Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.755
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 40: 413-442, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35113731

RESUMO

Germinal centers (GCs) are microanatomical sites of B cell clonal expansion and antibody affinity maturation. Therein, B cells undergo the Darwinian process of somatic diversification and affinity-driven selection of immunoglobulins that produces the high-affinity antibodies essential for effective humoral immunity. Here, we review recent developments in the field of GC biology, primarily as it pertains to GCs induced by infection or immunization. First, we summarize the phenotype and function of the different cell types that compose the GC, focusing on GC B cells. Then, we review the cellular and molecular bases of affinity-dependent selection within the GC and the export of memory and plasma cells. Finally, we present an overview of the emerging field of GC clonal dynamics, focusing on how GC and post-GC selection shapes the diversity of antibodies secreted into serum.


Assuntos
Linfócitos B , Centro Germinativo , Animais , Anticorpos , Afinidade de Anticorpos , Humanos , Imunidade Humoral
2.
Annu Rev Immunol ; 39: 103-129, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33472004

RESUMO

B cell subsets differ in development, tissue distribution, and mechanisms of activation. In response to infections, however, all can differentiate into extrafollicular plasmablasts that rapidly provide highly protective antibodies, indicating that these plasmablasts are the main humoral immune response effectors. Yet, the effectiveness of this response type depends on the presence of antigen-specific precursors in the circulating mature B cell pool, a pool that is generated initially through the stochastic processes of B cell receptor assembly. Importantly, germinal centers then mold the repertoire of this B cell pool to be increasingly responsive to pathogens by generating a broad array of antimicrobial memory B cells that act as highly effective precursors of extrafollicular plasmablasts. Such B cell repertoire molding occurs in two ways: continuously via the chronic germinal centers of mucosal lymphoid tissues, driven by the presence of the microbiome, and via de novo generated germinal centers following acute infections. For effectively evaluating humoral immunity as a correlate of immune protection, it might be critical to measure memory B cell pools in addition to antibody titers.


Assuntos
Subpopulações de Linfócitos B , Linfócitos B , Animais , Centro Germinativo , Humanos , Imunidade Humoral , Receptores de Antígenos de Linfócitos B
3.
Annu Rev Immunol ; 37: 295-324, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30649989

RESUMO

Cytokines are secreted or otherwise released polypeptide factors that exert autocrine and/or paracrine actions, with most cytokines acting in the immune and/or hematopoietic system. They are typically pleiotropic, controlling development, cell growth, survival, and/or differentiation. Correspondingly, cytokines are clinically important, and augmenting or attenuating cytokine signals can have deleterious or therapeutic effects. Besides physiological fine-tuning of cytokine signals, altering the nature or potency of the signal can be important in pathophysiological responses and can also provide novel therapeutic approaches. Here, we give an overview of cytokines, their signaling and actions, and the physiological mechanisms and pharmacologic strategies to fine-tune their actions. In particular, the differential utilization of STAT proteins by a single cytokine or by different cytokines and STAT dimerization versus tetramerization are physiological mechanisms of fine-tuning, whereas anticytokine and anticytokine receptor antibodies and cytokines with altered activities, including cytokine superagonists, partial agonists, and antagonists, represent new ways of fine-tuning cytokine signals.


Assuntos
Citocinas/metabolismo , Imunoterapia/tendências , Animais , Citocinas/genética , Humanos , Imunidade Humoral , Imunomodulação , Multimerização Proteica , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/imunologia
4.
Annu Rev Immunol ; 35: 255-284, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28142324

RESUMO

We comprehensively review memory B cells (MBCs), covering the definition of MBCs and their identities and subsets, how MBCs are generated, where they are localized, how they are maintained, and how they are reactivated. Whereas naive B cells adopt multiple fates upon stimulation, MBCs are more restricted in their responses. Evolving work reveals that the MBC compartment in mice and humans consists of distinct subpopulations with differing effector functions. We discuss the various approaches to define subsets and subset-specific roles. A major theme is the need to both deliver faster effector function upon reexposure and readapt to antigenically variant pathogens while avoiding burnout, which would be the result if all MBCs generated only terminal effector function. We discuss cell-intrinsic differences in gene expression and signaling that underlie differences in function between MBCs and naive B cells and among MBC subsets and how this leads to memory responses.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Memória Imunológica , Vacinas/imunologia , Animais , Humanos , Imunidade Humoral , Ativação Linfocitária , Camundongos , Transcriptoma
5.
Annu Rev Immunol ; 35: 285-311, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446061

RESUMO

IgG antibodies mediate a diversity of immune functions by coupling of antigen specificity through the Fab domain to signal transduction via Fc-Fc receptor interactions. Indeed, balanced IgG signaling through type I and type II Fc receptors is required for the control of proinflammatory, anti-inflammatory, and immunomodulatory processes. In this review, we discuss the mechanisms that govern IgG-Fc receptor interactions, highlighting the diversity of Fc receptor-mediated effector functions that regulate immunity and inflammation as well as determine susceptibility to infection and autoimmunity and responsiveness to antibody-based therapeutics and vaccines.


Assuntos
Anticorpos/uso terapêutico , Doenças Autoimunes/imunologia , Imunoglobulina G/metabolismo , Imunoterapia/métodos , Infecções/imunologia , Receptores Fc/metabolismo , Animais , Doenças Autoimunes/terapia , Suscetibilidade a Doenças , Humanos , Imunidade Humoral , Infecções/terapia , Inflamação , Transdução de Sinais
6.
Annu Rev Immunol ; 35: 53-84, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27912316

RESUMO

Helper T (Th) cell subsets direct immune responses by producing signature cytokines. Th2 cells produce IL-4, IL-5, and IL-13, which are important in humoral immunity and protection from helminth infection and are central to the pathogenesis of many allergic inflammatory diseases. Molecular analysis of Th2 cell differentiation and maintenance of function has led to recent discoveries that have refined our understanding of Th2 cell biology. Epigenetic regulation of Gata3 expression by chromatin remodeling complexes such as Polycomb and Trithorax is crucial for maintaining Th2 cell identity. In the context of allergic diseases, memory-type pathogenic Th2 cells have been identified in both mice and humans. To better understand these disease-driving cell populations, we have developed a model called the pathogenic Th population disease induction model. The concept of defined subsets of pathogenic Th cells may spur new, effective strategies for treating intractable chronic inflammatory disorders.


Assuntos
Helmintíase/imunologia , Hipersensibilidade/imunologia , Células Th2/imunologia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Epigênese Genética , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Imunidade Humoral , Memória Imunológica , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo
7.
Cell ; 187(12): 2935-2951.e19, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772371

RESUMO

Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E2 (PGE2) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Centro Germinativo , Imunidade Humoral , Baço , Animais , Masculino , Camundongos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/farmacologia , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Gânglios Espinais/metabolismo , Centro Germinativo/imunologia , Camundongos Endogâmicos C57BL , Nociceptores/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais , Baço/inervação , Baço/imunologia , Feminino
8.
Annu Rev Immunol ; 34: 317-34, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27168241

RESUMO

CD4(+) T helper (Th) cells play a central role in the adaptive immune response by providing help to B cells and cytotoxic T cells and by releasing different types of cytokines in tissues to mediate protection against a wide range of pathogenic microorganisms. These functions are performed by different types of Th cells endowed with distinct migratory capacities and effector functions. Here we discuss how studies of the human T cell response to microbes have advanced our understanding of Th cell functional heterogeneity, in particular with the discovery of a distinct Th1 subset involved in the response to Mycobacteria and the characterization of two types of Th17 cells specific for extracellular bacteria or fungi. We also review new approaches to dissect at the clonal level the human CD4(+) T cell response induced by pathogens or vaccines that have revealed an unexpected degree of intraclonal diversification and propose a progressive and selective model of CD4(+) T cell differentiation.


Assuntos
Imunidade Adaptativa , Infecções Bacterianas/imunologia , Biodiversidade , Micoses/imunologia , Células Th1/imunologia , Células Th17/imunologia , Vacinas/imunologia , Animais , Antígenos CD4/metabolismo , Diferenciação Celular , Seleção Clonal Mediada por Antígeno , Células Clonais , Citotoxicidade Imunológica , Humanos , Imunidade Humoral , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
9.
Annu Rev Immunol ; 34: 335-68, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26907215

RESUMO

Although T cell help for B cells was described several decades ago, it was the identification of CXCR5 expression by B follicular helper T (Tfh) cells and the subsequent discovery of their dependence on BCL6 that led to the recognition of Tfh cells as an independent helper subset and accelerated the pace of discovery. More than 20 transcription factors, together with RNA-binding proteins and microRNAs, control the expression of chemotactic receptors and molecules important for the function and homeostasis of Tfh cells. Tfh cells prime B cells to initiate extrafollicular and germinal center antibody responses and are crucial for affinity maturation and maintenance of humoral memory. In addition to the roles that Tfh cells have in antimicrobial defense, in cancer, and as HIV reservoirs, regulation of these cells is critical to prevent autoimmunity. The realization that follicular T cells are heterogeneous, comprising helper and regulatory subsets, has raised questions regarding a possible division of labor in germinal center B cell selection and elimination.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunidade Humoral , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Humanos , Memória Imunológica , Ativação Linfocitária , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptores CXCR5/metabolismo
10.
Cell ; 185(6): 945-948, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35303427

RESUMO

Long-term protection against SARS-CoV-2 requires effective and durable immunity. In this issue of Cell, two papers closely examine germinal centers, the physiological birthplace of adaptive immunity, to quantify the specificity, breadth, magnitude, and persistence of systemic and local humoral immune responses following natural infection with, or vaccination against, SARS-CoV-2.


Assuntos
COVID-19 , Imunidade Humoral , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Centro Germinativo , Humanos , SARS-CoV-2
11.
Cell ; 185(14): 2434-2451.e17, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35764089

RESUMO

Multiple COVID-19 vaccines, representing diverse vaccine platforms, successfully protect against symptomatic COVID-19 cases and deaths. Head-to-head comparisons of T cell, B cell, and antibody responses to diverse vaccines in humans are likely to be informative for understanding protective immunity against COVID-19, with particular interest in immune memory. Here, SARS-CoV-2-spike-specific immune responses to Moderna mRNA-1273, Pfizer/BioNTech BNT162b2, Janssen Ad26.COV2.S, and Novavax NVX-CoV2373 were examined longitudinally for 6 months 100% of individuals made memory CD4+ T cells, with cTfh and CD4-CTL highly represented after mRNA or NVX-CoV2373 vaccination. mRNA vaccines and Ad26.COV2.S induced comparable CD8+ T cell frequencies, though only detectable in 60-67% of subjects at 6 months. A differentiating feature of Ad26.COV2.S immunization was a high frequency of CXCR3+ memory B cells. mRNA vaccinees had substantial declines in antibodies, while memory T and B cells were comparatively stable. These results may also be relevant for insights against other pathogens.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Ad26COVS1 , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Imunidade Humoral , Memória Imunológica , SARS-CoV-2
12.
Cell ; 185(9): 1588-1601.e14, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35413241

RESUMO

Immune memory is tailored by cues that lymphocytes perceive during priming. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic created a situation in which nascent memory could be tracked through additional antigen exposures. Both SARS-CoV-2 infection and vaccination induce multifaceted, functional immune memory, but together, they engender improved protection from disease, termed hybrid immunity. We therefore investigated how vaccine-induced memory is shaped by previous infection. We found that following vaccination, previously infected individuals generated more SARS-CoV-2 RBD-specific memory B cells and variant-neutralizing antibodies and a distinct population of IFN-γ and IL-10-expressing memory SARS-CoV-2 spike-specific CD4+ T cells than previously naive individuals. Although additional vaccination could increase humoral memory in previously naive individuals, it did not recapitulate the distinct CD4+ T cell cytokine profile observed in previously infected subjects. Thus, imprinted features of SARS-CoV-2-specific memory lymphocytes define hybrid immunity.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/imunologia , Humanos , Imunidade Humoral , Glicoproteína da Espícula de Coronavírus , Linfócitos T
13.
Nat Immunol ; 25(2): 218-225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212464

RESUMO

Long COVID (LC) occurs after at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, yet its etiology remains poorly understood. We used 'omic" assays and serology to deeply characterize the global and SARS-CoV-2-specific immunity in the blood of individuals with clear LC and non-LC clinical trajectories, 8 months postinfection. We found that LC individuals exhibited systemic inflammation and immune dysregulation. This was evidenced by global differences in T cell subset distribution implying ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. LC individuals displayed increased frequencies of CD4+ T cells poised to migrate to inflamed tissues and exhausted SARS-CoV-2-specific CD8+ T cells, higher levels of SARS-CoV-2 antibodies and a mis-coordination between their SARS-CoV-2-specific T and B cell responses. Our analysis suggested an improper crosstalk between the cellular and humoral adaptive immunity in LC, which can lead to immune dysregulation, inflammation and clinical symptoms associated with this debilitating condition.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Masculino , Humanos , Síndrome de COVID-19 Pós-Aguda , Linfócitos T CD8-Positivos , Imunidade Humoral , Anticorpos Antivirais , Inflamação
14.
Cell ; 184(9): 2372-2383.e9, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33743213

RESUMO

Vaccination elicits immune responses capable of potently neutralizing SARS-CoV-2. However, ongoing surveillance has revealed the emergence of variants harboring mutations in spike, the main target of neutralizing antibodies. To understand the impact of these variants, we evaluated the neutralization potency of 99 individuals that received one or two doses of either BNT162b2 or mRNA-1273 vaccines against pseudoviruses representing 10 globally circulating strains of SARS-CoV-2. Five of the 10 pseudoviruses, harboring receptor-binding domain mutations, including K417N/T, E484K, and N501Y, were highly resistant to neutralization. Cross-neutralization of B.1.351 variants was comparable to SARS-CoV and bat-derived WIV1-CoV, suggesting that a relatively small number of mutations can mediate potent escape from vaccine responses. While the clinical impact of neutralization resistance remains uncertain, these results highlight the potential for variants to escape from neutralizing humoral immunity and emphasize the need to develop broadly protective interventions against the evolving pandemic.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Imunidade Humoral , SARS-CoV-2/imunologia , Vacina BNT162 , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Células HEK293 , Humanos , Mutação/genética , Curva ROC , SARS-CoV-2/genética
15.
Cell ; 184(14): 3812-3828.e30, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214472

RESUMO

We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.


Assuntos
Antígenos CD28/deficiência , Padrões de Herança/genética , Papillomaviridae/fisiologia , Pele/virologia , Linfócitos T/imunologia , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Antígenos CD28/genética , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/imunologia , Criança , Endopeptidases/metabolismo , Feminino , Genes Recessivos , Células HEK293 , Homozigoto , Humanos , Imunidade Humoral , Memória Imunológica , Células Jurkat , Queratinócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Oncogenes , Papiloma/patologia , Papiloma/virologia , Linhagem , Sinais Direcionadores de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Nat Immunol ; 24(7): 1149-1160, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202489

RESUMO

B cell zone reticular cells (BRCs) form stable microenvironments that direct efficient humoral immunity with B cell priming and memory maintenance being orchestrated across lymphoid organs. However, a comprehensive understanding of systemic humoral immunity is hampered by the lack of knowledge of global BRC sustenance, function and major pathways controlling BRC-immune cell interactions. Here we dissected the BRC landscape and immune cell interactome in human and murine lymphoid organs. In addition to the major BRC subsets underpinning the follicle, including follicular dendritic cells, PI16+ RCs were present across organs and species. As well as BRC-produced niche factors, immune cell-driven BRC differentiation and activation programs governed the convergence of shared BRC subsets, overwriting tissue-specific gene signatures. Our data reveal that a canonical set of immune cell-provided cues enforce bidirectional signaling programs that sustain functional BRC niches across lymphoid organs and species, thereby securing efficient humoral immunity.


Assuntos
Linfócitos B , Células Estromais , Camundongos , Humanos , Animais , Imunidade Humoral , Células Dendríticas Foliculares , Homeostase
17.
Cell ; 183(6): 1508-1519.e12, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33207184

RESUMO

The urgent need for an effective SARS-CoV-2 vaccine has forced development to progress in the absence of well-defined correlates of immunity. While neutralization has been linked to protection against other pathogens, whether neutralization alone will be sufficient to drive protection against SARS-CoV-2 in the broader population remains unclear. Therefore, to fully define protective humoral immunity, we dissected the early evolution of the humoral response in 193 hospitalized individuals ranging from moderate to severe. Although robust IgM and IgA responses evolved in both survivors and non-survivors with severe disease, non-survivors showed attenuated IgG responses, accompanied by compromised Fcɣ receptor binding and Fc effector activity, pointing to deficient humoral development rather than disease-enhancing humoral immunity. In contrast, individuals with moderate disease exhibited delayed responses that ultimately matured. These data highlight distinct humoral trajectories associated with resolution of SARS-CoV-2 infection and the need for early functional humoral immunity.


Assuntos
COVID-19 , Imunidade Humoral , Imunoglobulina A/imunologia , Imunoglobulina M/imunologia , Receptores de IgG/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/mortalidade , Feminino , Células HL-60 , Humanos , Masculino
18.
Cell ; 183(4): 982-995.e14, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991843

RESUMO

Initially, children were thought to be spared from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a month into the epidemic, a novel multisystem inflammatory syndrome in children (MIS-C) emerged. Herein, we report on the immune profiles of nine MIS-C cases. All MIS-C patients had evidence of prior SARS-CoV-2 exposure, mounting an antibody response with intact neutralization capability. Cytokine profiling identified elevated signatures of inflammation (IL-18 and IL-6), lymphocytic and myeloid chemotaxis and activation (CCL3, CCL4, and CDCP1), and mucosal immune dysregulation (IL-17A, CCL20, and CCL28). Immunophenotyping of peripheral blood revealed reductions of non-classical monocytes, and subsets of NK and T lymphocytes, suggesting extravasation to affected tissues. Finally, profiling the autoantigen reactivity of MIS-C plasma revealed both known disease-associated autoantibodies (anti-La) and novel candidates that recognize endothelial, gastrointestinal, and immune-cell antigens. All patients were treated with anti-IL-6R antibody and/or IVIG, which led to rapid disease resolution.


Assuntos
Inflamação/patologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Adolescente , Anticorpos Antivirais/sangue , Autoanticorpos/sangue , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , COVID-19 , Quimiocina CCL3/metabolismo , Criança , Pré-Escolar , Infecções por Coronavirus/complicações , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Imunidade Humoral , Lactente , Recém-Nascido , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-18/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Masculino , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Adulto Jovem
19.
Cell ; 183(4): 968-981.e7, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32966765

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is typically very mild and often asymptomatic in children. A complication is the rare multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19, presenting 4-6 weeks after infection as high fever, organ dysfunction, and strongly elevated markers of inflammation. The pathogenesis is unclear but has overlapping features with Kawasaki disease suggestive of vasculitis and a likely autoimmune etiology. We apply systems-level analyses of blood immune cells, cytokines, and autoantibodies in healthy children, children with Kawasaki disease enrolled prior to COVID-19, children infected with SARS-CoV-2, and children presenting with MIS-C. We find that the inflammatory response in MIS-C differs from the cytokine storm of severe acute COVID-19, shares several features with Kawasaki disease, but also differs from this condition with respect to T cell subsets, interleukin (IL)-17A, and biomarkers associated with arterial damage. Finally, autoantibody profiling suggests multiple autoantibodies that could be involved in the pathogenesis of MIS-C.


Assuntos
Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Autoanticorpos/sangue , Betacoronavirus/isolamento & purificação , COVID-19 , Criança , Pré-Escolar , Infecções por Coronavirus/complicações , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Feminino , Humanos , Imunidade Humoral , Lactente , Masculino , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/imunologia , Síndrome de Linfonodos Mucocutâneos/patologia , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/virologia , Análise de Componente Principal , Proteoma/análise , SARS-CoV-2 , Índice de Gravidade de Doença , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
20.
Nat Immunol ; 23(8): 1183-1192, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35902637

RESUMO

Anti-programmed death-1 (anti-PD-1) immunotherapy reinvigorates CD8 T cell responses in patients with cancer but PD-1 is also expressed by other immune cells, including follicular helper CD4 T cells (Tfh) which are involved in germinal centre responses. Little is known, however, about the effects of anti-PD-1 immunotherapy on noncancer immune responses in humans. To investigate this question, we examined the impact of anti-PD-1 immunotherapy on the Tfh-B cell axis responding to unrelated viral antigens. Following influenza vaccination, a subset of adults receiving anti-PD-1 had more robust circulating Tfh responses than adults not receiving immunotherapy. PD-1 pathway blockade resulted in transcriptional signatures of increased cellular proliferation in circulating Tfh and responding B cells compared with controls. These latter observations suggest an underlying change in the Tfh-B cell and germinal centre axis in a subset of immunotherapy patients. Together, these results demonstrate dynamic effects of anti-PD-1 therapy on influenza vaccine responses and highlight analytical vaccination as an approach that may reveal underlying immune predisposition to adverse events.


Assuntos
Vacinas contra Influenza , Adulto , Humanos , Imunidade Humoral , Estações do Ano , Linfócitos T Auxiliares-Indutores , Vacinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa