Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.005
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Immunity ; 51(2): 298-309.e6, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31399281

RESUMO

T-helper (Th) cell differentiation drives specialized gene programs that dictate effector T cell function at sites of infection. Here, we have shown Th cell differentiation also imposes discrete motility gene programs that shape Th1 and Th2 cell navigation of the inflamed dermis. Th1 cells scanned a smaller tissue area in a G protein-coupled receptor (GPCR) and chemokine-dependent fashion, while Th2 cells scanned a larger tissue area independent of GPCR signals. Differential chemokine reliance for interstitial migration was linked to STAT6 transcription-factor-dependent programming of integrin αVß3 expression: Th2 cell differentiation led to high αVß3 expression relative to Th1 cells. Th1 and Th2 cell modes of motility could be switched simply by manipulating the amount of αVß3 on the cell surface. Deviating motility modes from those established during differentiation impaired effector function. Thus, programmed expression of αVß3 tunes effector T cell reliance on environmental cues for optimal exploration of inflamed tissues.


Assuntos
Inflamação/imunologia , Células Th1/imunologia , Células Th2/imunologia , Transferência Adotiva , Animais , Diferenciação Celular , Movimento Celular , Células Cultivadas , Técnicas de Reprogramação Celular , Quimiocinas/metabolismo , Humanos , Integrina alfaVbeta3/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT6/metabolismo
2.
J Immunol ; 212(11): 1680-1692, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607278

RESUMO

Plasmacytoid dendritic cells (pDCs) are strongly implicated as a major source of IFN-I in systemic lupus erythematosus (SLE), triggered through TLR-mediated recognition of nucleic acids released from dying cells. However, relatively little is known about how TLR signaling and IFN-I production are regulated in pDCs. In this article, we describe a role for integrin αvß3 in regulating TLR responses and IFN-I production by pDCs in mouse models. We show that αv and ß3-knockout pDCs produce more IFN-I and inflammatory cytokines than controls when stimulated through TLR7 and TLR9 in vitro and in vivo. Increased cytokine production was associated with delayed acidification of endosomes containing TLR ligands, reduced LC3 conjugation, and increased TLR signaling. This dysregulated TLR signaling results in activation of B cells and promotes germinal center (GC) B cell and plasma cell expansion. Furthermore, in a mouse model of TLR7-driven lupus-like disease, deletion of αvß3 from pDCs causes accelerated autoantibody production and pathology. We therefore identify a pDC-intrinsic role for αvß3 in regulating TLR signaling and preventing activation of autoreactive B cells. Because αvß3 serves as a receptor for apoptotic cells and cell debris, we hypothesize that this regulatory mechanism provides important contextual cues to pDCs and functions to limit responses to self-derived nucleic acids.


Assuntos
Autoimunidade , Células Dendríticas , Integrina alfaVbeta3 , Lúpus Eritematoso Sistêmico , Camundongos Knockout , Transdução de Sinais , Receptor 7 Toll-Like , Animais , Camundongos , Células Dendríticas/imunologia , Integrina alfaVbeta3/imunologia , Integrina alfaVbeta3/metabolismo , Autoimunidade/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Lúpus Eritematoso Sistêmico/imunologia , Transdução de Sinais/imunologia , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Citocinas/imunologia , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo , Linfócitos B/imunologia , Autoanticorpos/imunologia , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Ativação Linfocitária/imunologia , Modelos Animais de Doenças
3.
J Cell Sci ; 136(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37870164

RESUMO

Tumor initiation at either primary or metastatic sites is an inefficient process in which tumor cells must fulfill a series of conditions. One critical condition involves the ability of individual tumor-initiating cells to overcome 'isolation stress', enabling them to survive within harsh isolating microenvironments that can feature nutrient stress, hypoxia, oxidative stress and the absence of a proper extracellular matrix (ECM). In response to isolation stress, tumor cells can exploit various adaptive strategies to develop stress tolerance and gain stemness features. In this Opinion, we discuss how strategies such as the induction of certain cell surface receptors and deposition of ECM proteins enable tumor cells to endure isolation stress, thereby gaining tumor-initiating potential. As examples, we highlight recent findings from our group demonstrating how exposure of tumor cells to isolation stress upregulates the G-protein-coupled receptor lysophosphatidic acid receptor 4 (LPAR4), its downstream target fibronectin and two fibronectin-binding integrins, α5ß1 and αvß3. These responses create a fibronectin-rich niche for tumor cells, ultimately driving stress tolerance, cancer stemness and tumor initiation. We suggest that approaches to prevent cancer cells from adapting to stress by suppressing LPAR4 induction, blocking its downstream signaling or disrupting fibronectin-integrin interactions hold promise as potential strategies for cancer treatment.


Assuntos
Fibronectinas , Integrinas , Fibronectinas/metabolismo , Adesão Celular/fisiologia , Regulação para Cima , Integrinas/metabolismo , Integrina alfa5beta1/metabolismo , Matriz Extracelular/metabolismo , Integrina alfaVbeta3/metabolismo
4.
Development ; 149(19): dev200717, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36193846

RESUMO

Placentas from pregnancies complicated by severe early-onset fetal growth restriction (FGR) exhibit diminished vascular development mediated by impaired angiogenesis, but underlying mechanisms remain unknown. In this study, we show that FGR endothelial cells demonstrate inherently reduced migratory capacity despite the presence of fibronectin, a matrix protein abundant in placental stroma that displays abnormal organization in FGR placentas. Thus, we hypothesized that aberrant endothelial-fibronectin interactions in FGR are a key mechanism underlying impaired FGR endothelial migration. Using human fetoplacental endothelial cells isolated from uncomplicated term control and FGR pregnancies, we assessed integrin α5ß1 and αvß3 regulation during cell migration. We show that endothelial integrin α5ß1 and αvß3 interactions with fibronectin are required for migration and that FGR endothelial cells responded differentially to integrin inhibition, indicating integrin dysregulation in FGR. Whole-cell expression was not different between groups. However, there were significantly more integrins in focal adhesions and reduced intracellular trafficking in FGR. These newly identified changes in FGR endothelial cellular processes represent previously unidentified mechanisms contributing to persistent angiogenic deficiencies in FGR.


Assuntos
Retardo do Crescimento Fetal , Integrina alfaVbeta3 , Células Endoteliais/metabolismo , Feminino , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Placenta/metabolismo , Gravidez
5.
Mol Med ; 30(1): 57, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698308

RESUMO

BACKGROUND: Ossification of the posterior longitudinal ligament (OPLL), an emerging heterotopic ossification disease, causes spinal cord compression, resulting in motor and sensory dysfunction. The etiology of OPLL remains unclear but may involve integrin αVß3 regulating the process of osteogenesis and angiogenesis. In this study, we focused on the role of integrin αVß3 in OPLL and explored the underlying mechanism by which the c(RGDyk) peptide acts as a potent and selective integrin αVß3 inhibitor to inhibit osteogenesis and angiogenesis in OPLL. METHODS: OPLL or control ligament samples were collected in surgery. For OPLL samples, RNA-sequencing results revealed activation of the integrin family, particularly integrin αVß3. Integrin αVß3 expression was detected by qPCR, Western blotting, and immunohistochemical analysis. Fluorescence microscopy was used to observe the targeted inhibition of integrin αVß3 by the c(RGDyk) peptide on ligaments fibroblasts (LFs) derived from patients with OPLL and endothelial cells (ECs). The effect of c(RGDyk) peptide on the ossification of pathogenic LFs was detected using qPCR, Western blotting. Alkaline phosphatase staining or alizarin red staining were used to test the osteogenic capability. The effect of the c(RGDyk) peptide on angiogenesis was determined by EC migration and tube formation assays. The effects of the c(RGDyk) peptide on heterotopic bone formation were evaluated by micro-CT, histological, immunohistochemical, and immunofluorescence analysis in vivo. RESULTS: The results indicated that after being treated with c(RGDyk), the osteogenic differentiation of LFs was significantly decreased. Moreover, the c(RGDyk) peptide inhibited the migration of ECs and thus prevented the nutritional support required for osteogenesis. Furthermore, the c(RGDyk) peptide inhibited ectopic bone formation in mice. Mechanistic analysis revealed that c(RGDyk) peptide could inhibit osteogenesis and angiogenesis in OPLL by targeting integrin αVß3 and regulating the FAK/ERK pathway. CONCLUSIONS: Therefore, the integrin αVß3 appears to be an emerging therapeutic target for OPLL, and the c(RGDyk) peptide has dual inhibitory effects that may be valuable for the new therapeutic strategy of OPLL.


Assuntos
Integrina alfaVbeta3 , Ossificação do Ligamento Longitudinal Posterior , Osteogênese , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inibidores , Humanos , Osteogênese/efeitos dos fármacos , Animais , Camundongos , Ossificação do Ligamento Longitudinal Posterior/metabolismo , Ossificação do Ligamento Longitudinal Posterior/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Angiogênese
6.
Anal Chem ; 96(22): 9007-9015, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38778775

RESUMO

This study explores the synthesis and characterization of aggregation-induced emission enhancement (AIEE)-active gold nanoclusters (AuNCs), focusing on their near-infrared luminescence properties and potential applications in biological imaging. These AIEE-active AuNCs were synthesized via the NaBH4-mediated reduction of HAuCl4 in the presence of peptides. We systematically investigated the influence of the peptide sequence on the optical features of the AuNCs, highlighting the role of glutamic acid in enhancing their quantum yield (QY). Among the synthesized peptide-stabilized AuNCs, EECEE-stabilized AuNCs exhibited the maximum QY and a pronounced AIEE effect at pH 5.0, making them suitable for the luminescence imaging of intracellular lysosomes. The AIEE characteristic of the EECEE-stabilized AuNCs was demonstrated through examinations using transmission electron microscopy, dynamic light scattering, zeta potential analysis, and single-particle imaging. The formation of the EECEE-stabilized AuNCs was confirmed by size-exclusion chromatography and mass spectrometry. Spectroscopic and electrochemical examinations uncover the formation process of EECEE-stabilized AuNCs, comprising EECEE-mediated reduction, NaBH4-induced nucleation, complex aggregation, and subsequent cluster growth. Furthermore, we demonstrated the utility of these AuNCs as luminescent probes for intracellular lysosomal imaging, leveraging their pH-responsive AIEE behavior. Additionally, cyclic arginylglycylaspartic acid (RGD)-modified AIEE dots, derived from cyclic RGD-linked peptide-induced aggregation of EECEE-stabilized AuNCs, were developed for single- and two-photon luminescence imaging of αvß3 integrin receptor-positive cancer cells.


Assuntos
Ouro , Integrina alfaVbeta3 , Lisossomos , Nanopartículas Metálicas , Ouro/química , Lisossomos/química , Lisossomos/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/análise , Humanos , Nanopartículas Metálicas/química , Peptídeos/química , Peptídeos/síntese química , Fótons , Imagem Óptica
7.
Eur J Nucl Med Mol Imaging ; 51(6): 1544-1557, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38276986

RESUMO

PURPOSE: Several studies have demonstrated the advantages of heterodimers over their corresponding monomers due to the multivalency effect. This effect leads to an increased number of effective targeted receptors and, consequently, improved tumor uptake. Fibroblast activation protein (FAP) and integrin αvß3 are found to be overexpressed in different components of the tumor microenvironment. In our pursuit of enhancing tumor uptake and retention, we designed and developed a novel peptidic heterodimer that synergistically targets both FAP and integrin αvß3. METHODS: FAP-RGD was synthesized from FAP-2286 and c(RGDfK) through a multi-step organic synthesis. The dual receptor binding property of 68Ga-FAP-RGD was investigated by cell uptake and competitive binding assays. Preclinical pharmacokinetics were determined in HT1080-FAP and U87MG tumor models using micro-positron emission tomography/computed tomography (micro-PET/CT) and biodistribution studies. The antitumor efficacy of 177Lu-FAP-RGD was assessed in U87MG tumor models. The radiation exposure and clinical diagnostic performance of 68 Ga-FAP-RGD were evaluated in healthy volunteers and cancer patients. RESULTS: Bi-specific radiotracer 68Ga-FAP-RGD exhibited high binding affinity for both FAP and integrin αvß3. In comparison to 68Ga-FAP-2286 and 68Ga-RGDfK, 68Ga-FAP-RGD displayed enhanced tumor uptake and longer tumor retention time in preclinical models. 177Lu-FAP-RGD could efficiently suppress the growth of U87MG tumor in vivo when applied at an activity of 18.5 and 29.6 MBq. The effective dose of 68Ga-FAP-RGD was 1.06 × 10-2 mSv/MBq. 68Ga-FAP-RGD demonstrated low background activity and stable accumulation in most neoplastic lesions up to 3 h. CONCLUSION: Taking the advantages of multivalency effect, the bi-specific radiotracer 68Ga-FAP-RGD showed superior tumor uptake and retention compared to its corresponding monomers. Preclinical studies with 68Ga- or 177Lu-labeled FAP-RGD showed favorable image contrast and effective antitumor responses. Despite the excellent performance of 68Ga-FAP-RGD in clinical diagnosis, experimental efforts are currently underway to optimize the structure of FAP-RGD to increase its potential for clinical application in endoradiotherapy.


Assuntos
Endopeptidases , Integrina alfaVbeta3 , Proteínas de Membrana , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Serina Endopeptidases , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Dimerização , Endopeptidases/metabolismo , Endopeptidases/farmacologia , Radioisótopos de Gálio/química , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Traçadores Radioativos , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Serina Endopeptidases/metabolismo , Distribuição Tecidual , Peptídeos/metabolismo , Peptídeos/farmacologia
8.
Eur J Nucl Med Mol Imaging ; 51(7): 2023-2035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38376806

RESUMO

Integrin receptor αvß3 and gastrin-releasing peptide receptor (GRPR) expression of tumors could be detected using PET imaging with radiolabeled Arg-Gly-Asp (RGD) and the antagonistic bombesin analog RM26, respectively. The purpose of this study was to investigate the dual receptor-targeting property of the heterodimer RGD-RM26-03 (denoted as LNC1015), demonstrate the tumor diagnostic value of [68Ga]Ga-LNC1015 in preclinical experiments, and evaluate its preliminary clinical feasibility. METHODS: LNC1015 was designed and synthesized by linking cyclic RGD and the RM26 peptide. Preclinical pharmacokinetics were detected in a PC3 xenograft model using microPET and biodistribution studies. The clinical feasibility of [68Ga]Ga-LNC1015 PET/CT was performed in patients with breast cancer, and the results were compared with those of 18F-fluorodeoxyglucose (FDG). RESULTS: [68Ga]Ga-LNC1015 had good stability in saline for at least 2 h, and favorable binding affinity and specificity were demonstrated in vitro and in vivo. The tumor uptake and retention of [68Ga]Ga-LNC1015 during PET imaging were improved compared with its monomeric counterparts [68Ga]Ga-RGD and [68Ga]Ga-RM26 at all the time points examined. In our initial clinical studies, the tumor uptake and tumor-to-background ratio (TBR) of primary and metastatic lesions in [68Ga]Ga-LNC1015 PET/CT were significantly higher than those in [18F]FDG PET/CT, resulting in high lesion detection rate and tumor delineation. CONCLUSION: The dual targeting radiotracer [68Ga]Ga-LNC1015 showed significantly improved tumor uptake and retention, as well as lower liver uptake than [68Ga]Ga-RGD and [68Ga]Ga-RM26 monomer. The first-in-human study showed high TBRs in patients, suggesting favorable pharmacokinetics and high clinical feasibility for PET/CT imaging of cancer.


Assuntos
Radioisótopos de Gálio , Integrina alfaVbeta3 , Oligopeptídeos , Receptores da Bombesina , Receptores da Bombesina/metabolismo , Humanos , Animais , Camundongos , Feminino , Integrina alfaVbeta3/metabolismo , Oligopeptídeos/farmacocinética , Oligopeptídeos/química , Distribuição Tecidual , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioquímica , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Traçadores Radioativos , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Técnicas de Química Sintética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo
9.
FASEB J ; 37(6): e22988, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219531

RESUMO

Osteopontin (OPN) is a pleiotropic protein involved in numerous biological processes such as cell proliferation and differentiation. Since OPN is abundantly present in milk and is known to be relatively resistant to in vitro gastrointestinal digestion, the current study aimed to investigate the roles of oral intake of milk OPN in intestinal development using an established OPN knockout (KO, OPN-/- ) mouse model, in which wild-type (WT, OPN+/+ ) mouse pups were nursed by either WT (OPN+/+ OPN+ group) or OPN KO dams (OPN+/+ OPN- group; +/+ indicates genotype and - indicates milk without OPN), receiving milk with or without OPN from postnatal days 0 to 21 (P0-P21). Our results showed that milk OPN is resistant to in vivo digestion. Compared to OPN+/+ OPN- pups, OPN+/+ OPN+ pups at P4 and P6 had significantly longer small intestines, at P10 and P20 had larger inner jejunum surfaces, and at P30 exhibited more mature/differentiated intestines, as revealed by higher activities of alkaline phosphatase in brush border and more goblet cells, enteroendocrine cells, and Paneth cells. qRT-PCR and immunoblotting results showed that milk OPN increased the expression of integrin αv, integrin ß3, and CD44 in jejunum of mouse pups (P10, P20, and P30). Immunohistochemistry analysis showed that both integrin αvß3 and CD44 are localized in jejunum crypts. In addition, milk OPN increased the phosphorylation/activation of the ERK, PI3K/Akt, Wnt, and FAK signaling pathways. In summary, oral intake of milk OPN in early life promotes intestinal proliferation and differentiation by upregulating the expression of integrin αvß3 and CD44 and thus regulates OPN-integrin αvß3 and OPN-CD44 mediated cellular signaling pathways.


Assuntos
Fenômenos Biológicos , Integrina alfaVbeta3 , Animais , Camundongos , Leite , Osteopontina , Fosfatidilinositol 3-Quinases , Receptores de Hialuronatos
10.
Cell Commun Signal ; 22(1): 295, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802814

RESUMO

BACKGROUND: Colorectal cancer (CRC) commonly exhibits tolerance to cisplatin treatment, but the underlying mechanisms remain unclear. Within the tumor microenvironment, macrophages play a role in resisting the cytotoxic effects of chemotherapy by engaging in efferocytosis to clear apoptotic cells induced by chemotherapeutic agents. The involvement of extracellular vesicles (EVs), an intercellular communicator within the tumor microenvironment, in regulating the efferocytosis for the promotion of drug resistance has not been thoroughly investigated. METHODS: We constructed GFP fluorescent-expressing CRC cell lines (including GFP-CT26 and GFP-MC38) to detect macrophage efferocytosis through flow cytometric analysis. We isolated and purified CRC-secreted EVs using a multi-step ultracentrifugation method and identified them through electron microscopy and nanoflow cytometry. Proteomic analysis was conducted to identify the protein molecules carried by CRC-EVs. MFGE8 knockout CRC cell lines were constructed using CRISPR-Cas9, and their effects were validated through in vitro and in vivo experiments using Western blotting, immunofluorescence, and flow cytometric analysis, confirming that these EVs activate the macrophage αvß3-Src-FAK-STAT3 signaling pathway, thereby promoting efferocytosis. RESULTS: In this study, we found that CRC-derived EVs (CRC-EVs) enhanced macrophage efferocytosis of cisplatin-induced apoptotic CRC cells. Analysis of The Cancer Genome Atlas (TCGA) database revealed a high expression of the efferocytosis-associated gene MFGE8 in CRC patients, suggesting a poorer prognosis. Additionally, mass spectrometry-based proteomic analysis identified a high abundance of MFGE8 protein in CRC-EVs. Utilizing CRISPR-Cas9 gene edition system, we generated MFGE8-knockout CRC cells, demonstrating that their EVs fail to upregulate macrophage efferocytosis in vitro and in vivo. Furthermore, we demonstrated that MFGE8 in CRC-EVs stimulated macrophage efferocytosis by increasing the expression of αvß3 on the cell surface, thereby activating the intracellular Src-FAK-STAT3 signaling pathway. CONCLUSIONS: Therefore, this study highlighted a mechanism in CRC-EVs carrying MFGE8 activated the macrophage efferocytosis. This activation promoted the clearance of cisplatin-induced apoptotic CRC cells, contributing to CRC resistance against cisplatin. These findings provide novel insights into the potential synergistic application of chemotherapy drugs, EVs inhibitors, and efferocytosis antagonists for CRC treatment.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Macrófagos , Fagocitose , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Macrófagos/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais , Cisplatino/farmacologia , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/genética , Eferocitose
11.
Bioorg Med Chem ; 107: 117759, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795572

RESUMO

Small molecule drugs sourced from natural products are pivotal for novel therapeutic discoveries. However, their clinical deployment is often impeded by non-specific activity and severe adverse effects. This study focused on 3-fluoro-10-hydroxy-Evodiamine (F-OH-Evo), a potent derivative of Evodiamine, whose development is curtailed due to suboptimal tumor selectivity and heightened cytotoxicity. By harnessing the remarkable stability, specificity, and αvß3 integrin affinity of c(RGDFK), a novel prodrug by conjugating F-OH-Evo with cRGD was synthesized. This innovative prodrug substantially enhanced the tumor-specific targeting of F-OH-Evo and improved the anti-tumor activities. Among them, compound 3c demonstrated the best selective inhibitory activity toward U87 cancer cells in vitro. It selectively enterd U87 cells by binding to αvß3 integrin, releasing the parent molecule under the dual response of ROS and GSH to exert inhibitory activity on topo I. The results highlight the potential of cRGD-conjugated prodrugs in targeted cancer therapy. This approach signifies a significant advancement in developing safer and more effective chemotherapy drugs, emphasizing the role of prodrug strategies in overcoming the limitations of traditional cancer treatments.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Peptídeos Cíclicos , Pró-Fármacos , Quinazolinas , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inibidores , Estrutura Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Relação Estrutura-Atividade , Quinazolinas/química , Quinazolinas/farmacologia
12.
Nanomedicine ; 55: 102721, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007065

RESUMO

Integrin beta-3 is a cell adhesion molecule that mediate cell-to-cell and cell-to-extracellular matrix communication. The major goal of this study was to explore melanoma cells (B16F10) based upon specific direct targeting of the ß3 subunit (CD61) in the integrin αvß3 receptor using carbon-encapsulated iron nanoparticles decorated with monoclonal antibodies (Fe@C-CONH-anti-CD61 and Fe@C-(CH2)2-CONH-anti-CD61). Both melanoma cells treated with nanoparticles as well as C57BL/6 mice bearing syngeneic B16-F10 tumors intravenously injected with nanoparticles were tested in preclinical MRI studies. The as-synthesized carbon-encapsulated iron nanoparticles functionalized with CD61 monoclonal antibodies have been successfully used as a novel targeted contrast agent for MRI-based tracking melanoma cells expressing the ß3 subunit of the integrin αvß3 receptor.


Assuntos
Antineoplásicos , Melanoma , Nanopartículas , Animais , Camundongos , Melanoma/diagnóstico por imagem , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Integrina alfaVbeta3/metabolismo , Anticorpos Monoclonais/farmacologia , Ferro/farmacologia , Camundongos Endogâmicos C57BL , Imageamento por Ressonância Magnética , Adesão Celular , Antineoplásicos/farmacologia , Carbono/uso terapêutico
13.
Mar Drugs ; 22(6)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38921594

RESUMO

Endothelial hyperpermeability is pivotal in sepsis-associated multi-organ dysfunction. Increased von Willebrand factor (vWF) plasma levels, stemming from activated platelets and endothelium injury during sepsis, can bind to integrin αvß3, exacerbating endothelial permeability. Hence, targeting this pathway presents a potential therapeutic avenue for sepsis. Recently, we identified isaridin E (ISE), a marine-derived fungal cyclohexadepsipeptide, as a promising antiplatelet and antithrombotic agent with a low bleeding risk. ISE's influence on septic mortality and sepsis-induced lung injury in a mouse model of sepsis, induced by caecal ligation and puncture, is investigated in this study. ISE dose-dependently improved survival rates, mitigating lung injury, thrombocytopenia, pulmonary endothelial permeability, and vascular inflammation in the mouse model. ISE markedly curtailed vWF release from activated platelets in septic mice by suppressing vesicle-associated membrane protein 8 and soluble N-ethylmaleide-sensitive factor attachment protein 23 overexpression. Moreover, ISE inhibited healthy human platelet adhesion to cultured lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), thereby significantly decreasing vWF secretion and endothelial hyperpermeability. Using cilengitide, a selective integrin αvß3 inhibitor, it was found that ISE can improve endothelial hyperpermeability by inhibiting vWF binding to αvß3. Activation of the integrin αvß3-FAK/Src pathway likely underlies vWF-induced endothelial dysfunction in sepsis. In conclusion, ISE protects against sepsis by inhibiting endothelial hyperpermeability and platelet-endothelium interactions.


Assuntos
Plaquetas , Células Endoteliais da Veia Umbilical Humana , Sepse , Fator de von Willebrand , Animais , Sepse/tratamento farmacológico , Fator de von Willebrand/metabolismo , Humanos , Camundongos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Masculino , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inibidores , Permeabilidade Capilar/efeitos dos fármacos
14.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903257

RESUMO

The role of integrins, in particular αv integrins, in regulating insulin resistance is incompletely understood. We have previously shown that the αvß5 integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) regulates cellular uptake of fatty acids. In this work, we evaluated the impact of MFGE8 on glucose homeostasis. We show that acute blockade of the MFGE8/ß5 pathway enhances while acute augmentation dampens insulin-stimulated glucose uptake. Moreover, we find that insulin itself induces cell-surface enrichment of MFGE8 in skeletal muscle, which then promotes interaction between the αvß5 integrin and the insulin receptor leading to dampening of skeletal-muscle insulin receptor signaling. Blockade of the MFGE8/ß5 pathway also enhances hepatic insulin sensitivity. Our work identifies an autoregulatory mechanism by which insulin-stimulated signaling through its cognate receptor is terminated through up-regulation of MFGE8 and its consequent interaction with the αvß5 integrin, thereby establishing a pathway that can potentially be targeted to improve insulin sensitivity.


Assuntos
Antígenos de Superfície/genética , Resistência à Insulina/genética , Insulina/genética , Proteínas do Leite/genética , Receptores de Vitronectina/genética , Animais , Antígenos CD/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Glucose/metabolismo , Glicolipídeos/genética , Glicoproteínas/genética , Homeostase/genética , Humanos , Integrina alfaVbeta3/genética , Gotículas Lipídicas , Camundongos , Músculo Esquelético/metabolismo , Receptor de Insulina/genética , Transdução de Sinais/genética
15.
Circulation ; 145(9): 659-674, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35100526

RESUMO

BACKGROUND: The development of thoracic aortic dissection (TAD) is closely related to extracellular matrix degradation and vascular smooth muscle cell (VSMC) transformation from contractile to synthetic type. LGMN (legumain) degrades extracellular matrix components directly or by activating downstream signals. The role of LGMN in VSMC differentiation and the occurrence of TAD remains elusive. METHODS: Microarray datasets concerning vascular dissection or aneurysm were downloaded from the Gene Expression Omnibus database to screen differentially expressed genes. Four-week-old male Lgmn knockout mice (Lgmn-/-), macrophage-specific Lgmn knockout mice (LgmnF/F;LysMCre), and RR-11a-treated C57BL/6 mice were given BAPN (ß-aminopropionitrile monofumarate; 1 g/kg/d) in drinking water for 4 weeks for TAD modeling. RNA sequencing analysis was performed to recapitulate transcriptome profile changes. Cell interaction was examined in macrophage and VSMC coculture system. The reciprocity of macrophage-derived LGMN with integrin αvß3 in VSMCs was tested by coimmunoprecipitation assay and colocalization analyses. RESULTS: Microarray datasets from the Gene Expression Omnibus database indicated upregulated LGMN in aorta from patients with TAD and mice with angiotensin II-induced AAA. Elevated LGMN was evidenced in aorta and sera from patients with TAD and mice with BAPN-induced TAD. BAPN-induced TAD progression was significantly ameliorated in Lgmn-deficient or inhibited mice. Macrophage-specific deletion of Lgmn alleviated BAPN-induced extracellular matrix degradation. Unbiased profiler polymerase chain reaction array and Gene Ontology analysis displayed that LGMN regulated VSMC phenotype transformation. Macrophage-specific deletion of Lgmn ameliorated VSMC phenotypic switch in BAPN-treated mice. Macrophage-derived LGMN inhibited VSMC differentiation in vitro as assessed by macrophages and the VSMC coculture system. Macrophage-derived LGMN bound to integrin αvß3 in VSMCs and blocked integrin αvß3, thereby attenuating Rho GTPase activation, downregulating VSMC differentiation markers and eventually exacerbating TAD development. ROCK (Rho kinase) inhibitor Y-27632 reversed the protective role of LGMN depletion in vascular dissection. CONCLUSIONS: LGMN signaling may be a novel target for the prevention and treatment of TAD.


Assuntos
Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Dissecção Aórtica/metabolismo , Cisteína Endopeptidases/metabolismo , Integrina alfaVbeta3/metabolismo , Amidas/farmacologia , Dissecção Aórtica/tratamento farmacológico , Dissecção Aórtica/genética , Animais , Aneurisma da Aorta Torácica/tratamento farmacológico , Aneurisma da Aorta Torácica/genética , Cisteína Endopeptidases/genética , Feminino , Humanos , Integrina alfaVbeta3/genética , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
16.
Lab Invest ; 103(7): 100121, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36934797

RESUMO

Fracture healing is a complex physiological process in which angiogenesis plays an essential role. Microfibril-associated glycoprotein-2 (MAGP2) has been reported to possess a proangiogenic activity via integrin αvß3, yet its role in bone repair is unexplored. In this study, a critical-sized femoral defect (2 mm) was created in mice, followed by the delivery of an adenovirus-based MAGP2 overexpression vector or its negative control at the fracture site. At days 7, 14, 21, and 28 postfracture, bone fracture healing was evaluated by radiography, micro-computed tomography, and histopathologic analysis. Adenovirus-based MAGP2 overexpression vector-treated mice exhibited increased bone mineral density and bone volume fraction. MAGP2 overexpression contributed to an advanced stage of endochondral ossification and induced cartilage callus into the bony callus. Further analysis indicated that MAGP2 was associated with enhanced angiogenesis, as evidenced by marked MAGP2 and integrin αvß3 costaining and increased endothelial cell markers such as endomucin and CD31 levls, as well as elevated phosphorylation of protein tyrosine kinase 2 (PTK2) and AKT serine/threonine kinase 1 (AKT) in the callus. In vitro, recombinant human MAGP2 treatment enhanced the viability, migration, and tube formation ability of human microvascular endothelial cells, which was partially reversed by integrin αvß3 inhibition or MK-2206, a specific AKT inhibitor. Inhibition of integrin αvß3 abolished MAGP2-induced PTK2 and AKT activation. Taken together, our data provide the first evidence that MAGP2 promotes angiogenesis and bone formation by activating the integrin αvß3/PTK2/AKT signaling pathway.


Assuntos
Consolidação da Fratura , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Células Endoteliais/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Consolidação da Fratura/fisiologia , Integrina alfaVbeta3/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Microtomografia por Raio-X
17.
Anal Chem ; 95(33): 12406-12418, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37555842

RESUMO

Due to its key roles in malignant tumor progression and reprograming of the tumor microenvironment, integrin ß3 has attracted great attention as a new target for tumor therapy. However, the structure-function relationship of integrins ß3 remains incompletely understood, leading to the shortage of specific and effective targeting probes. This work uses a purified extracellular domain of integrin ß3 and integrin ß3-positive cells to screen aptamers, specifically targeting integrin ß3 in the native conformation on live cells through the SELEX approach. Following meticulous truncation and characterization of the initial aptamer candidates, the optimized aptamer S10yh2 was produced, exhibiting a low equilibrium dissociation constant (Kd) in the nanomolar range. S10yh2 displays specific recognition of cancer cells with varying levels of integrin ß3 expression and demonstrates favorable stability in serum. Subsequent analysis of docking sites revealed that S10yh2 binds to the seven amino acid residues located in the core region of integrin ß3. The S10yh2 aptamer can downregulate the level of integrin heterodimer αvß3 on integrin ß3 overexpressed cancer cells and partially inhibit cell migration behavior. In summary, S10yh2 is a promising probe with a small size, simple synthesis, good stability, high binding affinity, and selectivity. It therefore holds great potential for investigating the structure-function relationship of integrins.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Humanos , Integrina beta3/química , Integrina beta3/metabolismo , Aptâmeros de Nucleotídeos/farmacologia , Integrina alfaVbeta3/metabolismo , Movimento Celular , Microambiente Tumoral
18.
Biochem Biophys Res Commun ; 666: 61-67, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37178506

RESUMO

The RGD motif on the SARS-CoV-2 spike protein has been suggested to interact with RGD-binding integrins αVß3 and α5ß1 to enhance viral cell entry and alter downstream signaling cascades. The D405N mutation on the Omicron subvariant spike proteins, resulting in an RGN motif, has recently been shown to inhibit binding to integrin αVß3. Deamidation of asparagines in protein ligand RGN motifs has been demonstrated to generate RGD and RGisoD motifs that permit binding to RGD-binding integrins. Two asparagines, N481 and N501, on the Wild-type spike receptor-binding domain have been previously shown to have deamidation half-lives of 16.5 and 123 days, respectively, which may occur during the viral life cycle. Deamidation of Omicron subvariant N405 may recover the ability to interact with RGD-binding integrins. Thus, herein, all-atom molecular dynamics simulations of the Wild-type and Omicron subvariant spike protein receptor-binding domains were conducted to investigate the potential for asparagines, the Omicron subvariant N405 in particular, to assume the optimized geometry for deamidation to occur. In summary, the Omicron subvariant N405 was primarily found to be stabilized in a state unfavourable for deamidation after hydrogen bonding with downstream E406. Nevertheless, a small number of RGD or RGisoD motifs on the Omicron subvariant spike proteins may restore the ability to interact with RGD-binding integrins. The simulations also provided structural clarification regarding the deamidation rates of Wild-type N481 and N501 and highlighted the utility of tertiary structure dynamics information in predicting asparagine deamidation. Further work is needed to characterize the effects of deamidation on spike-integrin interactions.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Asparagina , Integrina alfaVbeta3
19.
Eur J Nucl Med Mol Imaging ; 51(1): 54-67, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37642706

RESUMO

PURPOSE: The integrin αvß3 and aminopeptidase N (APN/CD13) play vital roles in the tumor angiogenesis process. They are highly expressed in a variety of tumor cells and proliferating endothelial cells during angiogenesis, which have been considered as highly promising targets for tumor imaging. Arginine-glycine-aspartic (RGD) and asparagine-glycine-arginine (NGR) are two peptides specifically binding to the integrin αvß3 and CD13, respectively. In this study, we optimized our previously developed probe and preclinically evaluated the new integrin αvß3 and CD13 dual-targeted probe, NOTA-RGD-NGR (denoted as HX01) radiolabeled with 68Ga, in 10 different subcutaneous and orthotopic tumor models. METHODS: The specific activity and radiochemical purity of [68Ga]Ga-HX01 were identified. The dual-receptor targeting ability was confirmed by a series of blocking studies and partly muted tracers using BxPC-3 xenograft model. The dynamic imaging study and dose escalation study were explored to determine the optimal imaging time point and dosage in the BxPC-3 xenograft model. Next, we established a variety of subcutaneous and orthotopic tumor models including pancreas (BxPC-3), breast (MCF-7), gallbladder (NOZ), lung (HCC827), ovary (SK-OV-3), colorectal (HCT-8), liver (HuH-7), stomach (NUGC-4), and glioma (U87) cancers. All models underwent [68Ga]Ga-HX01 PET/CT imaging about 2 weeks post-inoculation, with a subset of them undergoing [18F]FDG PET/CT scan performed concurrently, and their results were compared. In addition, ex vivo biodistribution studies were also performed for verifying the semi-quantitative results of the non-invasive PET images. RESULTS: [68Ga]Ga-HX01 significantly outperformed single target probes in the BxPC-3 xenograft model. All blocking and single target groups exhibited significantly descending tumor uptake. The high tumor uptakes were found in BxPC-3, MCF-7, and NOZ subcutaneous tumors (%ID/g > 1.1), while middle uptakes were observed in HCC827, SK-OV-3, HCT-8, and HuH-7 subcutaneous tumor (%ID/g 0.7-1.0). Due to the low background, the tumor-to-muscle and tumor-to-blood ratios of [68Ga]Ga-HX01 were higher than that of [18F]FDG. CONCLUSIONS: [68Ga]Ga-HX01, as a dual target imaging agent, exhibited superior in vivo performance in different subcutaneous and orthotopic mice models of human tumors over [18F]FDG and its respectively mono-receptor targeted agents, which warrants the future clinical translation for tumor imaging.


Assuntos
Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Feminino , Humanos , Animais , Camundongos , Fluordesoxiglucose F18 , Distribuição Tecidual , Células Endoteliais/metabolismo , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Oligopeptídeos/metabolismo , Integrinas/metabolismo , Integrina alfaVbeta3/metabolismo
20.
Chemistry ; 29(12): e202203476, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36454662

RESUMO

Small molecule-drug conjugates (SMDCs) mimicking the RGD sequence (-Arg-Gly-Asp-) with a non-peptide moiety require a pharmacophore-independent attachment site. A library of 36 sulfonamide-modified RGD mimetics with nM to pM affinity for integrin αV ß3 was synthesized and analysed via DAD mapping. The best structure of the conjugable RGD mimetic was used and a linker was attached to an aromatic ring by Negishi cross-coupling. The product retained high affinity and selectivity for integrin αV ß3 . The conjugable RGD mimetic was then attached to an enzymatically cleavable GKGEVA linker equipped with a self-immolative PABC and the antimitotic drug monomethyl auristatin E (MMAE). The resulting SMDC preferred binding to integrin αV ß3 over α5 ß1 in a ratio of 1 : 4519 (ELISA) and showed selectivity for αV ß3 -positive WM115 cells over αV ß3 -negative M21-L cells in the in vitro cell adhesion assay as well as in cell viability assays with a targeting index of 134 (M21-L/WM115).


Assuntos
Integrina alfaVbeta3 , Peptidomiméticos , Integrina alfaVbeta3/química , Peptidomiméticos/química , Oligopeptídeos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa