Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.083
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(11): e0143423, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37882518

RESUMO

IMPORTANCE: Mitochondrial antiviral signaling protein (MAVS) and stimulator of interferon (IFN) genes (STING) are key adaptor proteins required for innate immune responses to RNA and DNA virus infection. Here, we show that zebrafish transmembrane protein 47 (TMEM47) plays a critical role in regulating MAVS- and STING-triggered IFN production in a negative feedback manner. TMEM47 interacted with MAVS and STING for autophagic degradation, and ATG5 was essential for this process. These findings suggest the inhibitory function of TMEM47 on MAVS- and STING-mediated signaling responses during RNA and DNA virus infection.


Assuntos
Infecções por Vírus de DNA , Imunidade Inata , Interferons , Infecções por Vírus de RNA , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Interferons/antagonistas & inibidores , Interferons/biossíntese , Transdução de Sinais , Peixe-Zebra/imunologia , Peixe-Zebra/metabolismo , Peixe-Zebra/virologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Retroalimentação Fisiológica , Proteínas de Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/metabolismo
2.
Fish Shellfish Immunol ; 150: 109643, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763177

RESUMO

The lymphocystis disease (LCD), caused by Lymphocystis disease virus (LCDV), is a benign and self-limiting disease described in a many freshwater and marine fish species. Hypertrophic fibroblasts and extensive aggregation of inflammatory cells are characteristics of LCD. In the present study, small animal imaging and ultrastructural investigations were carried out on the lymphocystis nodules of black rockfish (Sebastes schlegelii) naturally infected with lymphocystis iridovirus, to assess pathology, and the exudate with particular attention to the formation of extracellular traps (ETs) in vivo. Ex vivo were examined by nodules sections and primary cells stimulation. By histopathological analysis, the nodules contained infiltrated inflammatory cells and extensive basophilic fibrillar filaments at the periphery of the hypertrophied fibroblasts. ETs were assessed in nodules samples using indirect immunofluorescence to detect DNA and myeloperoxidase. Moreover, LCDV was able to infect peritoneal cells of black rockfish in vitro and induce the formation of ETs within 4 h. In summary, this study proved that ETs are involved in the response to LCDV infection and may be involved in formation of lymphoid nodules. Taken together, the findings provide a new perspective to determine the impact factors on the growth of nodules.


Assuntos
Infecções por Vírus de DNA , Armadilhas Extracelulares , Doenças dos Peixes , Iridoviridae , Perciformes , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Armadilhas Extracelulares/imunologia , Iridoviridae/fisiologia , Perciformes/imunologia , Pele/virologia , Pele/patologia , Peixes/imunologia , Peixes/virologia
3.
Arch Virol ; 169(7): 136, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847927

RESUMO

Here, we report the first detection of lymphocystis disease virus (LCDV) in Indian glass fish in the Andaman Islands, India. Microscopic examination revealed the presence of whitish clusters of nodules on the fish's skin, fins, and eyes. The histopathology of the nodules revealed typical hypertrophied fibroblasts. Molecular characterization of the major capsid protein (MCP) gene of the virus showed a significant resemblance to known LCDV sequences from Korea and Iran, with 98.92% and 97.85% sequence identity, respectively. Phylogenetic analysis confirmed that the MCP gene sequence of the virus belonged to genotype V. This study represents the first documented case of LCDV in finfish from the Andaman Islands, emphasizing the necessity for continued monitoring and research on the health of aquatic species in this fragile ecosystem.


Assuntos
Proteínas do Capsídeo , Infecções por Vírus de DNA , Doenças dos Peixes , Iridoviridae , Filogenia , Animais , Doenças dos Peixes/virologia , Índia , Iridoviridae/genética , Iridoviridae/isolamento & purificação , Iridoviridae/classificação , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/veterinária , Proteínas do Capsídeo/genética , Peixes/virologia , Genótipo , Ilhas
4.
Arch Virol ; 169(7): 148, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888759

