Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.709
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 179(3): 604-618, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31607512

RESUMO

DNA-RNA hybrids play a physiological role in cellular processes, but often, they represent non-scheduled co-transcriptional structures with a negative impact on transcription, replication and DNA repair. Accumulating evidence suggests that they constitute a source of replication stress, DNA breaks and genome instability. Reciprocally, DNA breaks facilitate DNA-RNA hybrid formation by releasing the double helix torsional conformation. Cells avoid DNA-RNA accumulation by either preventing or removing hybrids directly or by DNA repair-coupled mechanisms. Given the R-loop impact on chromatin and genome organization and its potential relation with genetic diseases, we review R-loop homeostasis as well as their physiological and pathological roles.


Assuntos
DNA/genética , Conformação de Ácido Nucleico , Estruturas R-Loop/genética , RNA/genética , Cromatina/química , Cromatina/genética , DNA/química , Quebras de DNA , Reparo do DNA/genética , Replicação do DNA/genética , Instabilidade Genômica/genética , Homeostase/genética , Humanos , RNA/química , Transcrição Gênica
2.
Cell ; 176(6): 1295-1309.e15, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773314

RESUMO

Cancers from sun-exposed skin accumulate "driver" mutations, causally implicated in oncogenesis. Because errors incorporated during translesion synthesis (TLS) opposite UV lesions would generate these mutations, TLS mechanisms are presumed to underlie cancer development. To address the role of TLS in skin cancer formation, we determined which DNA polymerase is responsible for generating UV mutations, analyzed the relative contributions of error-free TLS by Polη and error-prone TLS by Polθ to the replication of UV-damaged DNA and to genome stability, and examined the incidence of UV-induced skin cancers in Polθ-/-, Polη-/-, and Polθ-/- Polη-/- mice. Our findings that the incidence of skin cancers rises in Polθ-/- mice and is further exacerbated in Polθ-/- Polη-/- mice compared with Polη-/- mice support the conclusion that error-prone TLS by Polθ provides a safeguard against tumorigenesis and suggest that cancer formation can ensue in the absence of somatic point mutations.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Neoplasias Cutâneas/metabolismo , Animais , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/fisiologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Instabilidade Genômica/genética , Humanos , Camundongos , Camundongos Knockout , Mutação/genética , Pele/citologia , Pele/metabolismo , Neoplasias Cutâneas/genética , Raios Ultravioleta/efeitos adversos , DNA Polimerase teta
3.
Nat Rev Mol Cell Biol ; 21(8): 459-474, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32313204

RESUMO

DNA and RNA can adopt various secondary structures. Four-stranded G-quadruplex (G4) structures form through self-recognition of guanines into stacked tetrads, and considerable biophysical and structural evidence exists for G4 formation in vitro. Computational studies and sequencing methods have revealed the prevalence of G4 sequence motifs at gene regulatory regions in various genomes, including in humans. Experiments using chemical, molecular and cell biology methods have demonstrated that G4s exist in chromatin DNA and in RNA, and have linked G4 formation with key biological processes ranging from transcription and translation to genome instability and cancer. In this Review, we first discuss the identification of G4s and evidence for their formation in cells using chemical biology, imaging and genomic technologies. We then discuss possible functions of DNA G4s and their interacting proteins, particularly in transcription, telomere biology and genome instability. Roles of RNA G4s in RNA biology, especially in translation, are also discussed. Furthermore, we consider the emerging relationships of G4s with chromatin and with RNA modifications. Finally, we discuss the connection between G4 formation and synthetic lethality in cancer cells, and recent progress towards considering G4s as therapeutic targets in human diseases.


Assuntos
DNA/química , Quadruplex G , RNA/química , Animais , Instabilidade Genômica/genética , Genômica , Humanos , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Relação Estrutura-Atividade
4.
Nat Rev Mol Cell Biol ; 21(3): 167-178, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32005969

RESUMO

R-loops are three-stranded structures that harbour an RNA-DNA hybrid and frequently form during transcription. R-loop misregulation is associated with DNA damage, transcription elongation defects, hyper-recombination and genome instability. In contrast to such 'unscheduled' R-loops, evidence is mounting that cells harness the presence of RNA-DNA hybrids in scheduled, 'regulatory' R-loops to promote DNA transactions, including transcription termination and other steps of gene regulation, telomere stability and DNA repair. R-loops formed by cellular RNAs can regulate histone post-translational modification and may be recognized by dedicated reader proteins. The two-faced nature of R-loops implies that their formation, location and timely removal must be tightly regulated. In this Perspective, we discuss the cellular processes that regulatory R-loops modulate, the regulation of R-loops and the potential differences that may exist between regulatory R-loops and unscheduled R-loops.


Assuntos
DNA/química , Instabilidade Genômica/genética , Estruturas R-Loop/genética , Animais , DNA/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA/genética , Replicação do DNA/genética , Replicação do DNA/fisiologia , Regulação da Expressão Gênica/genética , Código das Histonas/genética , Humanos , Conformação de Ácido Nucleico , Estruturas R-Loop/fisiologia , RNA/química , RNA/genética , Telômero/genética , Transcrição Gênica/genética
5.
Genes Dev ; 38(1-2): 70-94, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38316520

RESUMO

Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.


Assuntos
Melanoma , Humanos , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Dano ao DNA , Instabilidade Genômica/genética , DNA
6.
Genes Dev ; 38(5-6): 233-252, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38503515

RESUMO

The post-translational modification of proteins by SUMO is crucial for cellular viability and mammalian development in part due to the contribution of SUMOylation to genome duplication and repair. To investigate the mechanisms underpinning the essential function of SUMO, we undertook a genome-scale CRISPR/Cas9 screen probing the response to SUMOylation inhibition. This effort identified 130 genes whose disruption reduces or enhances the toxicity of TAK-981, a clinical-stage inhibitor of the SUMO E1-activating enzyme. Among the strongest hits, we validated and characterized NFATC2IP, an evolutionarily conserved protein related to the fungal Esc2 and Rad60 proteins that harbors tandem SUMO-like domains. Cells lacking NFATC2IP are viable but are hypersensitive to SUMO E1 inhibition, likely due to the accumulation of mitotic chromosome bridges and micronuclei. NFATC2IP primarily acts in interphase and associates with nascent DNA, suggesting a role in the postreplicative resolution of replication or recombination intermediates. Mechanistically, NFATC2IP interacts with the SMC5/6 complex and UBC9, the SUMO E2, via its first and second SUMO-like domains, respectively. AlphaFold-Multimer modeling suggests that NFATC2IP positions and activates the UBC9-NSMCE2 complex, the SUMO E3 ligase associated with SMC5/SMC6. We conclude that NFATC2IP is a key mediator of SUMO-dependent genomic integrity that collaborates with the SMC5/6 complex.


Assuntos
Dano ao DNA , Instabilidade Genômica , Proteínas de Ciclo Celular/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Instabilidade Genômica/genética
7.
Genes Dev ; 38(1-2): 46-69, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286657

RESUMO

Approximately 20% of head and neck squamous cell carcinomas (HNSCCs) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The former group exhibits reduced proliferation, genome instability, and heightened sensitivity to genotoxic agents like PARP1/2 inhibitors. Conversely, H3K36M HNSCC models with constant H3K27me3 levels lack these characteristics unless H3K27me3 is elevated by DNA hypomethylating agents or inhibiting H3K27me3 demethylases KDM6A/B. Mechanistically, H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, aberrant H3K27me3 levels induced by H3K36M expression are not a bona fide epigenetic mark because they require continuous expression of H3K36M to be inherited. Moreover, increased sensitivity to PARP1/2 inhibitors in H3K36M HNSCC models depends solely on elevated H3K27me3 levels and diminishing BRCA1- and FANCD2-dependent DNA repair. Finally, a PARP1/2 inhibitor alone reduces tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a model with consistent H3K27me3, a combination of PARP1/2 inhibitors and agents that up-regulate H3K27me3 proves to be successful. These findings underscore the crucial balance between H3K36 and H3K27 methylation in maintaining genome instability, offering new therapeutic options for patients with H3K36me-deficient tumors.


Assuntos
Neoplasias de Cabeça e Pescoço , Histonas , Humanos , Histonas/metabolismo , Lisina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Metilação , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Instabilidade Genômica/genética
8.
Annu Rev Genet ; 57: 157-179, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37552891

RESUMO

Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.


Assuntos
Replicação do DNA , Transcrição Gênica , Animais , Replicação do DNA/genética , Instabilidade Genômica/genética , Eucariotos/genética , Dano ao DNA/genética , Mamíferos
9.
Cell ; 167(3): 695-708.e16, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27745971

RESUMO

Heritability and genome stability are shaped by meiotic recombination, which is initiated via hundreds of DNA double-strand breaks (DSBs). The distribution of DSBs throughout the genome is not random, but mechanisms molding this landscape remain poorly understood. Here, we exploit genome-wide maps of mouse DSBs at unprecedented nucleotide resolution to uncover previously invisible spatial features of recombination. At fine scale, we reveal a stereotyped hotspot structure-DSBs occur within narrow zones between methylated nucleosomes-and identify relationships between SPO11, chromatin, and the histone methyltransferase PRDM9. At large scale, DSB formation is suppressed on non-homologous portions of the sex chromosomes via the DSB-responsive kinase ATM, which also shapes the autosomal DSB landscape at multiple size scales. We also provide a genome-wide analysis of exonucleolytic DSB resection lengths and elucidate spatial relationships between DSBs and recombination products. Our results paint a comprehensive picture of features governing successive steps in mammalian meiotic recombination.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Instabilidade Genômica/genética , Recombinação Homóloga , Meiose/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleossomos/enzimologia , Nucleossomos/genética , Cromossomo X/genética , Cromossomo Y/genética
10.
Genes Dev ; 37(3-4): 74-79, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702483

RESUMO

Pol2 is the leading-strand DNA polymerase in budding yeast. Here we describe an antagonism between its conserved POPS (Pol2 family-specific catalytic core peripheral subdomain) and exonuclease domain and the importance of this antagonism in genome replication. We show that multiple defects caused by POPS mutations, including impaired growth and DNA synthesis, genome instability, and reliance on other genome maintenance factors, were rescued by exonuclease inactivation. Single-molecule data revealed that the rescue stemmed from allowing sister replication forks to progress at equal rates. Our data suggest that balanced activity of Pol2's POPS and exonuclease domains is vital for genome replication and stability.


Assuntos
Replicação do DNA , Exonucleases , Humanos , Exonucleases/genética , Exonucleases/metabolismo , Replicação do DNA/genética , Mutação , Instabilidade Genômica/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo
11.
Nature ; 627(8002): 130-136, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355793

RESUMO

Genomic instability arising from defective responses to DNA damage1 or mitotic chromosomal imbalances2 can lead to the sequestration of DNA in aberrant extranuclear structures called micronuclei (MN). Although MN are a hallmark of ageing and diseases associated with genomic instability, the catalogue of genetic players that regulate the generation of MN remains to be determined. Here we analyse 997 mouse mutant lines, revealing 145 genes whose loss significantly increases (n = 71) or decreases (n = 74) MN formation, including many genes whose orthologues are linked to human disease. We found that mice null for Dscc1, which showed the most significant increase in MN, also displayed a range of phenotypes characteristic of patients with cohesinopathy disorders. After validating the DSCC1-associated MN instability phenotype in human cells, we used genome-wide CRISPR-Cas9 screening to define synthetic lethal and synthetic rescue interactors. We found that the loss of SIRT1 can rescue phenotypes associated with DSCC1 loss in a manner paralleling restoration of protein acetylation of SMC3. Our study reveals factors involved in maintaining genomic stability and shows how this information can be used to identify mechanisms that are relevant to human disease biology1.


Assuntos
Instabilidade Genômica , Micronúcleos com Defeito Cromossômico , Animais , Humanos , Camundongos , Cromossomos/genética , Dano ao DNA , Instabilidade Genômica/genética , Fenótipo , Sirtuína 1 , Mutações Sintéticas Letais
12.
Nature ; 628(8006): 145-153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538785

RESUMO

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Assuntos
Região CA1 Hipocampal , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Inflamação , Memória , Receptor Toll-Like 9 , Animais , Feminino , Masculino , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Região CA1 Hipocampal/fisiologia , Centrossomo/metabolismo , Disfunção Cognitiva/genética , Condicionamento Clássico , Matriz Extracelular/metabolismo , Medo , Instabilidade Genômica/genética , Histonas/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Memória/fisiologia , Transtornos Mentais/genética , Doenças Neurodegenerativas/genética , Doenças Neuroinflamatórias/genética , Neurônios/metabolismo , Neurônios/patologia , Membrana Nuclear/patologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo
13.
Genes Dev ; 36(5-6): 278-293, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318271

RESUMO

DNA repair and DNA damage signaling pathways are critical for the maintenance of genomic stability. Defects of DNA repair and damage signaling contribute to tumorigenesis, but also render cancer cells vulnerable to DNA damage and reliant on remaining repair and signaling activities. Here, we review the major classes of DNA repair and damage signaling defects in cancer, the genomic instability that they give rise to, and therapeutic strategies to exploit the resulting vulnerabilities. Furthermore, we discuss the impacts of DNA repair defects on both targeted therapy and immunotherapy, and highlight emerging principles for targeting DNA repair defects in cancer therapy.


Assuntos
Reparo do DNA , Neoplasias , Dano ao DNA/genética , Reparo do DNA/genética , Instabilidade Genômica/genética , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/terapia
14.
Annu Rev Genet ; 55: 583-602, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34813350

RESUMO

We are entering a new era in genomics where entire centromeric regions are accurately represented in human reference assemblies. Access to these high-resolution maps will enable new surveys of sequence and epigenetic variation in the population and offer new insight into satellite array genomics and centromere function. Here, we focus on the sequence organization and evolution of alpha satellites, which are credited as the genetic and genomic definition of human centromeres due to their interaction with inner kinetochore proteins and their importance in the development of human artificial chromosome assays. We provide an overview of alpha satellite repeat structure and array organization in the context of these high-quality reference data sets; discuss the emergence of variation-based surveys; and provide perspective on the role of this new source of genetic and epigenetic variation in the context of chromosome biology, genome instability, and human disease.


Assuntos
Centrômero , Genoma , Centrômero/genética , Instabilidade Genômica/genética , Genômica , Humanos
15.
Nat Rev Mol Cell Biol ; 18(8): 507-516, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28537574

RESUMO

Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.


Assuntos
Replicação do DNA/fisiologia , DNA/genética , Replicação do DNA/genética , Escherichia coli/genética , Instabilidade Genômica/genética , Instabilidade Genômica/fisiologia , Saccharomyces cerevisiae/genética
16.
Nature ; 621(7979): 610-619, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37557913

RESUMO

The proper regulation of transcription is essential for maintaining genome integrity and executing other downstream cellular functions1,2. Here we identify a stable association between the genome-stability regulator sensor of single-stranded DNA (SOSS)3 and the transcription regulator Integrator-PP2A (INTAC)4-6. Through SSB1-mediated recognition of single-stranded DNA, SOSS-INTAC stimulates promoter-proximal termination of transcription and attenuates R-loops associated with paused RNA polymerase II to prevent R-loop-induced genome instability. SOSS-INTAC-dependent attenuation of R-loops is enhanced by the ability of SSB1 to form liquid-like condensates. Deletion of NABP2 (encoding SSB1) or introduction of cancer-associated mutations into its intrinsically disordered region leads to a pervasive accumulation of R-loops, highlighting a genome surveillance function of SOSS-INTAC that enables timely termination of transcription at promoters to constrain R-loop accumulation and ensure genome stability.


Assuntos
Instabilidade Genômica , Regiões Promotoras Genéticas , Estruturas R-Loop , Terminação da Transcrição Genética , Humanos , DNA de Cadeia Simples/metabolismo , Instabilidade Genômica/genética , Mutação , Estruturas R-Loop/genética , RNA Polimerase II/metabolismo , Regiões Promotoras Genéticas/genética , Genoma Humano , Proteínas de Ligação a DNA/metabolismo
17.
Mol Cell ; 81(14): 3007-3017.e5, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34107305

RESUMO

RAD51 facilitates replication fork reversal and protects reversed forks from nuclease degradation. Although potentially a useful replication stress response mechanism, unregulated fork reversal can cause genome instability. Here we show that RADX, a single-strand DNA binding protein that binds to and destabilizes RAD51 nucleofilaments, can either inhibit or promote fork reversal depending on replication stress levels. RADX inhibits fork reversal at elongating forks, thereby preventing fork slowing and collapse. Paradoxically, in the presence of persistent replication stress, RADX localizes to stalled forks to generate reversed fork structures. Consequently, inactivating RADX prevents fork-reversal-dependent telomere dysfunction in the absence of RTEL1 and blocks nascent strand degradation when fork protection factors are inactivated. Addition of RADX increases SMARCAL1-dependent fork reversal in conditions in which pre-binding RAD51 to a model fork substrate is inhibitory. Thus, RADX directly interacts with RAD51 and single-strand DNA to confine fork reversal to persistently stalled forks.


Assuntos
Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica/genética , Origem de Replicação/genética , Linhagem Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Reparo do DNA/genética , DNA de Cadeia Simples/genética , Células HEK293 , Células HeLa , Humanos , Ligação Proteica/genética , Rad51 Recombinase/genética
18.
Mol Cell ; 81(14): 2989-3006.e9, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34197737

RESUMO

Stalled DNA replication fork restart after stress as orchestrated by ATR kinase, BLM helicase, and structure-specific nucleases enables replication, cell survival, and genome stability. Here we unveil human exonuclease V (EXO5) as an ATR-regulated DNA structure-specific nuclease and BLM partner for replication fork restart. We find that elevated EXO5 in tumors correlates with increased mutation loads and poor patient survival, suggesting that EXO5 upregulation has oncogenic potential. Structural, mechanistic, and mutational analyses of EXO5 and EXO5-DNA complexes reveal a single-stranded DNA binding channel with an adjacent ATR phosphorylation motif (T88Q89) that regulates EXO5 nuclease activity and BLM binding identified by mass spectrometric analysis. EXO5 phospho-mimetic mutant rescues the restart defect from EXO5 depletion that decreases fork progression, DNA damage repair, and cell survival. EXO5 depletion furthermore rescues survival of FANCA-deficient cells and indicates EXO5 functions epistatically with SMARCAL1 and BLM. Thus, an EXO5 axis connects ATR and BLM in directing replication fork restart.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Replicação do DNA/genética , DNA/genética , Exonucleases/genética , Instabilidade Genômica/genética , RecQ Helicases/genética , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA/genética , DNA Helicases/genética , Análise Mutacional de DNA/métodos , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Mutação/genética , Oncogenes/genética , Fosforilação/genética , Regulação para Cima/genética
19.
Genes Dev ; 35(15-16): 1093-1108, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34266887

RESUMO

Abnormal numerical and structural chromosome content is frequently found in human cancer. To test the role of aneuploidy in tumor initiation and progression, we generated mice with random aneuploidies by transient induction of polo-like kinase 4 (Plk4), a master regulator of centrosome number. Short-term chromosome instability (CIN) from transient Plk4 induction resulted in formation of aggressive T-cell lymphomas in mice with heterozygous inactivation of one p53 allele and accelerated tumor development in the absence of p53. Transient CIN increased the frequency of lymphoma-initiating cells with a specific karyotype profile, including trisomy of chromosomes 4, 5, 14, and 15 occurring early in tumorigenesis. Tumor development in mice with chronic CIN induced by an independent mechanism (through inactivation of the spindle assembly checkpoint) gradually trended toward a similar karyotypic profile, as determined by single-cell whole-genome DNA sequencing. Overall, we show how transient CIN generates cells with random aneuploidies from which ones that acquire a karyotype with specific chromosome gains are sufficient to drive cancer formation, and that distinct CIN mechanisms can lead to similar karyotypic cancer-causing outcomes.


Assuntos
Aneuploidia , Instabilidade Cromossômica , Animais , Transformação Celular Neoplásica/genética , Centrossomo , Instabilidade Cromossômica/genética , Evolução Clonal , Instabilidade Genômica/genética , Camundongos
20.
Genes Dev ; 35(3-4): 261-272, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33446573

RESUMO

SUMO modification regulates diverse cellular processes by targeting hundreds of proteins. However, the limited number of sumoylation enzymes raises the question of how such a large number of substrates are efficiently modified. Specifically, how genome maintenance factors are dynamically sumoylated at DNA replication and repair sites to modulate their functions is poorly understood. Here, we demonstrate a role for the conserved yeast Esc2 protein in this process by acting as a SUMO E2 cofactor. Esc2 is required for genome stability and binds to Holliday junctions and replication fork structures. Our targeted screen found that Esc2 promotes the sumoylation of a Holliday junction dissolution complex and specific replisome proteins. Esc2 does not elicit these effects via stable interactions with substrates or their common SUMO E3. Rather, we show that a SUMO-like domain of Esc2 stimulates sumoylation by exploiting a noncovalent SUMO binding site on the E2 enzyme. This role of Esc2 in sumoylation is required for Holliday junction clearance and genome stability. Our findings thus suggest that Esc2 acts as a SUMO E2 cofactor at distinct DNA structures to promote the sumoylation of specific substrates and genome maintenance.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Genoma Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sumoilação/genética , Coenzimas/metabolismo , Instabilidade Genômica/genética , Ligação Proteica , Recombinação Genética , Enzimas de Conjugação de Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa