these FA-VOCs has not been established. A metabolite-based genome-wide association study combined with genetic mapping and functional analysis identified a gene encoding a novel class III lipase family member, Sl-LIP8, that is associated with accumulation of short-chain FA-VOCs in tomato fruit. In vitro assays indicated that Sl-LIP8 can cleave 18:2 and 18:3 acyl groups from glycerolipids. A CRISPR/Cas9 gene edited Sl-LIP8 mutant had much lower content of multiple fruit short-chain FA-VOCs, validating an important role for this enzyme in the pathway. Sl-LIP8 RNA abundance was correlated with FA-VOC content, consistent with transcriptional regulation of the first step in the pathway. Taken together, our work indicates that glycerolipid turnover by Sl-LIP8 is an important early step in the synthesis of multiple short-chain FA-VOCs.


Assuntos
Frutas/metabolismo , Lipase/metabolismo , Solanum lycopersicum/metabolismo , Ácidos Graxos/metabolismo , Frutas/genética , Estudo de Associação Genômica Ampla , Hexanóis/metabolismo , Lipase/genética , Solanum lycopersicum/genética
16.
J Chem Ecol ; 47(6): 525-533, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33871786

RESUMO

The sex pheromone composition of alfalfa plant bugs, Adelphocoris lineolatus (Goeze), from Central Europe was investigated to test the hypothesis that insect species across a wide geographical area can vary in pheromone composition. Potential interactions between the pheromone and a known attractant, (E)-cinnamaldehyde, were also assessed. Coupled gas chromatography-electroantennography (GC-EAG) using male antennae and volatile extracts collected from females, previously shown to attract males in field experiments, revealed the presence of three physiologically active compounds. These were identified by coupled GC/mass spectrometry (GC/MS) and peak enhancement as hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal. A ternary blend of these compounds in a 5.4:9.0:1.0 ratio attracted male A. lineolatus in field trials in Hungary. Omission of either (E)-2-hexenyl-butyrate or (E)-4-oxo-2-hexenal from the ternary blend or substitution of (E)-4-oxo-2-hexenal by (E)-2-hexenal resulted in loss of activity. These results indicate that this Central European population is similar in pheromone composition to that previously reported for an East Asian population. Interestingly, another EAG-active compound, 1-hexanol, was also present in female extract. When 1-hexanol was tested in combination with the ternary pheromone blend, male catches were reduced. This compound showed a dose-response effect with small doses showing a strong behavioral effect, suggesting that 1-hexanol may act as a sex pheromone antagonist in A. lineolatus. Furthermore, when (E)-cinnamaldehyde was field tested in combination with the sex pheromone, there was no increase in male catch, but the combination attracted both males and females. Prospects for practical application are discussed.


Assuntos
Heterópteros/efeitos dos fármacos , Hexanóis/farmacologia , Atrativos Sexuais/antagonistas & inibidores , Atrativos Sexuais/análise , Animais , Feminino , Heterópteros/química , Masculino
17.
J Chem Ecol ; 47(4-5): 463-475, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761047

RESUMO

Ambrosia beetles (Coleoptera: Scolytinae) cultivate their fungal symbiont within host substrates as the sole source of nutrition on which the larvae and adults must feed. To investigate a possible role for semiochemicals in this interaction, we characterized electrophysiological and behavioral responses of Xylosandrus germanus to volatiles associated with its fungal symbiont Ambrosiella grosmanniae. During still-air walking bioassays, X. germanus exhibited an arrestment response to volatiles of A. grosmanniae, but not antagonistic fungi Beauveria bassiana, Metarhizium brunneum, Trichoderma harzianum, the plant pathogen Fusarium proliferatum, or malt extract agar. Solid phase microextraction-gas chromatography-mass spectrometry identified 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate and 3-methyl-1-butanol in emissions from A. grosmanniae; the latter two compounds were also detected in emissions from B. bassiana. Concentration-responses using electroantennography documented weak depolarizations to A. grosmanniae fungal volatiles, unlike the comparatively strong response to ethanol. When tested singly in walking bioassays, volatiles identified from A. grosmanniae elicited relatively weak arrestment responses, unlike the responses to ethanol. Xylosandrus germanus also exhibited weak or no long-range attraction to the fungal volatiles when tested singly during field trials in 2016-2018. None of the fungal volatiles enhanced attraction of X. germanus to ethanol when tested singly; in contrast, 2-phenylethanol and 3-methyl-1-butanol consistently reduced attraction to ethanol. Volatiles emitted by A. grosmanniae may represent short-range olfactory cues that could aid in distinguishing their nutritional fungal symbiont from other fungi, but these compounds are not likely to be useful as long-range attractants for improving detection or mass trapping tactics.


Assuntos
Feromônios/química , Compostos Orgânicos Voláteis/química , Animais , Ascomicetos/metabolismo , Comportamento Animal , Benzoatos/química , Benzoatos/metabolismo , Evolução Biológica , Fenômenos Eletrofisiológicos , Etanol/química , Etanol/metabolismo , Feminino , Fusarium/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hexanóis/química , Hexanóis/metabolismo , Controle de Insetos , Pentanóis/química , Pentanóis/metabolismo , Feromônios/metabolismo , Microextração em Fase Sólida , Simbiose , Compostos Orgânicos Voláteis/metabolismo , Gorgulhos
18.
Mar Drugs ; 19(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34356810

RESUMO

The modification of the biobased polymer chitosan is a broad and widely studied field. Herein, an insight into the hydrophobization of low-molecular-weight chitosan by substitution of amino functionalities with hexanoyl chloride is reported. Thereby, the influence of the pH of the reaction media was investigated. Further, methods for the determination of the degree of substitution based on 1H-NMR, FTIR, and potentiometric titration were compared and discussed regarding their accuracy and precision. 1H-NMR was the most accurate method, while FTIR and the potentiometric titration, though precise and reproducible, underlie the influence of complete protonation and solubility issues. Additionally, the impact of the pH variation during the synthesis on the properties of the samples was investigated by Cd2+ sorption experiments. The adjusted pH values during the synthesis and, therefore, the obtained degrees of substitution possessed a strong impact on the adsorption properties of the final material.


Assuntos
Quitosana/química , Acilação , Animais , Organismos Aquáticos , Hexanóis/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
19.
J Insect Sci ; 21(3)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34047335

RESUMO

Aphidius gifuensis Ashmaed is a generalist endoparasitoid that parasitizes a variety of aphid species. In China, it is widely used as a biological control agent to protect vegetables and tobaccos in open fields; control efficiency is largely dependent on its host-seeking ability. In this study, a six-choice olfactometer was used to investigate the olfactory responses of A. gifuensis to tobacco plants that had suffered damage (either varying degrees of mechanical damage or from aphid-feeding at different time intervals) and tobacco volatiles with different dosages. Furthermore, the regularity of A. gifuensis females' response toward an aphid/tobacco complex was monitored using a Y-tube olfactometer. Our findings suggest that tobacco plants are significantly attractive to A. gifuensis after they have been punctured with 50 holes, or housed with Myzus persicae (Sulzer) at a density of 400 aphids, except at an infestation time of 12 h. Moreover, aphid density had a more significant effect on the response than the time interval since aphid application. Aphidius gifuensis was found to be active during the daytime and preferred to search for their aphid hosts at 14:00 h. Five EAG-active tobacco volatiles (trans-2-hexenal, methyl salicylate, benzaldehyde, cis-3-hexen-1-ol, and 1-hexanal) were found to significantly attract A. gifuensis females at different concentration ranges. The practical implications of these results are discussed in the framework of the sustainable biological control of pest aphids in agricultural production systems.


Assuntos
Afídeos , Sinais (Psicologia) , Comportamento de Busca por Hospedeiro/fisiologia , Compostos Orgânicos Voláteis , Vespas/fisiologia , Animais , Afídeos/metabolismo , Afídeos/parasitologia , Agentes de Controle Biológico , China , Produtos Agrícolas , Hexanóis/química , Hexanóis/metabolismo , Olfatometria , Parasitos/fisiologia , Controle Biológico de Vetores , Olfato , Nicotiana/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
20.
Molecules ; 26(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34833969

RESUMO

Tethered bilayer lipid membranes (tBLMs) have been known as stable and versatile experimental platforms for protein-membrane interaction studies. In this work, the assembly of functional tBLMs on silver substrates and the effect of the molecular chain-length of backfiller molecules on their properties were investigated. The following backfillers 3-mercapto-1-propanol (3M1P), 4-mercapto-1-butanol (4M1B), 6-mercapto-1-hexanol (6M1H), and 9-mercapto-1-nonanol (9M1N) mixed with the molecular anchor WC14 (20-tetradecyloxy-3,6,9,12,15,18,22 heptaoxahexatricontane-1-thiol) were used to form self-assembled monolayers (SAMs) on silver, which influenced a fusion of multilamellar vesicles and the formation of tBLMs. Spectroscopic analysis by SERS and RAIRS has shown that by using different-length backfiller molecules, it is possible to control WC14 anchor molecules orientation on the surface. An introduction of increasingly longer surface backfillers in the mixed SAM may be related to the increasing SAMs molecular order and more vertical orientation of WC14 at both the hydrophilic ethylenoxide segment and the hydrophobic lipid bilayer anchoring alkane chains. Since no clustering of WC14 alkane chains, which is deleterious for tBLM integrity, was observed on dry samples, the suitability of mixed-component SAMs for subsequent tBLM formation was further interrogated by electrochemical impedance spectroscopy (EIS). EIS showed the arrangement of well-insulating tBLMs if 3M1P was used as a backfiller. An increase in the length of the backfiller led to increased defectiveness of tBLMs. Despite variable defectiveness, all tBLMs responded to the pore-forming cholesterol-dependent cytolysin, vaginolysin in a manner consistent with the functional reconstitution of the toxin into phospholipid bilayer. This experiment demonstrates the biological relevance of tBLMs assembled on silver surfaces and indicates their utility as biosensing elements for the detection of pore-forming toxins in liquid samples.


Assuntos
Prata/química , Espectroscopia Dielétrica , Hexanóis/química , Bicamadas Lipídicas/química , Análise Espectral Raman , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa