Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.509
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(3): 528-542.e14, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36681079

RESUMO

Whole-genome duplication (WGD) is a frequent event in cancer evolution and an important driver of aneuploidy. The role of the p53 tumor suppressor in WGD has been enigmatic: p53 can block the proliferation of tetraploid cells, acting as a barrier to WGD, but can also promote mitotic bypass, a key step in WGD via endoreduplication. In wild-type (WT) p53 tumors, WGD is frequently associated with activation of the E2F pathway, especially amplification of CCNE1, encoding cyclin E1. Here, we show that elevated cyclin E1 expression causes replicative stress, which activates ATR- and Chk1-dependent G2 phase arrest. p53, via its downstream target p21, together with Wee1, then inhibits mitotic cyclin-dependent kinase activity sufficiently to activate APC/CCdh1 and promote mitotic bypass. Cyclin E expression suppresses p53-dependent senescence after mitotic bypass, allowing cells to complete endoreduplication. Our results indicate that p53 can contribute to cancer evolution through the promotion of WGD.


Assuntos
Ciclina E , Duplicação Gênica , Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Ciclina E/genética , Ciclina E/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Mitose , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/metabolismo
2.
Cell ; 178(2): 361-373.e12, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31204100

RESUMO

Chemotherapy is designed to induce cell death. However, at non-lethal doses, cancer cells can choose to remain proliferative or become senescent. The slow development of senescence makes studying this decision challenging. Here, by analyzing single-cell p21 dynamics before, during, and days after drug treatment, we link three distinct patterns of early p21 dynamics to final cell fate. Surprisingly, while high p21 expression is classically associated with senescence, we find the opposite at early times during drug treatment: most senescence-fated cells express much lower p21 levels than proliferation-fated cells. We demonstrate that these dynamics lead to a p21 "Goldilocks zone" for proliferation, in which modest increases of p21 expression can lead to an undesirable increase of cancer cell proliferation. Our study identifies a counter-intuitive role for early p21 dynamics in the cell-fate decision and pinpoints a source of proliferative cancer cells that can emerge after exposure to non-lethal doses of chemotherapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Doxorrubicina/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA/efeitos dos fármacos , Humanos , Modelos Biológicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38458201

RESUMO

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Assuntos
Ciclinas , Reparo de Erro de Pareamento de DNA , Animais , Ciclinas/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Interfase , Mamíferos/metabolismo
4.
Mol Cell ; 83(22): 4062-4077.e5, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977118

RESUMO

Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.


Assuntos
Proteína Supressora de Tumor p53 , Humanos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo Celular , Divisão Celular , Proteína Supressora de Tumor p53/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo
5.
Nature ; 619(7968): 167-175, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344586

RESUMO

Healthy skin is a mosaic of wild-type and mutant clones1,2. Although injury can cooperate with mutated Ras family proteins to promote tumorigenesis3-12, the consequences in genetically mosaic skin are unknown. Here we show that after injury, wild-type cells suppress aberrant growth induced by oncogenic Ras. HrasG12V/+ and KrasG12D/+ cells outcompete wild-type cells in uninjured, mosaic tissue but their expansion is prevented after injury owing to an increase in the fraction of proliferating wild-type cells. Mechanistically, we show that, unlike HrasG12V/+ cells, wild-type cells respond to autocrine and paracrine secretion of EGFR ligands, and this differential activation of the EGFR pathway explains the competitive switch during injury repair. Inhibition of EGFR signalling via drug or genetic approaches diminishes the proportion of dividing wild-type cells after injury, leading to the expansion of HrasG12V/+ cells. Increased proliferation of wild-type cells via constitutive loss of the cell cycle inhibitor p21 counteracts the expansion of HrasG12V/+ cells even in the absence of injury. Thus, injury has a role in switching the competitive balance between oncogenic and wild-type cells in genetically mosaic skin.


Assuntos
Proliferação de Células , Genes ras , Mosaicismo , Mutação , Pele , Proteínas ras , Ciclo Celular , Proliferação de Células/genética , Receptores ErbB/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Pele/citologia , Pele/lesões , Pele/metabolismo , Pele/patologia , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
6.
Genes Dev ; 35(5-6): 379-391, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602872

RESUMO

Senescence is a key barrier to neoplastic transformation. To identify senescence regulators relevant to cancer, we screened a genome-wide shRNA library. Here, we describe exportin 7 (XPO7) as a novel regulator of senescence and validate its function in telomere-induced, replicative, and oncogene-induced senescence (OIS). XPO7 is a bidirectional transporter that regulates the nuclear-cytoplasmic shuttling of a broad range of substrates. Depletion of XPO7 results in reduced levels of TCF3 and an impaired induction of the cyclin-dependent kinase inhibitor p21CIP1 during OIS. Deletion of XPO7 correlates with poorer overall survival in several cancer types. Moreover, depletion of XPO7 alleviated OIS and increased tumor formation in a mouse model of liver cancer. Our results suggest that XPO7 is a novel tumor suppressor that regulates p21CIP1 expression to control senescence and tumorigenesis.


Assuntos
Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neoplasias/fisiopatologia , Proteína 2 de Ligação a Repetições Teloméricas/genética
7.
Cell ; 155(5): 1104-18, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24238962

RESUMO

Cellular senescence disables proliferation in damaged cells, and it is relevant for cancer and aging. Here, we show that senescence occurs during mammalian embryonic development at multiple locations, including the mesonephros and the endolymphatic sac of the inner ear, which we have analyzed in detail. Mechanistically, senescence in both structures is strictly dependent on p21, but independent of DNA damage, p53, or other cell-cycle inhibitors, and it is regulated by the TGF-ß/SMAD and PI3K/FOXO pathways. Developmentally programmed senescence is followed by macrophage infiltration, clearance of senescent cells, and tissue remodeling. Loss of senescence due to the absence of p21 is partially compensated by apoptosis but still results in detectable developmental abnormalities. Importantly, the mesonephros and endolymphatic sac of human embryos also show evidence of senescence. We conclude that the role of developmentally programmed senescence is to promote tissue remodeling and propose that this is the evolutionary origin of damage-induced senescence.


Assuntos
Senescência Celular , Desenvolvimento Embrionário , Saco Endolinfático/embriologia , Mesonefro/embriologia , Animais , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Saco Endolinfático/citologia , Feminino , Humanos , Rim/embriologia , Masculino , Mesonefro/citologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
Genes Dev ; 34(7-8): 489-494, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32139422

RESUMO

Young mammals possess a limited regenerative capacity in some tissues, which is lost upon maturation. We investigated whether cellular senescence might play a role in such loss during liver regeneration. We found that following partial hepatectomy, the senescence-associated genes p21, p16Ink4a, and p19Arf become dynamically expressed in different cell types when regenerative capacity decreases, but without a full senescent response. However, we show that treatment with a senescence-inhibiting drug improves regeneration, by disrupting aberrantly prolonged p21 expression. This work suggests that senescence may initially develop from heterogeneous cellular responses, and that senotherapeutic drugs might be useful in promoting organ regeneration.


Assuntos
Compostos de Bifenilo/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/fisiologia , Nitrofenóis/farmacologia , Regeneração/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Piperazinas/farmacologia
9.
Nat Immunol ; 16(10): 1060-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26343536

RESUMO

Treatment with ionizing radiation (IR) can lead to the accumulation of tumor-infiltrating regulatory T cells (Treg cells) and subsequent resistance of tumors to radiotherapy. Here we focused on the contribution of the epidermal mononuclear phagocytes Langerhans cells (LCs) to this phenomenon because of their ability to resist depletion by high-dose IR. We found that LCs resisted apoptosis and rapidly repaired DNA damage after exposure to IR. In particular, we found that the cyclin-dependent kinase inhibitor CDKN1A (p21) was overexpressed in LCs and that Cdkn1a(-/-) LCs underwent apoptosis and accumulated DNA damage following IR treatment. Wild-type LCs upregulated major histocompatibility complex class II molecules, migrated to the draining lymph nodes and induced an increase in Treg cell numbers upon exposure to IR, but Cdkn1a(-/-) LCs did not. Our findings suggest a means for manipulating the resistance of LCs to IR to enhance the response of cutaneous tumors to radiotherapy.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células de Langerhans/efeitos da radiação , Radiação Ionizante , Linfócitos T Reguladores/efeitos da radiação , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Citometria de Fluxo , Camundongos , Análise em Microsséries , Reação em Cadeia da Polimerase , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Regulação para Cima
10.
Nat Immunol ; 15(6): 571-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24777532

RESUMO

Intestinal regulatory T cells (Treg cells) are necessary for the suppression of excessive immune responses to commensal bacteria. However, the molecular machinery that controls the homeostasis of intestinal Treg cells has remained largely unknown. Here we report that colonization of germ-free mice with gut microbiota upregulated expression of the DNA-methylation adaptor Uhrf1 in Treg cells. Mice with T cell-specific deficiency in Uhrf1 (Uhrf1(fl/fl)Cd4-Cre mice) showed defective proliferation and functional maturation of colonic Treg cells. Uhrf1 deficiency resulted in derepression of the gene (Cdkn1a) that encodes the cyclin-dependent kinase inhibitor p21 due to hypomethylation of its promoter region, which resulted in cell-cycle arrest of Treg cells. As a consequence, Uhrf1(fl/fl)Cd4-Cre mice spontaneously developed severe colitis. Thus, Uhrf1-dependent epigenetic silencing of Cdkn1a was required for the maintenance of gut immunological homeostasis. This mechanism enforces symbiotic host-microbe interactions without an inflammatory response.


Assuntos
Colite/imunologia , Colo/imunologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Epigênese Genética , Proteínas Nucleares/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Células Cultivadas , Clostridium/imunologia , Colite/genética , Colo/microbiologia , Metilação de DNA , Perfilação da Expressão Gênica , Interleucina-2 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microbiota/imunologia , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno , Simbiose/imunologia , Ubiquitina-Proteína Ligases , Regulação para Cima
11.
EMBO Rep ; 25(5): 2418-2440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605277

RESUMO

Microcephaly is a common feature in inherited bone marrow failure syndromes, prompting investigations into shared pathways between neurogenesis and hematopoiesis. To understand this association, we studied the role of the microcephaly gene Mcph1 in hematological development. Our research revealed that Mcph1-knockout mice exhibited congenital macrocytic anemia due to impaired terminal erythroid differentiation during fetal development. Anemia's cause is a failure to complete cell division, evident from tetraploid erythroid progenitors with DNA content exceeding 4n. Gene expression profiling demonstrated activation of the p53 pathway in Mcph1-deficient erythroid precursors, leading to overexpression of Cdkn1a/p21, a major mediator of p53-dependent cell cycle arrest. Surprisingly, fetal brain analysis revealed hypertrophied binucleated neuroprogenitors overexpressing p21 in Mcph1-knockout mice, indicating a shared pathophysiological mechanism underlying both erythroid and neurological defects. However, inactivating p53 in Mcph1-/- mice failed to reverse anemia and microcephaly, suggesting that p53 activation in Mcph1-deficient cells resulted from their proliferation defect rather than causing it. These findings shed new light on Mcph1's function in fetal hematopoietic development, emphasizing the impact of disrupted cell division on neurogenesis and erythropoiesis - a common limiting pathway.


Assuntos
Proteínas de Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21 , Eritropoese , Camundongos Knockout , Microcefalia , Proteína Supressora de Tumor p53 , Animais , Camundongos , Anemia Macrocítica/genética , Anemia Macrocítica/patologia , Anemia Macrocítica/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Microcefalia/genética , Microcefalia/patologia , Mutação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Mol Cell ; 71(4): 581-591.e5, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30057196

RESUMO

Biological signals need to be robust and filter small fluctuations yet maintain sensitivity to signals across a wide range of magnitudes. Here, we studied how fluctuations in DNA damage signaling relate to maintenance of long-term cell-cycle arrest. Using live-cell imaging, we quantified division profiles of individual human cells in the course of 1 week after irradiation. We found a subset of cells that initially establish cell-cycle arrest and then sporadically escape and divide. Using fluorescent reporters and mathematical modeling, we determined that fluctuations in the oscillatory pattern of the tumor suppressor p53 trigger a sharp switch between p21 and CDK2, leading to escape from arrest. Transient perturbation of p53 stability mimicked the noise in individual cells and was sufficient to trigger escape from arrest. Our results show that the self-reinforcing circuitry that mediates cell-cycle transitions can translate small fluctuations in p53 signaling into large phenotypic changes.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/metabolismo , Modelos Estatísticos , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Divisão Celular/efeitos da radiação , Linhagem Celular Transformada , Proliferação de Células/efeitos da radiação , Quinase 2 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA , Células Epiteliais/citologia , Células Epiteliais/efeitos da radiação , Raios gama , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Estabilidade Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos da radiação , Imagem com Lapso de Tempo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Vermelha Fluorescente
13.
Nucleic Acids Res ; 52(12): 6945-6963, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38783095

RESUMO

Cellular senescence, a major driver of aging, can be stimulated by DNA damage, and is counteracted by the DNA repair machinery. Here we show that in p16INK4a-deficient cells, senescence induction by the environmental genotoxin B[a]P or ionizing radiation (IR) completely depends on p21CIP1. Immunoprecipitation-based mass spectrometry interactomics data revealed that during senescence induction and maintenance, p21CIP1 specifically inhibits CDK4 and thereby activates the DREAM complex. Genome-wide transcriptomics revealed striking similarities in the response induced by B[a]P and IR. Among the top 100 repressed genes 78 were identical between B[a]P and IR and 76 were DREAM targets. The DREAM complex transcriptionally silences the main proliferation-associated transcription factors E2F1, FOXM1 and B-Myb as well as multiple DNA repair factors. Knockdown of p21CIP1, E2F4 or E2F5 diminished both, repression of these factors and senescence. The transcriptional profiles evoked by B[a]P and IR largely overlapped with the profile induced by pharmacological CDK4 inhibition, further illustrating the role of CDK4 inhibition in genotoxic stress-induced senescence. Moreover, data obtained by live-cell time-lapse microscopy suggest the inhibition of CDK4 by p21CIP1 is especially important for arresting cells which slip through mitosis. Overall, we identified the p21CIP1/CDK4/DREAM axis as a master regulator of genotoxic stress-induced senescence.


Assuntos
Senescência Celular , Quinase 4 Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p21 , Dano ao DNA , Proteínas Interatuantes com Canais de Kv , Senescência Celular/efeitos da radiação , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Humanos , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Interatuantes com Canais de Kv/genética , Radiação Ionizante , Reparo do DNA , Regulação da Expressão Gênica/efeitos da radiação , Proteínas Repressoras
14.
Nucleic Acids Res ; 52(7): 3778-3793, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38348929

RESUMO

DNA replication stress, caused by various endogenous and exogenous agents, halt or stall DNA replication progression. Cells have developed diverse mechanisms to tolerate and overcome replication stress, enabling them to continue replication. One effective strategy to overcome stalled replication involves skipping the DNA lesion using a specialized polymerase known as PrimPol, which reinitiates DNA synthesis downstream of the damage. However, the mechanism regulating PrimPol repriming is largely unclear. In this study, we observe that knockdown of STN1 or CTC1, components of the CTC1/STN1/TEN1 complex, leads to enhanced replication progression following UV exposure. We find that such increased replication is dependent on PrimPol, and PrimPol recruitment to stalled forks increases upon CST depletion. Moreover, we find that p21 is upregulated in STN1-depleted cells in a p53-independent manner, and p21 depletion restores normal replication rates caused by STN1 deficiency. We identify that p21 interacts with PrimPol, and STN1 depletion stimulates p21-PrimPol interaction and facilitates PrimPol recruitment to stalled forks. Our findings reveal a previously undescribed interplay between CST, PrimPol and p21 in promoting repriming in response to stalled replication, and shed light on the regulation of PrimPol repriming at stalled forks.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , DNA Primase , Replicação do DNA , DNA Polimerase Dirigida por DNA , Enzimas Multifuncionais , Proteínas de Ligação a Telômeros , Raios Ultravioleta , Humanos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , DNA Primase/metabolismo , DNA Primase/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Dano ao DNA
15.
J Biol Chem ; 300(4): 107136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447798

RESUMO

Polyploid giant cancer cells (PGCC) are frequently detected in tumors and are increasingly recognized for their roles in chromosomal instability and associated genome evolution that leads to cancer recurrence. We previously reported that therapy stress promotes polyploidy, and that acid ceramidase plays a role in depolyploidization. In this study, we used an RNA-seq approach to gain a better understanding of the underlying transcriptomic changes that occur as cancer cells progress through polyploidization and depolyploidization. Our results revealed gene signatures that are associated with disease-free and/or overall survival in several cancers and identified the cell cycle inhibitor CDKN1A/p21 as the major hub in PGCC and early progeny. Increased expression of p21 in PGCC was limited to the cytoplasm. We previously demonstrated that the sphingolipid enzyme acid ceramidase is dispensable for polyploidization upon therapy stress but plays a crucial role in depolyploidization. The current study demonstrates that treatment of cells with ceramide is not sufficient for p53-independent induction of p21 and that knockdown of acid ceramidase, which hydrolyzes ceramide, does not interfere with upregulation of p21. In contrast, blocking the expression of p21 with UC2288 prevented the induction of acid ceramidase and inhibited both the formation of PGCC from parental cells as well as the generation of progeny from PGCC. Taken together, our data suggest that p21 functions upstream of acid ceramidase and plays an important role in polyploidization and depolyploidization.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Células Gigantes , Neoplasias , Poliploidia , Humanos , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células Gigantes/metabolismo , Células Gigantes/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transcriptoma
16.
Cell ; 142(1): 89-100, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20598361

RESUMO

The tumor suppressor p53 is activated by stress and leads to cellular outcomes such as apoptosis and cell-cycle arrest. Its activation must be highly sensitive to ensure that cells react appropriately to damage. However, proliferating cells often encounter transient damage during normal growth, where cell-cycle arrest or apoptosis may be unfavorable. How does the p53 pathway achieve the right balance between high sensitivity and tolerance to intrinsic damage? Using quantitative time-lapse microscopy of individual human cells, we found that proliferating cells show spontaneous pulses of p53, which are triggered by an excitable mechanism during cell-cycle phases associated with intrinsic DNA damage. However, in the absence of sustained damage, posttranslational modifications keep p53 inactive, preventing it from inducing p21 expression and cell-cycle arrest. Our approach of quantifying basal dynamics in individual cells can now be used to study how other pathways in human cells achieve sensitivity in noisy environments.


Assuntos
Dano ao DNA , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
17.
Differentiation ; 137: 100765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38522217

RESUMO

The acquisition of the post-mitotic state is crucial for the execution of many terminally differentiated cell behaviors during organismal development. However, the mechanisms that maintain the post-mitotic state in this context remain poorly understood. To gain insight into these mechanisms, we used the genetically and visually accessible model of C. elegans anchor cell (AC) invasion into the vulval epithelium. The AC is a terminally differentiated uterine cell that normally exits the cell cycle and enters a post-mitotic state before initiating contact between the uterus and vulva through a cell invasion event. Here, we set out to identify the set of negative cell cycle regulators that maintain the AC in this post-mitotic, invasive state. Our findings revealed a critical role for CKI-1 (p21CIP1/p27KIP1) in redundantly maintaining the post-mitotic state of the AC, as loss of CKI-1 in combination with other negative cell cycle regulators-including CKI-2 (p21CIP1/p27KIP1), LIN-35 (pRb/p107/p130), FZR-1 (Cdh1/Hct1), and LIN-23 (ß-TrCP)-resulted in proliferating ACs. Remarkably, time-lapse imaging revealed that these ACs retain their ability to invade. Upon examination of a node in the gene regulatory network controlling AC invasion, we determined that proliferating, invasive ACs do so by maintaining aspects of pro-invasive gene expression. We therefore report that the requirement for a post-mitotic state for invasive cell behavior can be bypassed following direct cell cycle perturbation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mitose , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mitose/genética , Feminino , Ciclo Celular/genética , Vulva/citologia , Vulva/crescimento & desenvolvimento , Vulva/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Movimento Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
18.
J Biol Chem ; 299(7): 104900, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37301510

RESUMO

Nucleotide excision repair (NER) eliminates highly genotoxic solar UV-induced DNA photoproducts that otherwise stimulate malignant melanoma development. Here, a genome-wide loss-of-function screen, coupling CRISPR/Cas9 technology with a flow cytometry-based DNA repair assay, was used to identify novel genes required for efficient NER in primary human fibroblasts. Interestingly, the screen revealed multiple genes encoding proteins, with no previously known involvement in UV damage repair, that significantly modulate NER uniquely during S phase of the cell cycle. Among these, we further characterized Dyrk1A, a dual specificity kinase that phosphorylates the proto-oncoprotein cyclin D1 on threonine 286 (T286), thereby stimulating its timely cytoplasmic relocalization and proteasomal degradation, which is required for proper regulation of the G1-S phase transition and control of cellular proliferation. We demonstrate that in UV-irradiated HeLa cells, depletion of Dyrk1A leading to overexpression of cyclin D1 causes inhibition of NER uniquely during S phase and reduced cell survival. Consistently, expression/nuclear accumulation of nonphosphorylatable cyclin D1 (T286A) in melanoma cells strongly interferes with S phase NER and enhances cytotoxicity post-UV. Moreover, the negative impact of cyclin D1 (T286A) overexpression on repair is independent of cyclin-dependent kinase activity but requires cyclin D1-dependent upregulation of p21 expression. Our data indicate that inhibition of NER during S phase might represent a previously unappreciated noncanonical mechanism by which oncogenic cyclin D1 fosters melanomagenesis.


Assuntos
Ciclina D1 , Inibidor de Quinase Dependente de Ciclina p21 , Reparo do DNA , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Humanos , Ciclina D1/genética , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos da radiação , Células HeLa , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Fase S , Fase G1 , Melanoma/genética , Melanoma/patologia , Células Cultivadas , Raios Ultravioleta/efeitos adversos , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/efeitos da radiação , Quinases Dyrk
19.
Mol Cancer ; 23(1): 118, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831405

RESUMO

Triple negative breast cancer (TNBC) remains exceptionally challenging to treat. While CDK4/6 inhibitors have revolutionized HR + breast cancer therapy, there is limited understanding of their efficacy in TNBC and meaningful predictors of response and resistance to these drugs remain scarce. We conducted an in vivo genome-wide CRISPR screen using palbociclib as a selection pressure in TNBC. Hits were prioritized using microarray data from a large panel of breast cancer cell lines to identify top palbociclib sensitizers. Our study defines TGFß3 as an actionable determinant of palbociclib sensitivity that potentiates its anti-tumor effects. Mechanistically, we show that chronic palbociclib exposure depletes p21 levels, contributing to acquired resistance, and that TGFß3 treatment can overcome this. This study defines TGFß3 as an actionable biomarker that can be used to improve patient stratification for palbociclib treatment and exploits the synergistic interaction between CDK4/6 and TGFß3 to propose a new combinatorial treatment for TNBC.


Assuntos
Biomarcadores Tumorais , Resistencia a Medicamentos Antineoplásicos , Piperazinas , Piridinas , Fator de Crescimento Transformador beta3 , Neoplasias de Mama Triplo Negativas , Humanos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Piridinas/farmacologia , Piridinas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Camundongos , Animais , Fator de Crescimento Transformador beta3/genética , Fator de Crescimento Transformador beta3/metabolismo , Sistemas CRISPR-Cas , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
20.
Cancer Sci ; 115(6): 1866-1880, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494600

RESUMO

Bromodomain and extraterminal domain (BET) family proteins are epigenetic master regulators of gene expression via recognition of acetylated histones and recruitment of transcription factors and co-activators to chromatin. Hence, BET family proteins have emerged as promising therapeutic targets in cancer. In this study, we examined the functional role of bromodomain containing 3 (BRD3), a BET family protein, in colorectal cancer (CRC). In vitro and vivo analyses using BRD3-knockdown or BRD3-overexpressing CRC cells showed that BRD3 suppressed tumor growth and cell cycle G1/S transition and induced p21 expression. Clinical analysis of CRC datasets from our hospital or The Cancer Genome Atlas revealed that BET family genes, including BRD3, were overexpressed in tumor tissues. In immunohistochemical analyses, BRD3 was observed mainly in the nucleus of CRC cells. According to single-cell RNA sequencing in untreated CRC tissues, BRD3 was highly expressed in malignant epithelial cells, and cell cycle checkpoint-related pathways were enriched in the epithelial cells with high BRD3 expression. Spatial transcriptomic and single-cell RNA sequencing analyses of CRC tissues showed that BRD3 expression was positively associated with high p21 expression. Furthermore, overexpression of BRD3 combined with knockdown of, a driver gene in the BRD family, showed strong inhibition of CRC cells in vitro. In conclusion, we demonstrated a novel tumor suppressive role of BRD3 that inhibits tumor growth by cell cycle inhibition in part via induction of p21 expression. BRD3 activation might be a novel therapeutic approach for CRC.


Assuntos
Neoplasias Colorretais , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proliferação de Células/genética , Feminino , Masculino , Proteínas que Contêm Bromodomínio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa