Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
New Phytol ; 243(1): 98-110, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38725410

RESUMO

Some plants exhibit dynamic hydraulic regulation, in which the strictness of hydraulic regulation (i.e. iso/anisohydry) changes in response to environmental conditions. However, the environmental controls over iso/anisohydry and the implications of flexible hydraulic regulation for plant productivity remain unknown. In Juniperus osteosperma, a drought-resistant dryland conifer, we collected a 5-month growing season time series of in situ, high temporal-resolution plant water potential ( Ψ ) and stand gross primary productivity (GPP). We quantified the stringency of hydraulic regulation associated with environmental covariates and evaluated how predawn water potential contributes to empirically predicting carbon uptake. Juniperus osteosperma showed less stringent hydraulic regulation (more anisohydric) after monsoon precipitation pulses, when soil moisture and atmospheric demand were high, and corresponded with GPP pulses. Predawn water potential matched the timing of GPP fluxes and improved estimates of GPP more strongly than soil and/or atmospheric moisture, notably resolving GPP underestimation before vegetation green-up. Flexible hydraulic regulation appears to allow J. osteosperma to prolong soil water extraction and, therefore, the period of high carbon uptake following monsoon precipitation pulses. Water potential and its dynamic regulation may account for why process-based and empirical models commonly underestimate the magnitude and temporal variability of dryland GPP.


Assuntos
Ciclo do Carbono , Carbono , Ecossistema , Juniperus , Água , Juniperus/fisiologia , Água/metabolismo , Carbono/metabolismo , Solo/química , Chuva , Estações do Ano , Secas
2.
J Environ Sci (China) ; 112: 192-201, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955203

RESUMO

Heavy metal (Cu, Mn, Zn, Pb, and Cd) concentrations were measured in the leaves of Sabina chinensis and Platycladus orientalis collected from urban, suburban, and rural sites in Tianjin, China. Photosynthetic pigment contents, reactive oxygen species content, malondialdehyde (MDA) content and antioxidant enzyme activity were investigated, providing physiological response parameters. Our comparison of the sites revealed that urbanization significantly influenced the heavy metal concentrations in both plant leaves. At the rural site, both plant leaves exhibited the lowest heavy metal accumulation. The highest Cu, Mn, and Zn concentrations were found in S. chinensis leaves from the urban site; the highest Pb and Cd concentrations were found in P. orientalis leaves from the urban site. These results indicate that the urban site contained larger heavy metal concentrations in the plant leaves that may reflect the anthropogenic emission gradient. It is also found that S. chinensis may be used to monitor airborne heavy metal pollution because it is highly quick response to heavy metals, while P. orientalis may be used for mitigation due to its high resistance. The results of this study can contribute to the development of monitoring and environmental management plans by providing information on sensitive and resistant tree species for city greening in North China.


Assuntos
Cupressaceae , Juniperus , Metais Pesados , Poluentes do Solo , China , Cidades , Cupressaceae/efeitos dos fármacos , Cupressaceae/fisiologia , Monitoramento Ambiental , Poluição Ambiental/análise , Juniperus/efeitos dos fármacos , Juniperus/fisiologia , Metais Pesados/metabolismo , Folhas de Planta/química , Poluentes do Solo/metabolismo , Árvores/efeitos dos fármacos , Árvores/fisiologia
3.
Plant Cell Environ ; 44(12): 3623-3635, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506038

RESUMO

Short-term plant respiration (R) increases exponentially with rising temperature, but drought could reduce respiration by reducing growth and metabolism. Acclimation may alter these responses. We examined if species with different drought responses would differ in foliar R response to +4.8°C temperature and -45% precipitation in a field experiment with mature piñon and juniper trees, and if any differences between species were related to differences in photosynthesis rates, shoot growth and nonstructural carbohydrates (NSCs). Short-term foliar R had a Q10 of 1.6 for piñon and 2.6 for juniper. Piñon foliar R did not respond to the +4.8°C temperatures, but R increased 1.4× for juniper. Across treatments, piñon foliage had higher growth, lower NSC content, 29% lower photosynthesis rates, and 44% lower R than juniper. Removing 45% precipitation had little impact on R for either species. Species differences in the response of R under elevated temperature were related to substrate availability and stomatal response to leaf water potential. Despite not acclimating to the higher temperature and having higher R than piñon, greater substrate availability in juniper suggests it could supply respiratory demand for much longer than piñon. Species responses will be critical in ecosystem response to a warmer climate.


Assuntos
Metabolismo dos Carboidratos , Secas , Temperatura Alta , Juniperus/fisiologia , Fotossíntese , Pinus/fisiologia , Folhas de Planta/fisiologia , Juniperus/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento
4.
New Phytol ; 225(2): 679-692, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276231

RESUMO

Trees may survive prolonged droughts by shifting water uptake to reliable water sources, but it is unknown if the dominant mechanism involves activating existing roots or growing new roots during drought, or some combination of the two. To gain mechanistic insights on this unknown, a dynamic root-hydraulic modeling framework was developed that set up a feedback between hydraulic controls over carbon allocation and the role of root growth on soil-plant hydraulics. The new model was tested using a 5 yr drought/heat field experiment on an established piñon-juniper stand with root access to bedrock groundwater. Owing to the high carbon cost per unit root area, modeled trees initialized without adequate bedrock groundwater access experienced potentially lethal declines in water potential, while all of the experimental trees maintained nonlethal water potentials. Simulated trees were unable to grow roots rapidly enough to mediate the hydraulic stress, particularly during warm droughts. Alternatively, modeled trees initiated with root access to bedrock groundwater matched the hydraulics of the experimental trees by increasing their water uptake from bedrock groundwater when soil layers dried out. Therefore, the modeling framework identified a critical mechanism for drought response that required trees to shift water uptake among existing roots rather than growing new roots.


Assuntos
Carbono/metabolismo , Secas , Modelos Biológicos , Raízes de Plantas/fisiologia , Traqueófitas/fisiologia , Água/fisiologia , Simulação por Computador , Água Subterrânea , Juniperus/fisiologia , Pinus/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Transpiração Vegetal/fisiologia , Fatores de Tempo
5.
Plant Cell Environ ; 41(3): 576-588, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29314069

RESUMO

From 2011 to 2013, Texas experienced its worst drought in recorded history. This event provided a unique natural experiment to assess species-specific responses to extreme drought and mortality of four co-occurring woody species: Quercus fusiformis, Diospyros texana, Prosopis glandulosa, and Juniperus ashei. We examined hypothesized mechanisms that could promote these species' diverse mortality patterns using postdrought measurements on surviving trees coupled to retrospective process modelling. The species exhibited a wide range of gas exchange responses, hydraulic strategies, and mortality rates. Multiple proposed indices of mortality mechanisms were inconsistent with the observed mortality patterns across species, including measures of the degree of iso/anisohydry, photosynthesis, carbohydrate depletion, and hydraulic safety margins. Large losses of spring and summer whole-tree conductance (driven by belowground losses of conductance) and shallower rooting depths were associated with species that exhibited greater mortality. Based on this retrospective analysis, we suggest that species more vulnerable to drought were more likely to have succumbed to hydraulic failure belowground.


Assuntos
Secas , Modelos Biológicos , Árvores/fisiologia , Diospyros/fisiologia , Juniperus/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Estômatos de Plantas/fisiologia , Prosopis/fisiologia , Quercus/fisiologia , Texas , Água/fisiologia
6.
Plant Cell Environ ; 41(11): 2627-2637, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29974965

RESUMO

Climate warming should result in hotter droughts of unprecedented severity in this century. Such droughts have been linked with massive tree mortality, and data suggest that warming interacts with drought to aggravate plant performance. Yet how forests will respond to hotter droughts remains unclear, as does the suite of mechanisms trees use to deal with hot droughts. We used an ecosystem-scale manipulation of precipitation and temperature on piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees to investigate nitrogen (N) cycling-induced mitigation processes related to hotter droughts. We found that while negative impacts on plant carbon and water balance are manifest after prolonged drought, performance reductions were not amplified by warmer temperatures. Rather, increased temperatures for 5 years stimulated soil N cycling under piñon trees and modified tree N allocation for both species, resulting in mitigation of hotter drought impacts on tree water and carbon functions. These findings suggest that adjustments in N cycling are likely after multi-year warming conditions and that such changes may buffer reductions in tree performance during hotter droughts. The results highlight our incomplete understanding of trees' ability to acclimate to climate change, raising fundamental questions about the resistance potential of forests to long-term, compound climatic stresses.


Assuntos
Ciclo do Nitrogênio , Árvores/fisiologia , Carbono/metabolismo , Desidratação , Secas , Temperatura Alta , Juniperus/metabolismo , Juniperus/fisiologia , Nitrogênio/metabolismo , Ciclo do Nitrogênio/fisiologia , Pinus/metabolismo , Pinus/fisiologia , Árvores/metabolismo
7.
Plant Cell Environ ; 41(2): 421-435, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29215745

RESUMO

Hydraulic architecture imposes a fundamental control on water transport, underpinning plant productivity, and survival. The extent to which hydraulic architecture of mature trees acclimates to chronic drought is poorly understood, limiting accuracy in predictions of forest responses to future droughts. We measured seasonal shoot hydraulic performance for multiple years to assess xylem acclimation in mature piñon (Pinus edulis) and juniper (Juniperus monosperma) after 3+ years of precipitation manipulation. Our treatments consisted of water addition (+20% ambient precipitation), partial precipitation-exclusion (-45% ambient precipitation), and exclusion-structure control. Supplemental watering elevated leaf water potential, sapwood-area specific hydraulic conductivity, and leaf-area specific hydraulic conductivity relative to precipitation exclusion. Shifts in allocation of leaf area to sapwood area enhanced differences between irrigated and droughted KL in piñon but not juniper. Piñon and juniper achieved similar KL under ambient conditions, but juniper matched or outperformed piñon in all physiological measurements under both increased and decreased precipitation treatments. Embolism vulnerability and xylem anatomy were unaffected by treatments in either species. Absence of significant acclimation combined with inferior performance for both hydraulic transport and safety suggests piñon has greater risk of local extirpation if aridity increases as predicted in the southwestern USA.


Assuntos
Juniperus/anatomia & histologia , Pinus/anatomia & histologia , Xilema/anatomia & histologia , Clima , Desidratação , Juniperus/fisiologia , Pinus/fisiologia , Brotos de Planta/anatomia & histologia , Brotos de Planta/fisiologia , Chuva , Sudoeste dos Estados Unidos , Água/metabolismo , Madeira/anatomia & histologia
8.
Plant Cell Environ ; 41(8): 1926-1934, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29761501

RESUMO

We investigated stem radial growth and water storage dynamics of 2 conifer species differing in hydraulic carbon strategies, Juniperus monosperma and Pinus edulis, under conditions of ambient, drought (∼45% reduction in precipitation), heat (∼4.8 °C temperature increase), and the combination of drought + heat, in 2013 and 2014. Juniper maintained low growth across all treatments. Overall, the relatively isohydric piñon pine showed significantly greater growth and water storage recharge than the relatively anisohydric juniper across all treatments in the average climate year (2014) but no differences in the regionally dry year (2013). Piñon pine ceased growth at a constant predawn water potential across all treatments and at a less negative water potential threshold than juniper. Heat has a greater negative impact on piñon pines' growth and water storage than drought, whereas juniper was, in contrast, unaffected by heat but strongly impacted by drought. The whole-plant hydraulic carbon strategies, in this case captured using the isohydric/anisohydric concept, translate into alternative growth and water storage strategies under drought and heat conditions.


Assuntos
Juniperus/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Desidratação , Resposta ao Choque Térmico , Juniperus/metabolismo , Juniperus/fisiologia , Pinus/metabolismo , Pinus/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Água/metabolismo
9.
Plant Cell Environ ; 41(7): 1551-1564, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29569276

RESUMO

Plants close their stomata during drought to avoid excessive water loss, but species differ in respect to the drought severity at which stomata close. The stomatal closure point is related to xylem anatomy and vulnerability to embolism, but it also has implications for phloem transport and possibly phloem anatomy to allow sugar transport at low water potentials. Desiccation-tolerant plants that close their stomata at severe drought should have smaller xylem conduits and/or fewer and smaller interconduit pits to reduce vulnerability to embolism but more phloem tissue and larger phloem conduits compared with plants that avoid desiccation. These anatomical differences could be expected to increase in response to long-term reduction in precipitation. To test these hypotheses, we used tridimensional synchroton X-ray microtomograph and light microscope imaging of combined xylem and phloem tissues of 2 coniferous species: one-seed juniper (Juniperus monosperma) and piñon pine (Pinus edulis) subjected to precipitation manipulation treatments. These species show different xylem vulnerability to embolism, contrasting desiccation tolerance, and stomatal closure points. Our results support the hypothesis that desiccation tolerant plants require higher phloem transport capacity than desiccation avoiding plants, but this can be gained through various anatomical adaptations in addition to changing conduit or tissue size.


Assuntos
Juniperus/anatomia & histologia , Floema/anatomia & histologia , Pinus/anatomia & histologia , Árvores/anatomia & histologia , Xilema/anatomia & histologia , Desidratação , Juniperus/fisiologia , Juniperus/ultraestrutura , Microscopia , Floema/fisiologia , Floema/ultraestrutura , Pinus/fisiologia , Pinus/ultraestrutura , Estômatos de Plantas/fisiologia , Estômatos de Plantas/ultraestrutura , Árvores/fisiologia , Árvores/ultraestrutura , Microtomografia por Raio-X , Xilema/fisiologia , Xilema/ultraestrutura
10.
Glob Chang Biol ; 24(12): 5655-5667, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30215879

RESUMO

Woody plant encroachment (WPE) into grasslands has been occurring globally and may be accelerated by climate change in the future. This land cover change is expected to alter the carbon and water cycles, but it remains uncertain how and to what extent the carbon and water cycles may change with WPE into grasslands under current climate. In this study, we examined the difference of vegetation indices (VIs), evapotranspiration (ET), gross primary production (GPP), and solar-induced chlorophyll fluorescence (SIF) during 2000-2010 between grasslands and juniper-encroached grasslands. We also quantitatively assessed the changes of GPP and ET for grasslands with different proportions of juniper encroachment (JWPE). Our results suggested that JWPE increased the GPP, ET, greenness-related VIs, and SIF of grasslands. Mean annual GPP and ET were, respectively, ~55% and ~45% higher when grasslands were completely converted into juniper forests under contemporary climate during 2000-2010. The enhancement of annual GPP and ET for grasslands with JWPE varied over years ranging from about +20% GPP (~+30% for ET) in the wettest year (2007) to about twice as much GPP (~+55% for ET) in the severe drought year (2006) relative to grasslands without encroachment. Additionally, the differences in GPP and ET showed significant seasonal dynamics. During the peak growing season (May-August), GPP and ET for grasslands with JWPE were ~30% and ~40% higher on average. This analysis provided insights into how and to what degree carbon and water cycles were impacted by JWPE, which is vital to understanding how JWPE and ecological succession will affect the regional and global carbon and water budgets in the future.


Assuntos
Ciclo do Carbono , Mudança Climática , Florestas , Pradaria , Juniperus/fisiologia , Água , Secas , Transpiração Vegetal , Estações do Ano , Luz Solar
11.
Plant Cell Environ ; 39(1): 38-49, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26081870

RESUMO

Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.


Assuntos
Carbono/metabolismo , Juniperus/fisiologia , Pinus/fisiologia , Transpiração Vegetal/fisiologia , Secas , Modelos Biológicos , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Árvores , Água/fisiologia , Xilema/fisiologia
12.
Oecologia ; 180(1): 91-102, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26400794

RESUMO

An increased understanding of intraspecific seed packaging (i.e. seed size/number strategy) variation across different environments may improve current knowledge of the ecological forces that drive seed evolution in plants. In particular, pre-dispersal seed predation may influence seed packaging strategies, triggering a reduction of the resources allocated to undamaged seeds within the preyed fruits. Assessing plant reactions to pre-dispersal seed predation is crucial to a better understanding of predation effects, but the response of plants to arthropod attacks remains unexplored. We have assessed the effect of cone predation on the size and viability of undamaged seeds in populations of Juniperus thurifera with contrasting seed packaging strategies, namely, North African populations with single-large-seeded cones and South European populations with multi-small-seeded cones. Our results show that the incidence of predation was lower on the single-large-seeded African cones than on the multi-small-seeded European ones. Seeds from non-preyed cones were also larger and had a higher germination success than uneaten seeds from preyed cones, but only in populations with multi-seeded cones and in cones attacked by Trisetacus sp., suggesting a differential plastic response to predation. It is possible that pre-dispersal seed predation has been a strong selective pressure in European populations with high cone predation rates, being a process which maintains multi-small-seeded cones and empty seeds as a strategy to save some seeds from predation. Conversely, pre-dispersal predation might not have a strong effect in the African populations with single-large-seeded cones characterized by seed germination and filling rates higher than those in the European populations. Our results indicate that differences in pre-dispersal seed predators and predation levels may affect both selection on and intraspecific variation in seed packaging.


Assuntos
Herbivoria , Juniperus/fisiologia , Ácaros , Comportamento Predatório , Dispersão de Sementes , Sementes/fisiologia , Seleção Genética , África do Norte , Animais , Evolução Biológica , Europa (Continente) , Frutas , Variação Genética , Fenótipo , Doenças das Plantas , Reprodução
13.
New Phytol ; 206(1): 411-421, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25412472

RESUMO

Leaf hydraulics, gas exchange and carbon storage in Pinus edulis and Juniperus monosperma, two tree species on opposite ends of the isohydry-anisohydry spectrum, were analyzed to examine relationships between hydraulic function and carbohydrate dynamics. Leaf hydraulic vulnerability, leaf water potential (Ψl ), leaf hydraulic conductance (Kleaf ), photosynthesis (A), stomatal conductance (gs) and nonstructural carbohydrate (NSC) content were analyzed throughout the growing season. Leaf hydraulic vulnerability was significantly lower in the relatively anisohydric J. monosperma than in the more isohydric P. edulis. In P. edulis, Ψl dropped and stayed below 50% loss of leaf hydraulic conductance (P50) early in the day during May, August and around midday in September, leading to sustained reductions in Kleaf . In J. monosperma, Ψl dropped below P50 only during August, resulting in the maintenance of Kleaf during much of the growing season. Mean A and gs during September were significantly lower in P. edulis than in J. monosperma. Foliar total NSC was two to three times greater in J. monosperma than in P. edulis in June, August and September. Consistently lower levels of total NSC in P. edulis suggest that its isohydric strategy pushes it towards the exhaustion of carbon reserves during much of the growing season.


Assuntos
Juniperus/fisiologia , Pinus/fisiologia , Transpiração Vegetal/fisiologia , Metabolismo dos Carboidratos , Carbono/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Estações do Ano , Árvores , Água/fisiologia
14.
Plant Cell Environ ; 38(4): 729-39, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25159277

RESUMO

Drought-induced forest mortality is an increasing global problem with wide-ranging consequences, yet mortality mechanisms remain poorly understood. Depletion of non-structural carbohydrate (NSC) stores has been implicated as an important mechanism in drought-induced mortality, but experimental field tests are rare. We used an ecosystem-scale precipitation manipulation experiment to evaluate leaf and twig NSC dynamics of two co-occurring conifers that differ in patterns of stomatal regulation of water loss and recent mortality: the relatively desiccation-avoiding piñon pine (Pinus edulis) and the relatively desiccation-tolerant one-seed juniper (Juniperus monosperma). Piñon pine experienced 72% mortality after 13-25 months of experimental drought and juniper experienced 20% mortality after 32-47 months. Juniper maintained three times more NSC in the foliage than twigs, and converted NSC to glucose and fructose under drought, consistent with osmoregulation requirements to maintain higher stomatal conductance during drought than piñon. Despite these species differences, experimental drought caused decreased leaf starch content in dying trees of both species (P < 0.001). Average dry-season leaf starch content was also a good predictor of drought-survival time for both species (R(2) = 0.93). These results, along with observations of drought-induced reductions to photosynthesis and growth, support carbon limitation as an important process during mortality of these two conifer species.


Assuntos
Pinus/fisiologia , Carboidratos , Carbono , Secas , Ecossistema , Florestas , Juniperus/fisiologia , Modelos Biológicos , Fotossíntese , Pinus/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Chuva , Estações do Ano , Solo , Árvores/crescimento & desenvolvimento , Água/fisiologia
15.
Glob Chang Biol ; 21(10): 3685-95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26089027

RESUMO

Recent droughts and increasing temperatures have resulted in extensive tree mortality across the globe. Understanding the environmental controls on tree regeneration following these drought events will allow for better predictions of how these ecosystems may shift under a warmer, drier climate. Within the widely distributed piñon-juniper woodlands of the southwestern USA, a multiyear drought in 2002-2004 resulted in extensive adult piñon mortality and shifted adult woodland composition to a juniper-dominated, more savannah-type ecosystem. Here, we used pre- (1998-2001) and 10-year post- (2014) drought stand structure data of individually mapped trees at 42 sites to assess the effects of this drought on tree regeneration across a gradient of environmental stress. We found declines in piñon juvenile densities since the multiyear drought due to limited new recruitment and high (>50%) juvenile mortality. This is in contrast to juniper juvenile densities, which increased over this time period. Across the landscape, piñon recruitment was positively associated with live adult piñon densities and soil available water capacity, likely due to their respective effects on seed and water availability. Juvenile piñon survival was strongly facilitated by certain types of nurse trees and shrubs. These nurse plants also moderated the effects of environmental stress on piñon survival: Survival of interspace piñon juveniles was positively associated with soil available water capacity, whereas survival of nursed piñon juveniles was negatively associated with perennial grass cover. Thus, nurse plants had a greater facilitative effect on survival at sites with higher soil available water capacity and perennial grass cover. Notably, mean annual climatic water deficit and elevation were not associated with piñon recruitment or survival across the landscape. Our findings reveal a clear shift in successional trajectories toward a more juniper-dominated woodland and highlight the importance of incorporating biotic interactions and soil properties into species distribution modeling approaches.


Assuntos
Secas , Florestas , Juniperus/fisiologia , Pinus/fisiologia , Árvores/fisiologia , Arizona , Mudança Climática
16.
Glob Chang Biol ; 21(2): 843-56, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25155807

RESUMO

Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and projected responses are weak and indirect, limiting their reliability for projecting the impacts of climate change. We developed and tested a relatively mechanistic method to simulate the effects of changing precipitation on species competition within the LANDIS-II FLM. Using data from a field precipitation manipulation experiment in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) ecosystem in New Mexico (USA), we calibrated our model to measurements from ambient control plots and tested predictions under the drought and irrigation treatments against empirical measurements. The model successfully predicted behavior of physiological variables under the treatments. Discrepancies between model output and empirical data occurred when the monthly time step of the model failed to capture the short-term dynamics of the ecosystem as recorded by instantaneous field measurements. We applied the model to heuristically assess the effect of alternative climate scenarios on the piñon-juniper ecosystem and found that warmer and drier climate reduced productivity and increased the risk of drought-induced mortality, especially for piñon. We concluded that the direct links between fundamental drivers and growth rates in our model hold great promise to improve our understanding of ecosystem processes under climate change and improve management decisions because of its greater reliance on first principles.


Assuntos
Mudança Climática , Secas , Florestas , Juniperus/fisiologia , Pinus/fisiologia , Carbono/metabolismo , Modelos Teóricos , Fotossíntese , Transpiração Vegetal
17.
Glob Chang Biol ; 21(11): 4210-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26149972

RESUMO

Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure ('drought'), a ~4.8 °C temperature increase with open-top chambers ('heat'), and a combination of both simultaneously ('drought + heat'). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine (Pinus edulis) by ≥39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19-57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change.


Assuntos
Mudança Climática , Secas , Temperatura Alta , Juniperus/fisiologia , Pinus/fisiologia , Juniperus/crescimento & desenvolvimento , New Mexico , Pinus/crescimento & desenvolvimento , Estresse Fisiológico , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
18.
Glob Chang Biol ; 21(2): 882-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25044677

RESUMO

Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of the geographical distribution of a species, where range expansions or contractions may occur. Current demographical status at geographical range limits can help us to predict population trends and their implications for the future distribution of the species. Thus, understanding the comparability of demographical patterns occurring along both altitudinal and latitudinal gradients would be highly informative. In this study, we analyse the differences in the demography of two woody species through altitudinal gradients at their southernmost distribution limit and the consistency of demographical patterns at the treeline across a latitudinal gradient covering the complete distribution range. We focus on Pinus sylvestris and Juniperus communis, assessing their demographical structure (density, age and mortality rate), growth, reproduction investment and damage from herbivory on 53 populations covering the upper, central and lower altitudes as well as the treeline at central latitude and northernmost and southernmost latitudinal distribution limits. For both species, populations at the lowermost altitude presented older age structure, higher mortality, decreased growth and lower reproduction when compared to the upper limit, indicating higher fitness at the treeline. This trend at the treeline was generally maintained through the latitudinal gradient, but with a decreased growth at the northern edge for both species and lower reproduction for P. sylvestris. However, altitudinal and latitudinal transects are not directly comparable as factors other than climate, including herbivore pressure or human management, must be taken into account if we are to understand how to infer latitudinal processes from altitudinal data.


Assuntos
Mudança Climática , Juniperus/fisiologia , Pinus/fisiologia , Dispersão Vegetal , Altitude , Finlândia , Juniperus/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Reprodução , Escócia , Espanha , Temperatura
19.
J Environ Biol ; 36 Spec No: 9-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26591876

RESUMO

Modeling and mapping potential distribution of living organisms has become an important component of conservation planning and ecosystem management in recent years. Various correlative and mechanistic methods can be applied to build predictive distributions of living organisms in terrestrial and marine ecosystems. Correlative methods used to predict species' potential distribution have been described as either group discrimination techniques or profile techniques. We attempted to determine whether group discrimination techniques could perform as well as profile techniques for predicting species potential distributions, using elevation (ELVN), parent material (ROCK), slope (SLOP), radiation index (RI) and topographic position index (TPI)) as explanatory variables. We compared potential distribution predictions made for Crimean juniper (Juniperus excelsa Bieb.) in the Yukan Gokdere forest district of the Mediterranean region, Turkey, applying four group discrimination techniques (discriminate analysis (DA), logistic regression analysis (LR), generalized addictive model (GAM) and classification tree technique (CT)) and two profile techniques (a maximum entropy approach to species distribution modeling (MAXENT), the genetic algorithm for rule-set prediction (GARP)). Visual assessments of the potential distribution probability of the applied models for Crimean juniper were performed by using geographical information systems (GIS). Receiver-operating characteristic (ROC) curves were used to objectively assess model performance. The results suggested that group discrimination techniques are better than profile techniques and, among the group discrimination techniques, GAM indicated the best performance.


Assuntos
Juniperus/fisiologia , Modelos Biológicos , Demografia , Monitoramento Ambiental , Região do Mediterrâneo , Turquia
20.
Plant Cell Environ ; 37(11): 2577-86, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24661116

RESUMO

Because iso- and anisohydric species differ in stomatal regulation of the rate and magnitude of fluctuations in shoot water potential, they may be expected to show differences in the plasticity of their shoot water relations components, but explicit comparisons of this nature have rarely been made. We subjected excised shoots of co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis to pressure-volume analysis with and without prior artificial rehydration. In J. monosperma, the shoot water potential at turgor loss (Ψ(TLP)) ranged from -3.4 MPa in artificially rehydrated shoots to -6.6 MPa in shoots with an initial Ψ of -5.5 MPa, whereas in P. edulis mean Ψ(TLP) remained at ∼ -3.0 MPa over a range of initial Ψ from -0.1 to -2.3 MPa. The shoot osmotic potential at full turgor and the bulk modulus of elasticity also declined sharply with shoot Ψ in J. monosperma, but not in P. edulis. The contrasting behaviour of J. monosperma and P. edulis reflects differences in their capacity for homeostatic regulation of turgor that may be representative of aniso- and isohydric species in general, and may also be associated with the greater capacity of J. monosperma to withstand severe drought.


Assuntos
Juniperus/fisiologia , Pinus/fisiologia , Folhas de Planta/fisiologia , Água/metabolismo , Biomassa , Módulo de Elasticidade , Osmose , Brotos de Planta/fisiologia , Pressão , Estações do Ano , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa