RESUMO
Scientific exploration of phototrophic bacteria over nearly 200 years has revealed large phylogenetic gaps between known phototrophic groups that limit understanding of how phototrophy evolved and diversified1,2. Here, through Boreal Shield lake water incubations, we cultivated an anoxygenic phototrophic bacterium from a previously unknown order within the Chloroflexota phylum that represents a highly novel transition form in the evolution of photosynthesis. Unlike all other known phototrophs, this bacterium uses a type I reaction centre (RCI) for light energy conversion yet belongs to the same bacterial phylum as organisms that use a type II reaction centre (RCII) for phototrophy. Using physiological, phylogenomic and environmental metatranscriptomic data, we demonstrate active RCI-utilizing metabolism by the strain alongside usage of chlorosomes3 and bacteriochlorophylls4 related to those of RCII-utilizing Chloroflexota members. Despite using different reaction centres, our phylogenomic data provide strong evidence that RCI-utilizing and RCII-utilizing Chloroflexia members inherited phototrophy from a most recent common phototrophic ancestor. The Chloroflexota phylum preserves an evolutionary record of the use of contrasting phototrophic modes among genetically related bacteria, giving new context for exploring the diversification of phototrophy on Earth.
Assuntos
Bactérias , Complexo de Proteína do Fotossistema I , Processos Fototróficos , Bactérias/química , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Lagos/microbiologia , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Filogenia , Anaerobiose , Complexo de Proteína do Fotossistema II/metabolismo , Perfilação da Expressão GênicaRESUMO
Methane (CH4) is a potent greenhouse gas but also an important carbon and energy substrate for some lake food webs. Understanding how CH4 incorporates into food webs is, therefore, crucial for unraveling CH4 cycling and its impacts on climate and ecosystems. However, CH4-fueled lake food webs from pre-Holocene intervals, particularly during greenhouse climates in Earth history, have received relatively little attention. Here, we present a long-term record of CH4-fueled pelagic food webs across the Cretaceous Oceanic Anoxic Event 1a (~120 Mya) that serves as a geological analog to future warming. We show an exceptionally strong expansion of both methanogens and CH4-oxidizing bacteria (up to 87% of hopanoid-producing bacteria) during this Event. Grazing on CH4-oxidizing bacteria by zooplankton (up to 47% of ciliate diets) within the chemocline transferred substantial CH4-derived carbon to the higher trophic levels, representing an important CH4 sink in the water column. Our findings suggest that as Earth warms, microbial CH4 cycling could restructure food webs and fundamentally alter carbon and energy flows and trophic pathways in lake ecosystems.
Assuntos
Cadeia Alimentar , Lagos , Metano , Zooplâncton , Metano/metabolismo , Lagos/microbiologia , Zooplâncton/metabolismo , Animais , Ecossistema , Gases de Efeito Estufa/metabolismo , Gases de Efeito Estufa/análise , Bactérias/metabolismo , Efeito EstufaRESUMO
Oxygenic photosynthesis supplies organic carbon to the modern biosphere, but it is uncertain when this metabolism originated. It has previously been proposed1,2 that photosynthetic reaction centres capable of splitting water arose by about 3 billion years ago on the basis of the inferred presence of manganese oxides in Archaean sedimentary rocks. However, this assumes that manganese oxides can be produced only in the presence of molecular oxygen3, reactive oxygen species4,5 or by high-potential photosynthetic reaction centres6,7. Here we show that communities of anoxygenic photosynthetic microorganisms biomineralize manganese oxides in the absence of molecular oxygen and high-potential photosynthetic reaction centres. Microbial oxidation of Mn(II) under strictly anaerobic conditions during the Archaean eon would have produced geochemical signals identical to those used to date the evolution of oxygenic photosynthesis before the Great Oxidation Event1,2. This light-dependent process may also produce manganese oxides in the photic zones of modern anoxic water bodies and sediments.
Assuntos
Lagos/microbiologia , Manganês/metabolismo , Anaerobiose , Biofilmes , Luz , Oxirredução , Difração de Raios XRESUMO
Extreme daily values of precipitation (1939-2021), discharge (1991-2021), phosphorus (P) load (1994-2021), and phycocyanin, a pigment of Cyanobacteria (June 1-September 15 of 2008-2021) are clustered as multi-day events for Lake Mendota, Wisconsin. Long-range dependence, or memory, is the shortest for precipitation and the longest for phycocyanin. Extremes are clustered for all variates and those of P load and phycocyanin are most strongly clustered. Extremes of P load are predictable from extremes of precipitation, and precipitation and P load are correlated with later concentrations of phycocyanin. However, time delays from 1 to 60 d were found between P load extremes and the next extreme phycocyanin event within the same year of observation. Although most of the lake's P enters in extreme events, blooms of Cyanobacteria may be sustained by recycling and food web processes.
Assuntos
Cianobactérias , Fósforo , Fósforo/análise , Ficocianina , Lagos/microbiologia , WisconsinRESUMO
Global change is altering the vast amount of carbon cycled by microbes between land and freshwater, but how viruses mediate this process is poorly understood. Here, we show that viruses direct carbon cycling in lake sediments, and these impacts intensify with future changes in water clarity and terrestrial organic matter (tOM) inputs. Using experimental tOM gradients within sediments of a clear and a dark boreal lake, we identified 156 viral operational taxonomic units (vOTUs), of which 21% strongly increased with abundances of key bacteria and archaea, identified via metagenome-assembled genomes (MAGs). MAGs included the most abundant prokaryotes, which were themselves associated with dissolved organic matter (DOM) composition and greenhouse gas (GHG) concentrations. Increased abundances of virus-like particles were separately associated with reduced bacterial metabolism and with shifts in DOM toward amino sugars, likely released by cell lysis rather than higher molecular mass compounds accumulating from reduced tOM degradation. An additional 9.6% of vOTUs harbored auxiliary metabolic genes associated with DOM and GHGs. Taken together, these different effects on host dynamics and metabolism can explain why abundances of vOTUs rather than MAGs were better overall predictors of carbon cycling. Future increases in tOM quantity, but not quality, will change viral composition and function with consequences for DOM pools. Given their importance, viruses must now be explicitly considered in efforts to understand and predict the freshwater carbon cycle and its future under global environmental change.
Assuntos
Gases de Efeito Estufa , Vírus , Amino Açúcares/metabolismo , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Gases de Efeito Estufa/metabolismo , Lagos/microbiologia , Vírus/genética , Vírus/metabolismo , Água/metabolismoRESUMO
Considerable attention is given to absolute nutrient levels in lakes, rivers, and oceans, but less is paid to their relative concentrations, their nitrogen:phosphorus (N:P) stoichiometry, and the consequences of imbalanced stoichiometry. Here, we report 38 y of nutrient dynamics in Flathead Lake, a large oligotrophic lake in Montana, and its inflows. While nutrient levels were low, the lake had sustained high total N: total P ratios (TN:TP: 60 to 90:1 molar) throughout the observation period. N and P loading to the lake as well as loading N:P ratios varied considerably among years but showed no systematic long-term trend. Surprisingly, TN:TP ratios in river inflows were consistently lower than in the lake, suggesting that forms of P in riverine loading are removed preferentially to N. In-lake processes, such as differential sedimentation of P relative to N or accumulation of fixed N in excess of denitrification, likely also operate to maintain the lake's high TN:TP ratios. Regardless of causes, the lake's stoichiometric imbalance is manifested in P limitation of phytoplankton growth during early and midsummer, resulting in high C:P and N:P ratios in suspended particulate matter that propagate P limitation to zooplankton. Finally, the lake's imbalanced N:P stoichiometry appears to raise the potential for aerobic methane production via metabolism of phosphonate compounds by P-limited microbes. These data highlight the importance of not only absolute N and P levels in aquatic ecosystems, but also their stoichiometric balance, and they call attention to potential management implications of high N:P ratios.
Assuntos
Ecossistema , Lagos , Nitrogênio , Fósforo , Fitoplâncton , Zooplâncton , Animais , China , Monitoramento Ambiental , Eutrofização , Lagos/química , Lagos/microbiologia , Metano/biossíntese , Nitrogênio/análise , Nitrogênio/metabolismo , Organofosfonatos/metabolismo , Fósforo/análise , Fósforo/metabolismo , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Zooplâncton/crescimento & desenvolvimento , Zooplâncton/metabolismoRESUMO
Bacteria embellish their cell envelopes with a variety of specialized polysaccharides. Biosynthesis pathways for these glycans are complex, and final products vary greatly in their chemical structures, physical properties, and biological activities. This tremendous diversity comes from the ability to arrange complex pools of monosaccharide building blocks into polymers with many possible linkage configurations. Due to the complex chemistry of bacterial glycans, very few biosynthetic pathways have been defined in detail. As part of an initiative to characterize novel polysaccharide biosynthesis enzymes, we isolated a bacterium from Lake Michigan called Sphingomonas sp. LM7 that is proficient in exopolysaccharide (EPS) production. We identified genes that contribute to EPS biosynthesis in LM7 by screening a transposon mutant library for colonies displaying altered colony morphology. A gene cluster was identified that appears to encode a complete wzy/wzx-dependent polysaccharide assembly pathway. Deleting individual genes in this cluster caused a non-mucoid phenotype and a corresponding loss of EPS secretion, confirming the role of this gene cluster in polysaccharide production. We extracted EPS from LM7 cultures and determined that it contains a linear chain of 3- and 4-linked glucose, galactose, and glucuronic acid residues. Finally, we show that the EPS pathway in Sphingomonas sp. LM7 diverges from that of sphingan-family EPSs and adhesive polysaccharides such as the holdfast that are present in other Alphaproteobacteria. Our approach of characterizing complete biosynthetic pathways holds promise for engineering polysaccharides with valuable properties. IMPORTANCE: Bacteria produce complex polysaccharides that serve a range of biological functions. These polymers often have properties that make them attractive for industrial applications, but they remain woefully underutilized. In this work, we studied a novel polysaccharide called promonan that is produced by Sphingomonas sp. LM7, a bacterium we isolated from Lake Michigan. We extracted promonan from LM7 cultures and identified which sugars are present in the polymer. We also identified the genes responsible for polysaccharide production. Comparing the promonan genes to those of other bacteria showed that promonan is distinct from previously characterized polysaccharides. We conclude by discussing how the promonan pathway could be used to produce new polysaccharides through genetic engineering.
Assuntos
Família Multigênica , Polissacarídeos Bacterianos , Sphingomonas , Sphingomonas/genética , Sphingomonas/metabolismo , Sphingomonas/isolamento & purificação , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Água Doce/microbiologia , Lagos/microbiologiaRESUMO
Biological networks serve a crucial role in elucidating intricate biological processes. While interspecies environmental interactions have been extensively studied, the exploration of gene interactions within species, particularly among individual microorganisms, is less developed. The increasing amount of microbiome genomic data necessitates a more nuanced analysis of microbial genome structures and functions. In this context, we introduce a complex structure using higher-order network theory, "Solid Motif Structures (SMS)", via a hierarchical biological network analysis of genomes within the same genus, effectively linking microbial genome structure with its function. Leveraging 162 high-quality genomes of Microcystis, a key freshwater cyanobacterium within microbial ecosystems, we established a genome structure network. Employing deep learning techniques, such as adaptive graph encoder, we uncovered 27 critical functional subnetworks and their associated SMSs. Incorporating metagenomic data from seven geographically distinct lakes, we conducted an investigation into Microcystis' functional stability under varying environmental conditions, unveiling unique functional interaction models for each lake. Our work compiles these insights into an extensive resource repository, providing novel perspectives on the functional dynamics within Microcystis. This research offers a hierarchical network analysis framework for understanding interactions between microbial genome structures and functions within the same genus.
Assuntos
Genoma Bacteriano , Microcystis , Microcystis/genética , Lagos/microbiologia , Redes Reguladoras de Genes , Metagenômica/métodos , Metagenoma , Genoma Microbiano , Genômica/métodos , Aprendizado ProfundoRESUMO
Subsurface microorganisms make up the majority of Earth's microbial biomass, but ecological processes governing surface communities may not explain community patterns at depth because of burial. Depth constrains dispersal and energy availability, and when combined with geographic isolation across landscapes, may influence community assembly. We sequenced the 16S rRNA gene of bacteria and archaea from 48 sediment cores across 36 lakes in four disconnected mountain ranges in Wyoming, USA and used null models to infer assembly processes across depth, spatial isolation, and varying environments. Although we expected strong dispersal limitations across these isolated settings, community composition was primarily shaped by environmental selection. Communities consistently shifted from domination by organisms that degrade organic matter at the surface to methanogenic, low-energy adapted taxa in deeper zones. Stochastic processes-like dispersal limitation-contributed to differences among lakes, but because these effects weakened with depth, selection processes ultimately governed subsurface microbial biogeography.
Assuntos
Lagos , Microbiota , Lagos/microbiologia , RNA Ribossômico 16S/genética , Archaea/genética , Bactérias/genética , Microbiota/genéticaRESUMO
Big Soda Lake, Nevada, is a multi-extreme meromictic lake, whose hypersaline hyperalkaline bottom waters feature permanent anoxia and high concentrations of arsenic, sulphide and ammonia. These properties make Big Soda Lake-and the adjacent Little Soda Lake-a fascinating system for exploring life's boundaries, discovering novel microbial taxa and identifying biotechnologically useful strains. To date, the taxonomic diversity and metabolic capabilities of microorganisms in this system remain largely unknown. Here, we fill this gap using microbiome surveys across the Big and Little Soda Lake water columns, including 16S rRNA sequencing, fungal ITS2 sequencing and gene- and genome-resolved metagenomics. We accompany these surveys with measurements of salinity, pH, temperature, oxygen, ammonium and ammonia concentrations. Our analyses reveal rich bacterial communities, taxonomically and functionally differentiated along Big Soda Lake's oxycline and, to lesser extent, between lakes. Fungal communities were dominated by a small number of families, while nearly no archaea were detected. Pathways related to perchlorate reduction, anoxygenic phototrophy, fermentation, dissimilatory metabolism of arsenite/arsenate, sulphur compounds, nitrogen compounds and hydrogen, were particularly prevalent. A total of 129 high-quality bacterial and archaeal metagenome-assembled genomes (completeness ≥ 80%, contamination ≤ 5%) were recovered, yielding insight into the taxonomic distribution of microbial metabolic pathways.
Assuntos
Amônia , Lagos , Humanos , Lagos/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Amônia/metabolismo , Nevada , Filogenia , BactériasRESUMO
The freshwater microbiome harbours numerous copiotrophic bacteria that rapidly respond to elevated substrate concentrations. We hypothesized that their high centimetre-scale beta diversity in lake water translates into pronounced metabolic variability, and that a large fraction of microbial 'metabolic potential' originates from point sources such as fragile organic aggregates. Three experiments were conducted in pre-alpine Lake Zurich over the course of a harmful cyanobacterial bloom: Spatially explicit 9 ml 'syringe' samples were collected in situ at centimetre distances along with equally sized 'mixed' samples drawn from pre-homogenized lake water and incubated in BIOLOG EcoPlate substrate arrays. Fewer compounds promoted bacterial growth in the syringe than in the mixed samples, in particular during the pre- and late bloom periods. Community analysis of enrichments on three frequently utilized substrates revealed both pronounced heterogeneity and functional redundancy. Bacterial consortia had higher richness in mixed than in syringe samples and differed in composition. Members of the Enterobacter cloacae complex dominated the EcoPlate assemblages during the mid-bloom period irrespective of treatment or substrate. We conclude that small-scale functional dispersal limitation among free-living copiotrophs in lake water reduces local biotransformation potential, and that lacustrine blooms of harmful cyanobacteria can be environmental reservoirs for metabolically versatile potential pathogens.
Assuntos
Cianobactérias , Água Doce , Lagos , Microbiota , Lagos/microbiologia , Cianobactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Água Doce/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Suíça , Consórcios Microbianos/fisiologiaRESUMO
Nitrification is an important control on the form and distribution of nitrogen in freshwater ecosystems. However, the seasonality of nitrogen pools and the diversity of organisms catalyzing this process have not been well documented in oligotrophic lakes. Here, we show that nitrogen pools and nitrifying organisms in Flathead Lake are temporally and vertically dynamic, with nitrifiers displaying specific preferences depending on the season. While the ammonia-oxidizing bacteria (AOB) Nitrosomonadaceae and nitrite-oxidizing bacteria (NOB) Nitrotoga dominate at depth in the summer, the ammonia-oxidizing archaea (AOA) Nitrososphaerota and NOB Nitrospirota become abundant in the winter. Given clear seasonality in ammonium, with higher concentrations during the summer, we hypothesize that the succession between these two nitrifying groups may be due to nitrogen affinity, with AOB more competitive when ammonia concentrations are higher and AOA when they are lower. Nitrifiers in Flathead Lake share more than 99% average nucleotide identity with those reported in other North American lakes but are distinct from those in Europe and Asia, indicating a role for geographic isolation as a factor controlling speciation among nitrifiers. Our study shows there are seasonal shifts in nitrogen pools and nitrifying populations, highlighting the dynamic spatial and temporal nature of nitrogen cycling in freshwater ecosystems.
Assuntos
Lagos , Nitrosomonadaceae , Lagos/microbiologia , Estações do Ano , Ecossistema , Amônia , Oxirredução , Archaea/genética , Nitrificação , Nitritos , Nitrogênio , Dinâmica Populacional , FilogeniaRESUMO
Lake Untersee, a lake in Antarctica that is perennially covered with ice, is home to unique microbial structures that are not lithified. We have evaluated the structure of the community and its metabolic potential across the pigmented upper layers and the sediment-enriched deeper layers in these pinnacle and cone-shaped microbial structures using metagenomics. These microbial structures are inhabited by distinct communities. The upper layers of the cone-shaped structures have a higher abundance of the cyanobacterial MAG Microcoleus, while the pinnacle-shaped structures have a higher abundance of Elainellacea MAG. This suggests that cyanobacteria influence the morphologies of the mats. We identified stark contrasts in the composition of the community and its metabolic potential between the upper and lower layers of the mat. The upper layers of the mat, which receive light, have an increased abundance of photosynthetic pathways. In contrast, the lower layer has an increased abundance of heterotrophic pathways. Our results also showed that Lake Untersee is the first Antarctic lake with a substantial presence of ammonia-oxidizing Nitrospiracea and amoA genes. The genomic capacity for recycling biological molecules was prevalent across metagenome-assembled genomes (MAGs) that cover 19 phyla. This highlights the importance of nutrient scavenging in ultra-oligotrophic environments. Overall, our study provides new insights into the formation of microbial structures and the potential metabolic complexity of Antarctic laminated microbial mats. These mats are important environments for biodiversity that drives biogeochemical cycling in polar deserts.
Assuntos
Bactérias , Cianobactérias , Lagos , Metagenômica , Regiões Antárticas , Lagos/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/metabolismo , Microbiota/genética , Filogenia , Sedimentos Geológicos/microbiologia , Metagenoma , Genoma Bacteriano , Archaea/genética , Archaea/classificação , Archaea/metabolismoRESUMO
Understanding intricate microbial interactions in the environment is crucial. This is especially true for the relationships between nutrients and bacteria, as phosphorus, nitrogen and organic carbon availability are known to influence bacterial population dynamics. It has been suggested that low nutrient conditions prompt the evolutionary process of genome streamlining. This process helps conserve scarce nutrients and allows for proliferation. Genome streamlining is associated with genomic properties such as %GC content, genes encoding sigma factors, percent coding regions, gene redundancy, and functional shifts in processes like cell motility and ATP binding cassette transporters, among others. The current study aims to unveil the impact of nutrition on the genome size, %GC content, and functional properties of pelagic freshwater bacteria. We do this at finer taxonomic resolutions for many metagenomically characterized communities. Our study confirms the interplay of trophic level and genomic properties. It also highlights that different nutrient types, particularly phosphorus and nitrogen, impact these properties differently. We observed a covariation of functional traits with genome size. Larger genomes exhibit enriched pathways for motility, environmental interaction, and regulatory genes. ABC transporter genes reflect the availability of nutrients in the environment, with small genomes presumably relying more on metabolites from other organisms. We also discuss the distinct strategies different phyla adopt to adapt to oligotrophic environments. The findings contribute to our understanding of genomic adaptations within complex microbial communities.
Assuntos
Bactérias , Genoma Bacteriano , Lagos , Metagenômica , Nitrogênio , Nutrientes , Fósforo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Metagenômica/métodos , Fósforo/metabolismo , Nutrientes/metabolismo , Nitrogênio/metabolismo , Lagos/microbiologia , Europa (Continente) , Composição de Bases , Carbono/metabolismo , Tamanho do Genoma , Microbiota/genética , FilogeniaRESUMO
Oligotrophic deep-water lakes are unique and sensitive ecosystems with limited nutrient availability. Understanding bacterial communities within these lakes is crucial for assessing ecosystem health, biogeochemical cycling, and responses to environmental changes. In this study, we investigated the seasonal and vertical dynamics of both free-living (FL) and particle-attached (PA) bacteria in Lake Fuxian, a typical oligotrophic deep freshwater lake in southeast China. Our findings revealed distinct seasonal and vertical dynamics of FL and PA bacterial communities, driven by similar physiochemical environmental factors. PA bacteria exhibited higher α- and ß-diversity and were enriched with Proteobacteria, Cyanobacteria, Firmicutes, Patescibacteria, Planctomycetota, and Verrucomicrobiota, while FL bacteria were enriched with Actinobacteria and Bacteroidota. FL bacteria showed enrichment in putative functions related to chemoheterotrophy and aerobic anoxygenic photosynthesis, whereas the PA fraction was enriched with intracellular parasites (mainly contributed by Rickettsiales, Chlamydiales, and Legionellales) and nitrogen metabolism functions. Deterministic processes predominantly shaped the assembly of both FL and PA bacterial communities, with stochastic processes playing a greater role in the FL fraction. Network analysis revealed extensive species interactions, with a higher proportion of positively correlated edges in the PA network, indicating mutualistic or cooperative interactions. Cyanobium, Comamonadaceae, and Roseomonas were identified as keystone taxa in the PA network, underscoring potential cooperation between autotrophic and heterotrophic bacteria in organic particle microhabitats. Overall, the disparities in bacterial diversity, community composition, putative function, and network characteristics between FL and PA fractions highlight their adaptation to distinct ecological niches within these unique lake ecosystems.IMPORTANCEUnderstanding the diversity of microbial communities, their assembly mechanisms, and their responses to environmental changes is fundamental to the study of aquatic microbial ecology. Oligotrophic deep-water lakes are fragile ecosystems with limited nutrient resources, rendering them highly susceptible to environmental fluctuations. Examining different bacterial types within these lakes offers valuable insights into the intricate mechanisms governing community dynamics and adaptation strategies across various scales. In our investigation of oligotrophic deep freshwater Lake Fuxian in China, we explored the seasonal and vertical dynamics of two bacterial types: free-living (FL) and particle-attached (PA). Our findings unveiled distinct patterns in the diversity, composition, and putative functions of these bacteria, all shaped by environmental factors. Understanding these subtleties provides insight into bacterial interactions, thereby influencing the overall ecosystem functioning. Ultimately, our research illuminates the adaptation and roles of FL and PA bacteria within these unique lake environments, contributing significantly to our broader comprehension of ecosystem stability and health.
Assuntos
Bactérias , Lagos , Microbiota , Lagos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , China , Ecossistema , Estações do AnoRESUMO
Biodegradable plastics are urgently needed to replace petroleum-derived polymeric materials and prevent their accumulation in the environment. To this end, we isolated and characterized a halophilic and alkaliphilic bacterium from the Great Salt Lake in Utah. The isolate was identified as a Halomonas species and designated "CUBES01." Full-genome sequencing and genomic reconstruction revealed the unique genetic traits and metabolic capabilities of the strain, including the common polyhydroxyalkanoate (PHA) biosynthesis pathway. Fluorescence staining identified intracellular polyester granules that accumulated predominantly during the strain's exponential growth, a feature rarely found among natural PHA producers. CUBES01 was found to metabolize a range of renewable carbon feedstocks, including glucosamine and acetyl-glucosamine, as well as sucrose, glucose, fructose, and further glycerol, propionate, and acetate. Depending on the substrate, the strain accumulated up to ~60% of its biomass (dry wt/wt) in poly(3-hydroxybutyrate), while reaching a doubling time of 1.7 h at 30°C and an optimum osmolarity of 1 M sodium chloride and a pH of 8.8. The physiological preferences of the strain may not only enable long-term aseptic cultivation but also facilitate the release of intracellular products through osmolysis. The development of a minimal medium also allowed the estimation of maximum polyhydroxybutyrate production rates, which were projected to exceed 5 g/h. Finally, also, the genetic tractability of the strain was assessed in conjugation experiments: two orthogonal plasmid vectors were stable in the heterologous host, thereby opening the possibility of genetic engineering through the introduction of foreign genes. IMPORTANCE: The urgent need for renewable replacements for synthetic materials may be addressed through microbial biotechnology. To simplify the large-scale implementation of such bio-processes, robust cell factories that can utilize sustainable and widely available feedstocks are pivotal. To this end, non-axenic growth-associated production could reduce operational costs and enhance biomass productivity, thereby improving commercial competitiveness. Another major cost factor is downstream processing, especially in the case of intracellular products, such as bio-polyesters. Simplified cell-lysis strategies could also further improve economic viability.
Assuntos
Halomonas , Poliésteres , Halomonas/genética , Halomonas/metabolismo , Halomonas/crescimento & desenvolvimento , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Utah , Hidroxibutiratos/metabolismo , Plásticos Biodegradáveis/metabolismo , Lagos/microbiologia , Genoma Bacteriano , Poli-HidroxibutiratosRESUMO
BACKGROUND: Polyhydroxyalkanoates (PHAs) are optimal potential materials for industrial and medical uses, characterized by exceptional sustainability, biodegradability, and biocompatibility. These are primarily from various bacteria and archaea. Bacterial strains with effective PHA formation capabilities and minimal production cost form the foundation for PHA production. Detailed genomic analysis of these PHA-generating bacteria is vital to understand their PHA production pathways and enhance their synthesis capability. RESULTS: ZZQ-149, a halophilic, PHA-producing bacterium, was isolated from the sediment of China's Qinghai Lake. Here, we decoded the full genome of ZZQ-149 using Single Molecule Real Time (SMRT) technology based on PacBio RS II platform, coupled with Illumina sequencing platforms. Physiological, chemotaxonomic traits, and phylogenetic analysis based on 16 S rRNA gene and single copy core genes of ninety-nine Halomonas type strains identified ZZQ-149 as the type strain of Halomonas qinghailakensis. Furthermore, a low average nucleotide identity (ANI, < 95%) delineated the genetic differences between ZZQ-149 and other Halomonas species. The ZZQ-149 genome, with a DNA G + C content of 52%, comprises a chromosome (3, 798, 069 bps) and a plasmid (6, 107 bps). The latter encodes the toxin-antitoxin system, BrnT/BrnA. Through comprehensive genome sequencing and analysis, we identified multiple PHA-synthesizing enzymes and an unprecedented combination of eight PHA-synthesizing pathways in ZZQ-149. CONCLUSIONS: Being a halophilic, PHA-producing bacterium, ZZQ-149 exhibits potential as a high PHA producer for engineered bacteria via genome editing while ensuring low-cost PHA production through continuous, unsterilized fermentation.
Assuntos
Genoma Bacteriano , Halomonas , Filogenia , Poli-Hidroxialcanoatos , RNA Ribossômico 16S , Poli-Hidroxialcanoatos/metabolismo , Halomonas/genética , Halomonas/metabolismo , Halomonas/classificação , Genoma Bacteriano/genética , RNA Ribossômico 16S/genética , China , Fenótipo , Genômica/métodos , Sedimentos Geológicos/microbiologia , DNA Bacteriano/genética , Lagos/microbiologia , Análise de Sequência de DNARESUMO
BACKGROUND: Oligotrophy and hypereutrophy represent the two extremes of lake trophic states, and understanding the distribution of bacterial communities across these contrasting conditions is crucial for advancing aquatic microbial research. Despite the significance of these extreme trophic states, bacterial community characteristics and co-occurrence patterns in such environments have been scarcely interpreted. To bridge this knowledge gap, we collected 60 water samples from Lake Fuxian (oligotrophic) and Lake Xingyun (hypereutrophic) during different hydrological periods. RESULTS: Employing 16S rRNA gene sequencing, our findings revealed distinct community structures and metabolic potentials in bacterial communities of hypereutrophic and oligotrophic lake ecosystems. The hypereutrophic ecosystem exhibited higher bacterial α- and ß-diversity compared to the oligotrophic ecosystem. Actinobacteria dominated the oligotrophic Lake Fuxian, while Cyanobacteria, Proteobacteria, and Bacteroidetes were more prevalent in the hypereutrophic Lake Xingyun. Functions associated with methanol oxidation, methylotrophy, fermentation, aromatic compound degradation, nitrogen/nitrate respiration, and nitrogen/nitrate denitrification were enriched in the oligotrophic lake, underscoring the vital role of bacteria in carbon and nitrogen cycling. In contrast, functions related to ureolysis, human pathogens, animal parasites or symbionts, and phototrophy were enriched in the hypereutrophic lake, highlighting human activity-related disturbances and potential pathogenic risks. Co-occurrence network analysis unveiled a more complex and stable bacterial network in the hypereutrophic lake compared to the oligotrophic lake. CONCLUSION: Our study provides insights into the intricate relationships between trophic states and bacterial community structure, emphasizing significant differences in diversity, community composition, and network characteristics between extreme states of oligotrophy and hypereutrophy. Additionally, it explores the nuanced responses of bacterial communities to environmental conditions in these two contrasting trophic states.
Assuntos
Bactérias , Biodiversidade , Lagos , Filogenia , RNA Ribossômico 16S , Lagos/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Microbiota/genética , Ecossistema , Microbiologia da Água , China , Nitrogênio/metabolismo , Análise de Sequência de DNARESUMO
BACKGROUND: Saline lakes are home to various archaea that play special and crucial roles in the global biogeochemical cycle. The Qinghai-Tibet Plateau hosts a large number of lakes with diverse salinity ranging from 0.1 to over 400 g/L, harboring complex and diverse archaea. To the best of our knowledge, the formation mechanisms and potential ecological roles of archaea in Qinghai-Tibetan Plateau saline lakes remain largely unknown. RESULTS: Using High-throughput Illumina sequencing, we uncovered the vastly distinct archaea communities between two typical saline lakes with significant salinity differences on the Qinghai Tibet Plateau (Qinghai saline lake and Chaka hypersaline lake) and suggested archaea played different important roles in methanogenesis-related and nitrate reduction-related functions of these two lakes, respectively. Rather than the individual effect of salinity, the composite effect of salinity with diverse environmental parameters (e.g., temperature, chlorophyll a, total nitrogen, and total phosphorus) dominated the explanation of the variations in archaeal community structure in different habitats. Based on the network analysis, we further found the correlations between dominant archaeal OTUs were tight but significantly different between the two habitats, implying that archaeal interactions may also largely determine the shape of archaeal communities. CONCLUSION: The present study improved our understanding of the structure and function of archaea in different saline lakes on the Qinghai-Tibet Plateau and provided a new perspective on the mechanisms underlying shaping their communities.