RESUMO

The inflammasome is a multimeric protein complex that plays a vital role in the defence against pathogens and is therefore considered an essential component of the innate immune system. In this study, the expression patterns of inflammasome genes (NLRC3, ASC, and CAS-1), antiviral genes (IFNγ and MX), and immune genes (IL-1ß and IL-18) were analysed in Oreochromis niloticus liver (ONIL) cells following stimulation with the bacterial ligands peptidoglycan (PGN) and lipopolysaccharide (LPS) and infection with TiLV. The cells were stimulated with PGN and LPS at concentrations of 10, 25, and 50 µg/ml. For viral infection, 106 TCID50 of TiLV per ml was used. After LPS stimulation, all seven genes were found to be expressed at specific time points at each of the three doses tested. However, at even higher doses of LPS, NLRC3 levels decreased. Following TiLV infection, all of the genes showed significant upregulation, especially at early time points. However, the gene expression pattern was found to be unique in PGN-treated cells. For instance, NLRC3 and ASC did not show any response to PGN stimulation, and the expression of IFNγ was downregulated at 25 and 50 µg of PGN per ml. CAS-1 and IL-18 expression was downregulated at 25 µg of PGN per ml. At a higher dose (50 µg/ml), IL-1ß showed downregulation. Overall, our results indicate that these genes are involved in the immune response to viral and bacterial infection and that the degree of response is ligand- and dose-dependent.


Assuntos
Ciclídeos , Doenças dos Peixes , Inflamassomos , Animais , Ciclídeos/imunologia , Ciclídeos/genética , Inflamassomos/genética , Inflamassomos/imunologia , Inflamassomos/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/genética , Linhagem Celular , Peptidoglicano/farmacologia , Fígado/virologia , Fígado/imunologia , Lipopolissacarídeos/farmacologia , Imunidade Inata , Proteínas de Peixes/genética , Interleucina-18/genética , Interleucina-18/metabolismo , Ligantes , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia
5.
Dis Aquat Organ ; 158: 65-74, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661138

RESUMO

Red sea bream iridovirus (RSIV) causes substantial economic damage to aquaculture. In the present study, RSIV in wild fish near aquaculture installations was surveyed to evaluate the risk of wild fish being an infection source for RSIV outbreaks in cultured fish. In total, 1102 wild fish, consisting of 44 species, were captured from 2 aquaculture areas in western Japan using fishing, gill nets, and fishing baskets between 2019 and 2022. Eleven fish from 7 species were confirmed to harbor the RSIV genome using a probe-based real-time PCR assay. The mean viral load of the RSIV-positive wild fish was 101.1 ± 0.4 copies mg-1 DNA, which was significantly lower than that of seemingly healthy red sea bream Pagrus major in a net pen during an RSIV outbreak (103.3 ± 1.5 copies mg-1 DNA) that occurred in 2021. Sequencing analysis of a partial region of the major capsid protein gene demonstrated that the RSIV genome detected in the wild fish was identical to that of the diseased fish in a fish farm located in the same area in which the wild fish were captured. Based on the diagnostic records of RSIV in the sampled area, the RSIV-infected wild fish appeared during or after the RSIV outbreak in cultured fish, suggesting that RSIV detected in wild fish was derived from the RSIV outbreak in cultured fish. Therefore, wild fish populations near aquaculture installations may not be a significant risk factor for RSIV outbreaks in cultured fish.


Assuntos
Aquicultura , Infecções por Vírus de DNA , Surtos de Doenças , Doenças dos Peixes , Iridovirus , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/epidemiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Surtos de Doenças/veterinária , Iridovirus/genética , Dourada/virologia , Peixes , Medição de Risco , Japão/epidemiologia , Animais Selvagens
6.
J Fish Dis ; 47(6): e13930, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38349841

RESUMO

Large yellow croaker (Larimichthys crocea) is a vital marine-cultured species in China. Large yellow croaker iridovirus (LYCIV) can cause a high mortality rate in L. crocea. Rapid and convenient detection of LYCIV is an urgent demand for diagnosis. In this study, rapid and simple recombinase polymerase amplification (RPA), real-time RPA and RPA combined with lateral flow dipstick (RPA-LFD) methods were developed for the detection of LYCIV based on the conserved sequence of the LYCIV major capsid protein (MCP) gene. With these optimized RPA analyses, LYCIV detection could be completed within 20 min at 40°C. Both RPA and real-time RPA could detect viral DNA as low as 102 copies/µL, while the detection limit of RPA-LFD was 101 copies/µL, and there was no cross-reaction with other aquatic pathogens (KHV, CyHV-2, GCRV-JX01, SVCV, LCDV and LMBV). In practical evaluation of RPA, real-time RPA and RPA-LFD methods, the results showed consistency with the general PCR detection. In short, the developed RPA, real-time RPA and RPA-LFD analyses could be simple, rapid, sensitive and reliable methods for field diagnosis of LYCIV infection and have significant potential in the protection of LYCIV infection.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Técnicas de Amplificação de Ácido Nucleico , Perciformes , Sensibilidade e Especificidade , Animais , Perciformes/virologia , Doenças dos Peixes/virologia , Doenças dos Peixes/diagnóstico , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/virologia , Iridovirus/isolamento & purificação , Iridovirus/genética , Técnicas de Amplificação de Ácido Nucleico/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Viral/genética , Proteínas do Capsídeo/genética
7.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240024

RESUMO

A next-generation sequencing (NGS) study identified a very high viral load of Torquetenovirus (TTV) in KD patients. We aimed to evaluate the feasibility of a newly developed quantitative species-specific TTV-PCR (ssTTV-PCR) method to identify the etiology of KD. We applied ssTTV-PCR to samples collected from 11 KD patients and 22 matched control subjects who participated in our previous prospective study. We used the NGS dataset from the previous study to validate ssTTV-PCR. The TTV loads in whole blood and nasopharyngeal aspirates correlated highly (Spearman's R = 0.8931, p < 0.0001, n = 33), supporting the validity of ssTTV-PCR. The ssTTV-PCR and NGS results were largely consistent. However, inconsistencies occurred when ssTTV-PCR was more sensitive than NGS, when the PCR primer sequences mismatched the viral sequences in the participants, and when the NGS quality score was low. Interpretation of NGS requires complex procedures. ssTTV-PCR is more sensitive than NGS but may fail to detect a fast-evolving TTV species. It would be prudent to update primer sets using NGS data. With this precaution, ssTTV-PCR can be used reliably in a future large-scale etiological study for KD.


Assuntos
Infecções por Vírus de DNA , Síndrome de Linfonodos Mucocutâneos , Reação em Cadeia da Polimerase , Torque teno virus , Torque teno virus/genética , Torque teno virus/isolamento & purificação , Síndrome de Linfonodos Mucocutâneos/virologia , Reação em Cadeia da Polimerase/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Conjuntos de Dados como Assunto , Humanos , Masculino , Feminino , Lactente , Pré-Escolar , Criança , Estudos Prospectivos , DNA Viral/genética , DNA Viral/isolamento & purificação , Infecções por Vírus de DNA/virologia
8.
J Virol ; 95(21): e0081721, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406857

RESUMO

Redondoviridae is a newly established family of circular Rep-encoding single-stranded (CRESS) DNA viruses found in the human ororespiratory tract. Redondoviruses were previously found in ∼15% of respiratory specimens from U.S. urban subjects; levels were elevated in individuals with periodontitis or critical illness. Here, we report higher redondovirus prevalence in saliva samples: four rural African populations showed 61 to 82% prevalence, and an urban U.S. population showed 32% prevalence. Longitudinal, limiting-dilution single-genome sequencing revealed diverse strains of both redondovirus species (Brisavirus and Vientovirus) in single individuals, persistence over time, and evidence of intergenomic recombination. Computational analysis of viral genomes identified a recombination hot spot associated with a conserved potential DNA stem-loop structure. To assess the possible role of this site in recombination, we carried out in vitro studies which showed that this potential stem-loop was cleaved by the virus-encoded Rep protein. In addition, in reconstructed reactions, a Rep-DNA covalent intermediate was shown to mediate DNA strand transfer at this site. Thus, redondoviruses are highly prevalent in humans, found in individuals on multiple continents, heterogeneous even within individuals and encode a Rep protein implicated in facilitating recombination. IMPORTANCERedondoviridae is a recently established family of DNA viruses predominantly found in the human respiratory tract and associated with multiple clinical conditions. In this study, we found high redondovirus prevalence in saliva from urban North American individuals and nonindustrialized African populations in Botswana, Cameroon, Ethiopia, and Tanzania. Individuals on both continents harbored both known redondovirus species. Global prevalence of both species suggests that redondoviruses have long been associated with humans but have remained undetected until recently due to their divergent genomes. By sequencing single redondovirus genomes in longitudinally sampled humans, we found that redondoviruses persisted over time within subjects and likely evolve by recombination. The Rep protein encoded by redondoviruses catalyzes multiple reactions in vitro, consistent with a role in mediating DNA replication and recombination. In summary, we identify high redondovirus prevalence in humans across multiple continents, longitudinal heterogeneity and persistence, and potential mechanisms of redondovirus evolution by recombination.


Assuntos
Infecções por Vírus de DNA/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/metabolismo , Boca/virologia , Sistema Respiratório/virologia , Saliva/virologia , África/epidemiologia , Biodiversidade , Estado Terminal , Infecções por Vírus de DNA/epidemiologia , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Genoma Viral , Humanos , Metagenômica , Periodontite/virologia , Filogenia , Prevalência , População Rural , Estados Unidos/epidemiologia , Proteínas Virais/metabolismo
9.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33827949

RESUMO

Ranaviruses such as frog virus 3 (FV3) are large double-stranded DNA (dsDNA) viruses causing emerging infectious diseases leading to extensive morbidity and mortality of amphibians and other ectothermic vertebrates worldwide. Among the hosts of FV3, some are highly susceptible, whereas others are resistant and asymptomatic carriers that can take part in disseminating the infectious virus. To date, the mechanisms involved in the processes of FV3 viral persistence associated with subclinical infection transitioning to lethal outbreaks remain unknown. Investigation in Xenopus laevis has revealed that in asymptomatic FV3 carrier animals, inflammation induced by heat-killed (HK) Escherichia coli stimulation can provoke the relapse of active infection. Since Toll-like receptors (TLRs) are critical for recognizing microbial molecular patterns, we investigated their possible involvement in inflammation-induced FV3 reactivation. Among the 10 different TLRs screened for changes in expression levels following FV3 infection and HK E. coli stimulation, only TLR5 and TLR22, both of which recognize bacterial products, showed differential expression, and only the TLR5 ligand flagellin was able to induce FV3 reactivation similarly to HK E. coli Furthermore, only the TLR5 ligand flagellin induced FV3 reactivation in peritoneal macrophages both in vitro and in vivo These data indicate that the TLR5 signaling pathway can trigger FV3 reactivation and suggest a role of secondary bacterial infections or microbiome alterations (stress or pollution) in initiating sudden deadly disease outbreaks in amphibian populations with detectable persistent asymptomatic ranavirus.IMPORTANCE This study in the amphibian Xenopus laevis provides new evidence of the critical role of macrophages in the persistence of ranaviruses in a quiescent state as well as in the reactivation of these pathogens into a virulent infection. Among the multiple microbial sensors expressed by macrophages, our data underscore the preponderant involvement of TLR5 stimulation in triggering the reactivation of quiescent FV3 in resident peritoneal macrophages, unveiling a mechanistic connection between the reactivation of persisting ranavirus infection and bacterial coinfection. This suggests a role for secondary bacterial infections or microbiome alterations (stress or pollution) in initiating sudden deadly disease outbreaks in amphibian populations with detectable persistent asymptomatic ranavirus.


Assuntos
Infecções por Vírus de DNA/veterinária , Macrófagos Peritoneais/virologia , Ranavirus/fisiologia , Receptor 5 Toll-Like/metabolismo , Ativação Viral , Proteínas de Xenopus/metabolismo , Xenopus laevis/virologia , Animais , Portador Sadio , Citocinas/genética , Citocinas/metabolismo , Infecções por Vírus de DNA/virologia , Escherichia coli/imunologia , Flagelina/imunologia , Expressão Gênica , Inflamação , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Proteínas NLR/genética , Proteínas NLR/metabolismo , Transdução de Sinais , Receptor 5 Toll-Like/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Carga Viral , Latência Viral , Proteínas de Xenopus/genética , Xenopus laevis/imunologia
10.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723784

RESUMO

It is widely recognized that pathogens can be transmitted across the placenta from mother to foetus. Recent re-evaluation of metagenomic studies indicates that the placenta has no unique microbiome of commensal bacteria. However, viral transmission across the placenta, including transmission of DNA viruses such as the human herpesviruses, is possible. A fuller understanding of which DNA virus sequence can be found in the placenta is required. We employed a metagenomic analysis to identify viral DNA sequences in placental metagenomes from full-term births (20 births), pre-term births (13 births), births from pregnancies associated with antenatal infections (12 births) or pre-term births with antenatal infections (three births). Our analysis found only a small number of DNA sequences corresponding to the genomes of human herpesviruses in four of the 48 metagenomes analysed. Therefore, our data suggest that DNA virus infection of the placenta is rare and support the concept that the placenta is largely free of pathogen infection.


Assuntos
Infecções por Vírus de DNA/virologia , Vírus de DNA/genética , Metagenoma , Placenta/virologia , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Feminino , Genoma Viral , Humanos , Recém-Nascido , Masculino , Gravidez , Complicações na Gravidez/virologia , Nascimento Prematuro , Nascimento a Termo
11.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32581107

RESUMO

Wild birds are major natural reservoirs and potential dispersers of a variety of infectious diseases. As such, it is important to determine the diversity of viruses they carry and use this information to help understand the potential risks of spillover to humans, domestic animals, and other wildlife. We investigated the potential viral causes of paresis in long-standing, but undiagnosed, disease syndromes in wild Australian birds. RNA from diseased birds was extracted and pooled based on tissue type, host species, and clinical manifestation for metagenomic sequencing. Using a bulk and unbiased metatranscriptomic approach, combined with clinical investigation and histopathology, we identified a number of novel viruses from the families Astroviridae, Adenoviridae, Picornaviridae, Polyomaviridae, Paramyxoviridae, Parvoviridae, and Circoviridae in common urban wild birds, including Australian magpies, magpie larks, pied currawongs, Australian ravens, and rainbow lorikeets. In each case, the presence of the virus was confirmed by reverse transcription (RT)-PCR. These data revealed a number of candidate viral pathogens that may contribute to coronary, skeletal muscle, vascular, and neuropathology in birds of the Corvidae and Artamidae families and neuropathology in members of the Psittaculidae The existence of such a diverse virome in urban avian species highlights the importance and challenges in elucidating the etiology and ecology of wildlife pathogens in urban environments. This information will be increasingly important for managing disease risks and conducting surveillance for potential viral threats to wildlife, livestock, and human health.IMPORTANCE Wildlife naturally harbor a diverse array of infectious microorganisms and can be a source of novel diseases in domestic animals and human populations. Using unbiased RNA sequencing, we identified highly diverse viruses in native birds from Australian urban environments presenting with paresis. This research included the clinical investigation and description of poorly understood recurring syndromes of unknown etiology: clenched claw syndrome and black and white bird disease. As well as identifying a range of potentially disease-causing viral pathogens, this study describes methods that can effectively and efficiently characterize emergent disease syndromes in free-ranging wildlife and promotes further surveillance for specific pathogens of potential conservation and zoonotic concern.


Assuntos
Animais Selvagens/virologia , Doenças das Aves/epidemiologia , Aves/virologia , Infecções por Vírus de DNA/veterinária , Metagenoma , Infecções por Vírus de RNA/veterinária , Transcriptoma , Adenoviridae/classificação , Adenoviridae/genética , Adenoviridae/isolamento & purificação , Animais , Astroviridae/classificação , Astroviridae/genética , Astroviridae/isolamento & purificação , Austrália/epidemiologia , Doenças das Aves/virologia , Circoviridae/classificação , Circoviridae/genética , Circoviridae/isolamento & purificação , Cidades , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Paramyxoviridae/classificação , Paramyxoviridae/genética , Paramyxoviridae/isolamento & purificação , Parvoviridae/classificação , Parvoviridae/genética , Parvoviridae/isolamento & purificação , Filogenia , Picornaviridae/classificação , Picornaviridae/genética , Picornaviridae/isolamento & purificação , Polyomaviridae/classificação , Polyomaviridae/genética , Polyomaviridae/isolamento & purificação , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/virologia
12.
J Med Virol ; 93(8): 5167-5172, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33174620

RESUMO

Monitoring of alphatorquevirus (torque teno virus [TTV]) DNA in plasma may prove to be useful to assess the net state of immune competence following allogeneic hematopoietic stem cell transplantation (allo-HSCT). There are scarce data published on the prevalence of beta (torque teno mini virus [TTMV]) and gammatorqueviruses (torque teno midi virus [TTMDV]) and, in particular, on the dynamics of anelloviruses in allo-HSCT patients. Twenty-five allo-HSCT recipients with available plasma specimens obtained before conditioning and after engraftment were included. Degenerated primers targeting a highly conserved genomic sequence across all anelloviruses were designed for genomic amplification and high-throughput sequencing. Co-detection of TTV, TTMV, and TTMDV both in pre-transplant and post-engraftment plasma specimens was documented in more than two-thirds of patients. The use of quantitative real-time polymerase chain reaction (PCR) assays targeting TTMV and TTMDV in addition to TTV may add value to TTV-specific PCR assays in the inference of the net state of immunosuppresion or immune competence in this clinical setting.


Assuntos
Anelloviridae/genética , Infecções por Vírus de DNA/virologia , Transplante de Células-Tronco Hematopoéticas , Adulto , Idoso , Anelloviridae/classificação , Anelloviridae/isolamento & purificação , Infecções por Vírus de DNA/sangue , Infecções por Vírus de DNA/imunologia , DNA Viral/sangue , DNA Viral/genética , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Plasma/virologia , Transplante Homólogo
13.
Fish Shellfish Immunol ; 117: 104-112, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333126

RESUMO

Cell survival is based on the stability of intracellular state. It was well known that biochemical reactions in cells require specific intracellular environments, such as pH and calcium concentration. While the mechanism of stabilizing the intracellular environment is complex and far from clear. In this study, a Sma and Mad related protein 5 gene (LvSmad5) of Litopenaeus vannamei was cloned. LvSmad5 was located to both cytoplasm and nucleus. And subcellular localization of LvSmad5 was responsed to the changing of cells internal and external environment. Besides, it was found that subcellular localization of LvSmad5 was also regulated by unfolded protein response. Moreover, it was proved that nucleic localization of LvSmad5 could significantly increase the white spot syndrome virus (WSSV) infection in shrimp, and knockdown expression of LvSmad5 decreased the cumulative mortality of WSSV infection shrimp. Further investigation revealed that cytoplasm LvSmad5 could interplay with shrimp hexokinase 1, and contribute to glycolysis. These results indicated that LvSmad5 played a role in L. vannamei environmental stress response, and was used by WSSV for its replication.


Assuntos
Infecções por Vírus de DNA/genética , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Penaeidae/genética , Proteína Smad5/genética , Estresse Fisiológico/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia , Sequência de Aminoácidos , Animais , Núcleo Celular , Clonagem Molecular , Citoplasma , Infecções por Vírus de DNA/mortalidade , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/mortalidade , Doenças dos Peixes/virologia , Penaeidae/virologia , Resposta a Proteínas não Dobradas/genética , Replicação Viral
14.
Arch Virol ; 166(7): 1961-1964, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33983503

RESUMO

Frog virus 3 (FV3) was detected in cultured bullfrogs in Southeast Brazil. Phylodynamic analysis revealed recombination events in this strain that were nearly identical to those detected in North American and Brazilian FV3 strains. These data suggest that international trade of live bullfrogs has spread recombinant strains of FV3.


Assuntos
Genoma Viral/genética , Rana catesbeiana/virologia , Ranavirus/genética , Animais , Brasil , Infecções por Vírus de DNA/virologia , Genômica/métodos , América do Norte , Análise de Sequência de DNA/métodos
15.
Arch Virol ; 166(11): 3061-3074, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34462803

RESUMO

Infectious spleen and kidney necrosis virus (ISKNV) is a fish-pathogenic virus belonging to the genus Megalocytivirus of the family Iridoviridae. In 2018, disease occurrences (40-50% cumulative mortality) associated with ISKNV infection were reported in grown-out Asian sea bass (Lates calcarifer) cultured in an inland freshwater system in Thailand. Clinical samples were collected from seven distinct farms located in the eastern and central regions of Thailand. The moribund fish showed various abnormal signs, including lethargy, pale gills, darkened body, and skin hemorrhage, while hypertrophied basophilic cells were observed microscopically in gill, liver, and kidney tissue. ISKNV infection was confirmed on six out of seven farms using virus-specific semi-nested PCR. The MCP and ATPase genes showed 100% sequence identity among the virus isolates, and the virus was found to belong to the ISKNV genotype I clade. Koch's postulates were later confirmed by challenge assay, and the mortality of the experimentally infected fish at 21 days post-challenge was 50-90%, depending on the challenge dose. The complete genome of two ISKNV isolates, namely KU1 and KU2, was recovered directly from the infected specimens using a shotgun metagenomics approach. The genome length of ISKNV KU1 and KU2 was 111,487 and 111,610 bp, respectively. In comparison to closely related ISKNV strains, KU1 and KU2 contained nine unique genes, including a caspase-recruitment-domain-containing protein that is potentially involved in inhibition of apoptosis. Collectively, this study indicated that inland cultured Asian sea bass are infected by homologous ISKNV strains. This indicates that ISKNV genotype I should be prioritized for future vaccine research.


Assuntos
Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/virologia , Iridoviridae/genética , Perciformes/virologia , Adenosina Trifosfatases/genética , Animais , Aquicultura/estatística & dados numéricos , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/etiologia , Doenças dos Peixes/mortalidade , Água Doce , Genoma Viral , Genótipo , Iridoviridae/isolamento & purificação , Iridoviridae/patogenicidade , Filogenia , Reação em Cadeia da Polimerase , Tailândia/epidemiologia
16.
Arch Virol ; 166(5): 1469-1475, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33721100

RESUMO

In 2018, an outbreak resulting in deaths of 28 breeding pigeons was reported north of Brisbane, Australia. The affected birds had runny nasal discharge and poor body condition. Two birds were submitted to Biosecurity Sciences Laboratory, Brisbane, for investigation. A range of diagnostic tests excluded a number of known pathogens, and no virus was isolated in cell culture. Histopathological examination revealed severe acute multifocal necrosis in the liver with eosinophilic intranuclear inclusions in hepatocytes and Kupffer cells. High-throughput sequencing (HTS) revealed full-length sequences for pigeon adenovirus 1 (PiAd-A) and pigeon torque teno virus (PTTV). This report indicates concomitant PiAd-1and PTTV infections in Australian pigeons.


Assuntos
Adenoviridae/isolamento & purificação , Doenças das Aves/virologia , Coinfecção/veterinária , Columbidae/virologia , Infecções por Vírus de DNA/veterinária , Torque teno virus/isolamento & purificação , Animais , Animais Domésticos , Doenças das Aves/epidemiologia , Doenças das Aves/patologia , Coinfecção/epidemiologia , Coinfecção/patologia , Coinfecção/virologia , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/patologia , Infecções por Vírus de DNA/virologia , DNA Viral/genética , Genoma Viral/genética , Fígado/virologia , Necrose , Filogenia , Queensland/epidemiologia
17.
Virus Genes ; 57(5): 448-452, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34272657

RESUMO

The genus Megalocytivirus includes viruses known to cause significant disease in aquacultured fish stocks. Herein, we report the complete genome sequences of two megalocytiviruses (MCVs) isolated from diseased albino rainbow sharks Epalzeorhynchos frenatum reared on farms in the United States in 2018 and 2019. Histopathological examination revealed typical megalocytivirus microscopic lesions (i.e., basophilic cytoplasmic inclusions) that were most commonly observed in the spleen and kidney. Transmission electron microscopic examination of spleen and kidney tissues from specimens of the 2018 case revealed hexagonally shaped virus particles with a mean diameter of 153 ± 6 nm (n = 20) from opposite vertices and 131 ± 5 nm (n = 20) from opposite faces. Two MCV-specific conventional PCR assays confirmed the presence of MCV DNA in the collected samples. Full genome sequencing of both 2018 and 2019 Epalzeorhynchos frenatus iridoviruses (EFIV) was accomplished using a next-generation sequencing approach. Phylogenomic analyses revealed that both EFIV isolates belong to the infectious spleen and kidney necrosis virus (ISKNV) genotype within the genus Megalocytivirus. This study is the first report of ISKNV in albino rainbow sharks.


Assuntos
Infecções por Vírus de DNA/genética , Genoma Viral/genética , Iridoviridae/genética , Tubarões/virologia , Animais , Infecções por Vírus de DNA/virologia , Fazendas , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Peixes/genética , Peixes/virologia , Humanos , Filogenia , Tubarões/genética , Estados Unidos , Sequenciamento Completo do Genoma
18.
Virus Genes ; 57(4): 390-394, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34021872

RESUMO

Multiple novel circular replication-associated protein (Rep)-encoding single stranded (CRESS) DNA viruses have been extensively identified in the feces of humans and animals. Here, we first detected CRESS DNA virus (named Horse-CRESS DNA-like virus, HCLV) in two fecal samples from 10 imported thoroughbred (TB) horses in the customs quarantine station in North Xinjiang province, China. Additionally, we found that this virus was not detected in local breeds (LBs) (0/41) and was found only in imported TB horses (2/73). We obtained the whole-genome sequences of four viruses (HCLV ALSK-3-4, ALSK-13-10, CJ-1-2, and CJ-13-1). Unlike Circovirus and Cyclovirus, whose genome sequences have 1700 to 2100 nucleotides (nt), these HCLVs have circular genome with 3503, 3504, 3485, 3491 nt, respectively and five major ORFs. The ORF1 gene encodes the Rep protein in HCLVs. Furthermore, the Rep protein of the four HCLVs share 23.3-84.8%, 21.6-27.4%, 23.7-27.2% amino acid identity with the corresponding reference viruses of Kirkoviruses, genus Circovirus, and genus Cyclovirus, respectively. Moreover, RCR domain, P-loop NTPase domains, and nonanucleotide motif (TAGTATTAC) of the HCLVs are similar to Circovirus and Cyclovirus. Phylogenetic analysis showed that the virus was grouped together with members in Kirkoviruses. These results suggest the HCLV probably entered Xinjiang province via the international trade of horses.


Assuntos
Infecções por Vírus de DNA/genética , Vírus de DNA/genética , Genoma Viral/genética , Genômica , Animais , China/epidemiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Doenças dos Cavalos/genética , Doenças dos Cavalos/virologia , Cavalos/genética , Cavalos/virologia , Sequenciamento Completo do Genoma
19.
J Fish Dis ; 44(4): 461-467, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33118189

RESUMO

Non-destructive sampling methods offer practical advantages to detection and monitoring of viral pathogens in economically important farmed fish and broodstock. Here, we investigated whether blood, mucus and fin can be used as non-lethal sample sources for detection of scale drop disease virus (SDDV) in farmed Asian sea bass, Lates calcarifer. Detection of SDDV was performed in parallel from three non-destructive and seven destructive sample types, collected from both clinically sick fish and subclinical fish obtained from an affected farm. The results showed that SDDV was detectable in all 10 sample types with the percentage ranging from 20% to 100%. Blood was the best non-destructive sample source exhibited by the fact that it yielded 100% SDDV-positive tests from both sick (n = 12, 95% CI: 69.9-99.2) and clinically healthy fish (n = 4, 95% CI: 39.6%-97.4%) and is considered a "sterile" sample. This study also revealed concurrent infection of SDDV and two ectoparasites Lernanthropus sp. and Diplectanum sp., in all affected fish (n = 8, 95% CI: 46.7-99.3) during the disease outbreak. These ectoparasites also tested positive for SDDV by PCR, indicating that they were potential sample sources for PCR-based detection of SDDV and possibly other viruses infecting Asian sea bass.


Assuntos
Bass , Copépodes/virologia , Infecções por Vírus de DNA/veterinária , Doenças dos Peixes/epidemiologia , Iridoviridae/isolamento & purificação , Trematódeos/virologia , Escamas de Animais/virologia , Animais , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/virologia , Prevalência , Tailândia/epidemiologia
20.
J Fish Dis ; 44(4): 401-413, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33340375

RESUMO

Rapid and user-friendly diagnostic tests are necessary for early diagnosis and immediate detection of diseases, particularly for on-site screening of pathogenic microorganisms in aquaculture. In this study, we developed a dual-sample microfluidic chip integrated with a real-time fluorogenic loop-mediated isothermal amplification assay (dual-sample on-chip LAMP) to simultaneously detect 10 pathogenic microorganisms, that is Aeromonas hydrophila, Edwardsiella tarda, Vibrio harveyi, V. alginolyticus, V. anguillarum, V. parahaemolyticus, V. vulnificus, infectious hypodermal and haematopoietic necrosis virus, infectious spleen and kidney necrosis virus, and white spot syndrome virus. This on-chip LAMP provided a nearly automated protocol that can analyse two samples simultaneously, and the tests achieved limits of detection (LOD) ranging from 100 to 10-1  pg/µl for genomic DNA of tested bacteria and 10-4 to 10-5  pg/µl for recombinant plasmid DNA of tested viruses, with run times averaging less than 30 min. The coefficient of variation for the time-to-positive value was less than 10%, reflecting a robust reproducibility. The clinical sensitivity and specificity were 93.52% and 85.53%, respectively, compared to conventional microbiological or clinical methods. The on-chip LAMP assay provides an effective dual-sample and multiple pathogen analysis, and thus would be applicable to on-site detection and routine monitoring of multiple pathogens in aquaculture.


Assuntos
Aeromonas hydrophila/isolamento & purificação , Densovirinae/isolamento & purificação , Edwardsiella tarda/isolamento & purificação , Iridoviridae/isolamento & purificação , Microfluídica/métodos , Técnicas de Diagnóstico Molecular/veterinária , Técnicas de Amplificação de Ácido Nucleico/veterinária , Vibrio/isolamento & purificação , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação , Animais , Crustáceos/microbiologia , Crustáceos/virologia , Infecções por Vírus de DNA/diagnóstico , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Peixes/microbiologia , Peixes/virologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Limite de Detecção , Técnicas de Diagnóstico Molecular/métodos , Moluscos/microbiologia , Moluscos/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa