Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.475
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 170(1): 158-171.e8, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666117

RESUMO

Autophagy degrades cytoplasmic components and is important for development and human health. Although autophagy is known to be influenced by systemic intercellular signals, the proteins that control autophagy are largely thought to function within individual cells. Here, we report that Drosophila macroglobulin complement-related (Mcr), a complement ortholog, plays an essential role during developmental cell death and inflammation by influencing autophagy in neighboring cells. This function of Mcr involves the immune receptor Draper, suggesting a relationship between autophagy and the control of inflammation. Interestingly, Mcr function in epithelial cells is required for macrophage autophagy and migration to epithelial wounds, a Draper-dependent process. This study reveals, unexpectedly, that complement-related from one cell regulates autophagy in neighboring cells via an ancient immune signaling program.


Assuntos
Autofagia , Proteínas do Sistema Complemento/imunologia , Drosophila melanogaster/crescimento & desenvolvimento , Animais , Citocinas , Proteínas de Drosophila , Drosophila melanogaster/citologia , Drosophila melanogaster/imunologia , Inflamação/imunologia , Larva/crescimento & desenvolvimento , Larva/imunologia , Macrófagos/imunologia , Glândulas Salivares/citologia , Glândulas Salivares/crescimento & desenvolvimento , Glândulas Salivares/metabolismo , Serpinas
2.
Nat Immunol ; 20(5): 571-580, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936493

RESUMO

Fine control of macrophage activation is needed to prevent inflammatory disease, particularly at barrier sites such as the lungs. However, the dominant mechanisms that regulate the activation of pulmonary macrophages during inflammation are poorly understood. We found that alveolar macrophages (AlvMs) were much less able to respond to the canonical type 2 cytokine IL-4, which underpins allergic disease and parasitic worm infections, than macrophages from lung tissue or the peritoneal cavity. We found that the hyporesponsiveness of AlvMs to IL-4 depended upon the lung environment but was independent of the host microbiota or the lung extracellular matrix components surfactant protein D (SP-D) and mucin 5b (Muc5b). AlvMs showed severely dysregulated metabolism relative to that of cavity macrophages. After removal from the lungs, AlvMs regained responsiveness to IL-4 in a glycolysis-dependent manner. Thus, impaired glycolysis in the pulmonary niche regulates AlvM responsiveness during type 2 inflammation.


Assuntos
Inflamação/imunologia , Pulmão/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Animais , Inflamação/genética , Inflamação/metabolismo , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-4/metabolismo , Larva/imunologia , Larva/fisiologia , Pulmão/metabolismo , Pulmão/patologia , Ativação de Macrófagos/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/parasitologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mucina-5B/genética , Mucina-5B/imunologia , Mucina-5B/metabolismo , Nippostrongylus/imunologia , Nippostrongylus/fisiologia , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/imunologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Infecções por Strongylida/genética , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia
3.
Nature ; 631(8020): 350-359, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926577

RESUMO

Insect respiration has long been thought to be solely dependent on an elaborate tracheal system without assistance from the circulatory system or immune cells1,2. Here we describe that Drosophila crystal cells-myeloid-like immune cells called haemocytes-control respiration by oxygenating Prophenoloxidase 2 (PPO2) proteins. Crystal cells direct the movement of haemocytes between the trachea of the larval body wall and the circulation to collect oxygen. Aided by copper and a neutral pH, oxygen is trapped in the crystalline structures of PPO2 in crystal cells. Conversely, PPO2 crystals can be dissolved when carbonic anhydrase lowers the intracellular pH and then reassembled into crystals in cellulo by adhering to the trachea. Physiologically, larvae lacking crystal cells or PPO2, or those expressing a copper-binding mutant of PPO2, display hypoxic responses under normoxic conditions and are susceptible to hypoxia. These hypoxic phenotypes can be rescued by hyperoxia, expression of arthropod haemocyanin or prevention of larval burrowing activity to expose their respiratory organs. Thus, we propose that insect immune cells collaborate with the tracheal system to reserve and transport oxygen through the phase transition of PPO2 crystals, facilitating internal oxygen homeostasis in a process that is comparable to vertebrate respiration.


Assuntos
Catecol Oxidase , Proteínas de Drosophila , Drosophila melanogaster , Precursores Enzimáticos , Hemócitos , Oxigênio , Transição de Fase , Respiração , Animais , Feminino , Masculino , Transporte Biológico , Anidrases Carbônicas/metabolismo , Catecol Oxidase/metabolismo , Cobre/metabolismo , Cristalização , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Precursores Enzimáticos/metabolismo , Hemocianinas/metabolismo , Hemócitos/imunologia , Hemócitos/metabolismo , Homeostase , Concentração de Íons de Hidrogênio , Hiperóxia/metabolismo , Hipóxia/metabolismo , Larva/anatomia & histologia , Larva/citologia , Larva/imunologia , Larva/metabolismo , Oxigênio/metabolismo
4.
Immunity ; 52(4): 606-619.e6, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32160524

RESUMO

Group 2 innate lymphoid cells (ILC2s) regulate immunity, inflammation, and tissue homeostasis. Two distinct subsets of ILC2s have been described: steady-state natural ILC2s and inflammatory ILC2s, which are elicited following helminth infection. However, how tissue-specific cues regulate these two subsets of ILC2s and their effector functions remains elusive. Here, we report that interleukin-33 (IL-33) promotes the generation of inflammatory ILC2s (ILC2INFLAM) via induction of the enzyme tryptophan hydroxylase 1 (Tph1). Tph1 expression was upregulated in ILC2s upon activation with IL-33 or following helminth infection in an IL-33-dependent manner. Conditional deletion of Tph1 in lymphocytes resulted in selective impairment of ILC2INFLAM responses and increased susceptibility to helminth infection. Further, RNA sequencing analysis revealed altered gene expression in Tph1 deficient ILC2s including inducible T cell co-stimulator (Icos). Collectively, these data reveal a previously unrecognized function for IL-33, Tph1, and ICOS in promoting inflammatory ILC2 responses and type 2 immunity at mucosal barriers.


Assuntos
Imunidade Celular , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Interleucina-33/imunologia , Nippostrongylus/imunologia , Infecções por Strongylida/imunologia , Subpopulações de Linfócitos T/imunologia , Triptofano Hidroxilase/imunologia , Animais , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Suscetibilidade a Doenças , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Imunidade nas Mucosas , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Interleucina-33/genética , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/patogenicidade , Linfonodos/imunologia , Linfonodos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nippostrongylus/crescimento & desenvolvimento , Nippostrongylus/patogenicidade , Cultura Primária de Células , Transdução de Sinais , Infecções por Strongylida/genética , Infecções por Strongylida/parasitologia , Infecções por Strongylida/patologia , Subpopulações de Linfócitos T/classificação , Subpopulações de Linfócitos T/parasitologia , Triptofano Hidroxilase/genética
5.
Immunity ; 48(5): 1006-1013.e6, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768163

RESUMO

Tissue damage and infection are deemed likewise triggers of innate immune responses. But whereas neutrophil responses to microbes are generally protective, neutrophil recruitment into damaged tissues without infection is deleterious. Why neutrophils respond to tissue damage and not just to microbes is unknown. Is it a flaw of the innate immune system that persists because evolution did not select against it, or does it provide a selective advantage? Here we dissect the contribution of tissue damage signaling to antimicrobial immune responses in a live vertebrate. By intravital imaging of zebrafish larvae, a powerful model for innate immunity, we show that prevention of tissue damage signaling upon microbial ear infection abrogates leukocyte chemotaxis and reduces animal survival, at least in part, through suppression of cytosolic phospholipase A2 (cPla2), which integrates tissue damage- and microbe-derived cues. Thus, microbial cues are insufficient, and damage signaling is essential for antimicrobial neutrophil responses in zebrafish.


Assuntos
Doenças dos Peixes/imunologia , Infiltração de Neutrófilos/imunologia , Transdução de Sinais/imunologia , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Doenças dos Peixes/microbiologia , Imunidade Inata/imunologia , Larva/imunologia , Larva/microbiologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fosfolipases A2 Citosólicas/imunologia , Fosfolipases A2 Citosólicas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/microbiologia , Proteínas de Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/metabolismo
6.
Nat Immunol ; 15(10): 938-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25173346

RESUMO

We examined the role of innate cells in acquired resistance to the natural murine parasitic nematode, Nippostrongylus brasiliensis. Macrophages obtained from lungs as late as 45 d after N. brasiliensis inoculation were able to transfer accelerated parasite clearance to naive recipients. Primed macrophages adhered to larvae in vitro and triggered increased mortality of parasites. Neutrophil depletion in primed mice abrogated the protective effects of transferred macrophages and inhibited their in vitro binding to larvae. Neutrophils in parasite-infected mice showed a distinct transcriptional profile and promoted alternatively activated M2 macrophage polarization through secretory factors including IL-13. Differentially activated neutrophils in the context of a type 2 immune response therefore prime a long-lived effector macrophage phenotype that directly mediates rapid nematode damage and clearance.


Assuntos
Imunidade Adaptativa/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Nippostrongylus/imunologia , Infecções por Strongylida/imunologia , Animais , Adesão Celular/imunologia , Adesão Celular/fisiologia , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Resistência à Doença/imunologia , Feminino , Citometria de Fluxo , Interações Hospedeiro-Parasita/imunologia , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-13/metabolismo , Subunidade alfa de Receptor de Interleucina-4/genética , Subunidade alfa de Receptor de Interleucina-4/imunologia , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Larva/imunologia , Larva/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/parasitologia , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/metabolismo , Nippostrongylus/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções por Strongylida/genética , Infecções por Strongylida/parasitologia , Transcriptoma/imunologia
7.
J Immunol ; 213(4): 469-480, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38922186

RESUMO

Neutrophils accumulate early in tissue injury. However, the cellular and functional heterogeneity of neutrophils during homeostasis and in response to tissue damage remains unclear. In this study, we use larval zebrafish to understand neutrophil responses to thermal injury. Single-cell transcriptional mapping of myeloid cells during a 3-d time course in burn and control larvae revealed distinct neutrophil subsets and their cell-cell interactions with macrophages across time and conditions. The trajectory formed by three zebrafish neutrophil subsets resembles human neutrophil maturation, with varying transition patterns between conditions. Through ligand-receptor cell-cell interaction analysis, we found that neutrophils communicate more in burns in a pathway and temporal manner. Finally, we identified the correlation between zebrafish myeloid signatures and human burn severity, establishing GPR84+ neutrophils as a potential marker of early innate immune response in burns. This work builds a comparative single-cell transcriptomic framework to identify neutrophil markers of tissue damage using model organisms.


Assuntos
Queimaduras , Larva , Neutrófilos , Análise de Célula Única , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , Neutrófilos/imunologia , Queimaduras/imunologia , Larva/imunologia , Larva/genética , Transcriptoma , Humanos , Imunidade Inata , Modelos Animais de Doenças , Macrófagos/imunologia , Comunicação Celular/imunologia
8.
J Immunol ; 213(7): 971-987, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39178124

RESUMO

Glucocorticoids are a major class of therapeutic anti-inflammatory and immunosuppressive drugs prescribed to patients with inflammatory diseases, to avoid transplant rejection, and as part of cancer chemotherapy. However, exposure to these drugs increases the risk of opportunistic infections such as with the fungus Aspergillus fumigatus, which causes mortality in >50% of infected patients. The mechanisms by which glucocorticoids increase susceptibility to A. fumigatus are poorly understood. In this article, we used a zebrafish larva Aspergillus infection model to identify innate immune mechanisms altered by glucocorticoid treatment. Infected larvae exposed to dexamethasone succumb to infection at a significantly higher rate than control larvae. However, both macrophages and neutrophils are still recruited to the site of infection, and dexamethasone treatment does not significantly affect fungal spore killing. Instead, the primary effect of dexamethasone manifests later in infection with treated larvae exhibiting increased invasive hyphal growth. In line with this, dexamethasone predominantly inhibits neutrophil function rather than macrophage function. Dexamethasone-induced mortality also depends on the glucocorticoid receptor. Dexamethasone partially suppresses NF-κB activation at the infection site by inducing the transcription of IκB via the glucocorticoid receptor. Independent CRISPR/Cas9 targeting of IKKγ to prevent NF-κB activation also increases invasive A. fumigatus growth and larval mortality. However, dexamethasone treatment of IKKγ crispant larvae further increases invasive hyphal growth and host mortality, suggesting that dexamethasone may suppress other pathways in addition to NF-κB to promote host susceptibility. Collectively, we find that dexamethasone acts through the glucocorticoid receptor to suppress NF-κB-mediated neutrophil control of A. fumigatus hyphae in zebrafish larvae.


Assuntos
Aspergilose , Aspergillus fumigatus , Dexametasona , Glucocorticoides , NF-kappa B , Neutrófilos , Peixe-Zebra , Animais , Aspergillus fumigatus/imunologia , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Peixe-Zebra/imunologia , NF-kappa B/metabolismo , Aspergilose/imunologia , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Hifas/imunologia , Hifas/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Larva/imunologia , Larva/microbiologia , Receptores de Glucocorticoides/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças , Imunidade Inata/efeitos dos fármacos , Humanos
9.
BMC Biol ; 22(1): 158, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075478

RESUMO

BACKGROUND: Trichinella spiralis (T. spiralis) is a parasitic helminth that causes a globally prevalent neglected zoonotic disease, and worms at different developmental stages (muscle larvae, adult worms, newborn larvae) induce immune attack at different infection sites, causing serious harm to host health. Several innate immune cells release extracellular traps (ETs) to entrap and kill most pathogens that invade the body. In response, some unicellular pathogens have evolved a strategy to escape capture by ETs through the secretion of nucleases, but few related studies have investigated multicellular helminths. RESULTS: In the present study, we observed that ETs from neutrophils capture adult worms of T. spiralis, while ETs from macrophages trap muscle larvae and newborn larvae, and ETs had a killing effect on parasites in vitro. To defend against this immune attack, T. spiralis secretes plancitoxin-1, a DNase II-like protein, to degrade ETs and escape capture, which is essential for the survival of T. spiralis in the host. CONCLUSIONS: In summary, these findings demonstrate that T. spiralis escapes ET-mediated capture by secreting deoxyribonuclease as a potential conserved immune evasion mechanism, and plancitoxin-1 could be used as a potential vaccine candidate.


Assuntos
Armadilhas Extracelulares , Evasão da Resposta Imune , Trichinella spiralis , Animais , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Proteínas de Helminto/metabolismo , Larva/imunologia , Larva/parasitologia , Trichinella spiralis/fisiologia , Trichinella spiralis/imunologia
10.
BMC Biol ; 22(1): 89, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644510

RESUMO

BACKGROUND: Innate immune responses can be activated by pathogen-associated molecular patterns (PAMPs), danger signals released by damaged tissues, or the absence of self-molecules that inhibit immunity. As PAMPs are typically conserved across broad groups of pathogens but absent from the host, it is unclear whether they allow hosts to recognize parasites that are phylogenetically similar to themselves, such as parasitoid wasps infecting insects. RESULTS: Parasitoids must penetrate the cuticle of Drosophila larvae to inject their eggs. In line with previous results, we found that the danger signal of wounding triggers the differentiation of specialized immune cells called lamellocytes. However, using oil droplets to mimic infection by a parasitoid wasp egg, we found that this does not activate the melanization response. This aspect of the immune response also requires exposure to parasite molecules. The unidentified factor enhances the transcriptional response in hemocytes and induces a specific response in the fat body. CONCLUSIONS: We conclude that a combination of danger signals and the recognition of nonself molecules is required to activate Drosophila's immune response against parasitic insects.


Assuntos
Hemócitos , Interações Hospedeiro-Parasita , Imunidade Inata , Vespas , Animais , Vespas/fisiologia , Interações Hospedeiro-Parasita/imunologia , Hemócitos/imunologia , Drosophila melanogaster/parasitologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/fisiologia , Larva/imunologia , Larva/parasitologia , Drosophila/parasitologia , Drosophila/imunologia
11.
EMBO J ; 39(12): e104486, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32162708

RESUMO

Immune cells provide defense against non-self and have recently been shown to also play key roles in diverse processes such as development, metabolism, and tumor progression. The heterogeneity of Drosophila immune cells (hemocytes) remains an open question. Using bulk RNA sequencing, we find that the hemocytes display distinct features in the embryo, a closed and rapidly developing system, compared to the larva, which is exposed to environmental and metabolic challenges. Through single-cell RNA sequencing, we identify fourteen hemocyte clusters present in unchallenged larvae and associated with distinct processes, e.g., proliferation, phagocytosis, metabolic homeostasis, and humoral response. Finally, we characterize the changes occurring in the hemocyte clusters upon wasp infestation, which triggers the differentiation of a novel hemocyte type, the lamellocyte. This first molecular atlas of hemocytes provides insights and paves the way to study the biology of the Drosophila immune cells in physiological and pathological conditions.


Assuntos
Proteínas de Drosophila/imunologia , Hemócitos/imunologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Larva/genética , Larva/imunologia
12.
Insect Mol Biol ; 33(4): 417-426, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38549231

RESUMO

REPAT (response to pathogen) is an immune-associated gene family that plays important roles in insect immune response to pathogens. Although nine REPAT genes have been identified in Spodoptera frugiperda (Lepidoptera: Noctuidae) currently, their functions and mechanisms in the immune response to pathogens still remain unclear. Therefore, SfREPAT38, a pathogen response gene (REPAT) of S. frugiperda, was characterised and its function was analysed. The results showed that SfREPAT38 contains a signal peptide and a transcription activator MBF2 (multi-protein bridging factor 2) domain. Quantitative real-time polymerase chain reaction analysis showed that SfREPAT38 was highly expressed in the sixth-instar larvae (L6) and was the highest in expression in the midgut of L6. We found that the expression of SfREPAT38 could be activated by challenge with four microbial pathogens (Bacillus thuringiensis, Metarhizium anisopliae, Spodoptera exigua nuclearpolyhedrosis and Escherichia coli), except 12 h after E. coli infection. Furthermore, the SfREPAT38 expression levels significantly decreased at 24, 48 and 72 h after SfREPAT38 dsRNA injection or feeding. Feeding with SfREPAT38 dsRNA significantly decreased the weight gain of S. frugiperda, and continuous feeding led to the death of S. frugiperda larvae from the fourth day. Moreover, SfREPAT38 dsRNA injection resulted in a significant decrease of weight gain on the fifth day. Silencing SfREPAT38 gene down-regulated the expression levels of immune genes belonging to the Toll pathway, including SPZ, Myd88, DIF, Cactus, Pell and Toll18W. After treatment with SfREPAT38 dsRNA, S. frugiperda became extremely sensitive to the B. thuringiensis infection, and the survival rate dramatically increased, with 100% mortality by the eighth day. The weight of S. frugiperda larvae was also significantly lower than that of the control groups from the second day onwards. In addition, the genes involved in the Toll signalling pathway and a few antibacterial peptide related genes were down-regulated after treatment. These results showed that SfREPAT38 is involved in the immune response of S. frugiperda larvae through mediating Toll signalling pathway.


Assuntos
Proteínas de Insetos , Larva , Transdução de Sinais , Spodoptera , Animais , Spodoptera/imunologia , Spodoptera/genética , Spodoptera/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Imunidade Inata , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
13.
Insect Mol Biol ; 33(3): 270-282, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38329162

RESUMO

Insects rely on their innate immune system to eliminate pathogenic microbes. As a system component, cytokines transmit intercellular signals to control immune responses. Growth-blocking peptide (GBP) is a member of the stress-responsive peptide family of cytokines found in several orders of insects, including Drosophila. However, the physiological role of GBP in defence against pathogens is not thoroughly understood. In this study, we explored the functions of GBP in a lepidopteran pest, Ostrinia furnacalis. Injection of recombinant O. furnacalis GBP (OfGBP) precursor (proGBP) and chemically synthesised GBP significantly induced the transcription of antimicrobial peptides (AMPs) and other immunity-related genes including immune deficiency (IMD) and Dorsal. The level of OfGBP mRNA was upregulated after bacterial infection. Knockdown of OfGBP expression led to a decrease in IMD, Relish, MyD88 and Dorsal mRNA levels. OfGBP induced phenoloxidase activity and affected hemocyte behaviours in O. furnacalis larvae. In summary, GBP is a potent cytokine, effectively regulating AMP synthesis, melanization response and cellular immunity to eliminate invading pathogens.


Assuntos
Proteínas de Insetos , Larva , Mariposas , Animais , Mariposas/imunologia , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/crescimento & desenvolvimento , Larva/imunologia , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Hemócitos/metabolismo , Imunidade Inata
14.
Parasite Immunol ; 46(5): e13040, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801355

RESUMO

Cystic echinococcosis is caused by the tissue-dwelling larva (hydatid) of Echinococcus granulosus sensu lato. A salient feature is that this larva is protected by the acellular laminated layer (LL). As the parasite grows, the LL sheds abundant particles that can accumulate in the parasite's vicinity. The potential of LL particles to induce inflammation in vivo has not been specifically analysed. It is not known how each of its two major components, namely highly glycosylated mucins and calcium inositol hexakisphosphate (InsP6) deposits, impacts inflammation induced by the LL as a whole. In this work, we show that LL particles injected intraperitoneally cause infiltration of eosinophils, neutrophils and monocytes/macrophages as well as the disappearance of resident (large peritoneal) macrophages. Strikingly, the absence of calcium InsP6 enhanced the recruitment of all the inflammatory cell types analysed. In contrast, oxidation of the mucin carbohydrates caused decreased recruitment of neutrophils. The carbohydrate-oxidised particles caused cell influx nonetheless, which may be explained by possible receptor-independent effects of LL particles on innate immune cells, as suggested by previous works from our group. In summary, LL particles can induce acute inflammatory cell recruitment partly dependent on its mucin glycans, and this recruitment is attenuated by the calcium InsP6 component.


Assuntos
Echinococcus granulosus , Ácido Fítico , Animais , Echinococcus granulosus/imunologia , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Equinococose/imunologia , Equinococose/parasitologia , Inflamação , Neutrófilos/imunologia , Mucinas/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Eosinófilos/imunologia , Feminino , Larva/imunologia
15.
Biol Lett ; 20(9): 20240141, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226921

RESUMO

Sexual conflict is widespread among sexually reproducing organisms. Phenotypic plasticity in female resistance traits has the potential to moderate the harm imposed by males during mating, yet female plasticity has rarely been explored. In this experiment, we investigated whether female seed beetles invest more in immunocompetence, measured as phenoloxidase (PO) capacity, when exposed to cues signalling a greater risk of sexual conflict. Risk perception was manipulated by housing focal individuals alone or with a companion as developing larvae, followed by exposure to a mating-free male- or female-biased social environment when adults. We predicted that females exposed to cues of increased sexual conflict would have increased PO capacity. However, PO capacity did not differ between either larval or adult social treatments. Our results suggest that females may not perceive a risk to their fitness on the basis of increased male presence or are unable to adjust this aspect of their phenotype in response to that risk.


Assuntos
Besouros , Monofenol Mono-Oxigenase , Animais , Feminino , Masculino , Besouros/imunologia , Besouros/fisiologia , Monofenol Mono-Oxigenase/metabolismo , Comportamento Sexual Animal/fisiologia , Regulação para Cima , Larva/imunologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Imunocompetência
16.
Arch Insect Biochem Physiol ; 116(4): e22146, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39190478

RESUMO

T2 RNases are transferase-type enzymes distributed across phyla, crucial for breaking down single-stranded RNA molecules. In addition to their canonical function, several T2 enzymes exhibit pleiotropic roles, contributing to various biological processes, such as the immune response in invertebrates and vertebrates. This study aims at characterizing RNASET2 in the larvae of black soldier fly (BSF), Hermetia illucens, which are used for organic waste reduction and the production of valuable insect biomolecules for feed formulation and other applications. Given the exposure of BSF larvae to pathogens present in the feeding substrate, it is likely that the mechanisms of their immune response have undergone significant evolution and increased complexity. After in silico characterization of HiRNASET2, demonstrating the high conservation of this T2 homolog, we investigated the expression pattern of the enzyme in the fat body and hemocytes, two districts mainly involved in the insect immune response, in larvae challenged with bacterial infection. While no variation in HiRNASET2 expression was observed in the fat body following infection, a significant upregulation of HiRNASET2 synthesis occurred in hemocytes shortly after the injection of bacteria in the larva. The intracellular localization of HiRNASET2 in lysosomes of plasmatocytes, its extracellular association with bacteria, and the presence of a putative antimicrobial domain in the molecule, suggest its potential role in RNA clean-up and as an alarm molecule promoting phagocytosis activation by hemocytes. These insights contribute to the characterization of the immune response of Hermetia illucens larvae and may facilitate the development of animal feedstuff enriched with highly valuable BSF bioactive compounds.


Assuntos
Dípteros , Larva , Animais , Larva/imunologia , Dípteros/imunologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Hemócitos/imunologia , Hemócitos/metabolismo , Simuliidae/imunologia , Ribonucleases/metabolismo , Ribonucleases/genética , Corpo Adiposo/metabolismo , Corpo Adiposo/imunologia , Imunidade Inata
17.
Arch Insect Biochem Physiol ; 116(4): e22130, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39118437

RESUMO

Toll receptors are important regulators of insects' innate immune system which, upon binding of pathogen molecules, activate a conserved signal transduction cascade known as the Toll pathway. RNA interference (RNAi) is a powerful tool to study the function of genes via reverse genetics. However, due to the reported refractory of RNAi efficiency in lepidopteran insects, successful reports of silencing of Toll receptors in the silkworm Bombyx mori have not been reported yet. In this study, a Toll receptor of the silkworm Bombyx Toll9-2 (BmToll9-2) was cloned and its expression and function were analyzed. The results showed that BmToll9-2 contains an ectodomain (ECD) with a signal peptide and nine leucine-rich repeats, a transmembrane helix, and a cytoplasmic region with a Toll/interleukin-1 domain. Phylogenetic analysis indicates that BmToll9-2 clusters with other insect Toll9 receptors and mammalian Toll-like receptor 4. Oral infection of exogenous pathogens showed that the Gram-negative bacterium Escherichia coli and its main cell wall component lipopolysaccharide (LPS), as well as the Gram-positive bacterium Staphylococcus aureus and its main cell wall component peptidoglycan, significantly induce BmToll9-2 expression in vivo. LPS also induced the expression of BmToll9-2 in BmN4 cells in vitro. These observations indicate its role as a sensor in the innate immunity to exogenous pathogens and as a pathogen-associated receptor that is responsive to LPS. RNAi of BmToll9-2 was effective in the midgut and epidermis. RNAi-mediated knock-down of BmToll9-2 reduced the weight and growth of the silkworm. Bacterial challenge following RNAi upregulated the expression of BmToll9-2 and rescued the weight differences of the silkworm, which may be related to its participation in the immune response and the regulation of the microbiota in the midgut lumen of the silkworm larvae.


Assuntos
Bombyx , Escherichia coli , Proteínas de Insetos , Larva , Lipopolissacarídeos , Filogenia , Animais , Bombyx/imunologia , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Bombyx/microbiologia , Bombyx/metabolismo , Larva/imunologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/genética , Larva/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lipopolissacarídeos/farmacologia , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Imunidade Inata , Staphylococcus aureus , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo , Sequência de Aminoácidos , Interferência de RNA
18.
J Invertebr Pathol ; 206: 108157, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38908473

RESUMO

The infection caused by Nosema bombycis often known as pebrine, is a devastating sericulture disease. The infection can be transmitted to the next generation through eggs laid by infected female Bombyx mori moths (transovarial) as well as with N. bombycis contaminated food (horizontal). Most diagnoses were carried out in the advanced stages of infection until the time that infection might spread to other healthy insects. Hence, early diagnosis of pebrine is of utmost importance to quarantine infected larvae from uninfected silkworm batches and stop further spread of the infection. The findings of our study provide an insight into how the silkworm larval host defence system was activated against early N. bombycis transovarial infection. The results obtained from transcriptome analysis of infected 2nd instar larvae revealed significant (adjusted P-value < 0.05) expression of 1888 genes of which 801 genes were found to be upregulated and 1087 genes were downregulated when compared with the control. Pathway analysis indicated activation of the immune deficiency (IMD) pathway, which shows a potential immune defence response against pebrine infection as well as suppression of the melanin synthesis pathway due to lower expression of prophenoloxidase activating enzyme (PPAE). Liquid chromatography mass spectrometry (LC-MS/MS) analysis of haemolymph from infected larvae shows the secretion of serpin binding protein of N. bombycis which might be involved in the suppression of the melanization pathway. Moreover, among the differentially expressed genes, we found that LPMC-61, yellow-y, gasp and osiris 9 can be utilised as potential markers for early diagnosis of transovarial pebrine infection in B. mori. Physiological as well as biochemical roles and functions of many of the essential genes are yet to be established, and enlightened research will be required to characterize the products of these genes.


Assuntos
Bombyx , Perfilação da Expressão Gênica , Larva , Nosema , Transcriptoma , Animais , Nosema/fisiologia , Bombyx/microbiologia , Bombyx/imunologia , Bombyx/genética , Larva/microbiologia , Larva/imunologia , Feminino
19.
J Invertebr Pathol ; 204: 108095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499284

RESUMO

Epoxyoctadecamonoenoic acids (EpOMEs) are produced from linoleic acid by a cytochrome P450 monooxygenase (CYP) and play a crucial role in terminating excessive and unnecessary immune responses during the late infection stage in insects. This suggests that an increase in the EpOME level may enhance the virulence of insect pathogens against pests. This study tested this hypothesis using a specific inhibitor against soluble epoxide hydrolase (sEH) to degrade EpOMEs, which leads to elevated endogenous EpOME levels. A baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), was used to infect three different lepidopteran insects (Spodoptera exigua, Maruca vitrata, and Plutella xylostella) by oral feeding or hemocoelic injection treatments. Within one hour, the viral infection induced the expression of three different phospholipase A2 (PLA2) genes and, after 12 h, up-regulated the expressions of CYP and sEH genes in Spodopera exigua. As expected, AcMNPV virulence was suppressed by the addition of arachidonic acid (a catalytic product of PLA2) but was enhanced by the addition of either of the EpOME regioisomers. In addition, treatment with a specific sEH inhibitor (AUDA) increased AcMNPV virulence against three different lepidopteran insects, presumably by increasing endogenous EpOME levels. This enhanced effect of EpOMEs on virulence was further supported by specific RNA interference (RNAi), in which RNAi specific to CYP expression decreased AcMNPV virulence while a specific RNAi against sEH expression significantly enhanced virulence. In response to AcMNPV infection, TUNEL assay results showed that S. exigua larvae exhibited apoptosis in the midgut, fat body, and epidermis. Inhibition of apoptosis by a pan-caspase inhibitor, Z-VAD-FMK, significantly increased virulence. Similarly, the addition of AUDA to the viral treatment suppressed the gene expression of five inducible caspases and cytochrome C to suppress apoptosis, which led to a significant increase in the tissue viral titers. These results indicate that EpOMEs play a role in terminating excessive and unnecessary immune responses against viral infection during the late stage by down-regulating antiviral apoptosis in lepidopteran insects.


Assuntos
Mariposas , Nucleopoliedrovírus , Animais , Mariposas/virologia , Mariposas/imunologia , Virulência , Nucleopoliedrovírus/patogenicidade , Spodoptera/virologia , Spodoptera/imunologia , Larva/virologia , Larva/imunologia
20.
J Invertebr Pathol ; 206: 108156, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901686

RESUMO

The diamondback moth (Plutella xylostella), a major threat to crucifers across the globe, has developed resistance against the majority of insecticides enhancing the need for alternate control measures against this pest. Recently cyclosporin C, a secondary metabolite produced by the insect pathogenic fungus Purpeocillium lilacinum, has been reported to induce lethal and sub-lethal effects against P. xylostella. To date, little is known about the molecular mechanisms of interaction between cyclosporin C and P. xylostella immune systems. This study reports the transcriptome-based immune response of P. xylostella to cyclosprin C treatment. Our results showed differential expression of 322, 97, and 504 differentially expressed genes (DEGS) in P. xylostella treated with cyclosporin C compared to control 24, 48, and 72 h post-treatment, respectively. Thirteen DEGs were commonly expressed at different time intervals in P. xylostella larvae treated with cyclosporin C compared to control. Cyclosporin C treatment induced the down-regulated expression of majority of immune-related genes related to pattern recognition responses, signal modulation, Toll and IMD pathways, antimicrobial peptides and antioxidant responses confirming the ability to suppress immune response of P. xylostella. These results will further improve our knowledge of the infection mechanism and complex biochemical processes involved in interaction between cyclosporin C and insect immune systems.


Assuntos
Ciclosporina , Perfilação da Expressão Gênica , Mariposas , Animais , Mariposas/imunologia , Mariposas/efeitos dos fármacos , Mariposas/microbiologia , Mariposas/genética , Ciclosporina/farmacologia , Transcriptoma/efeitos dos fármacos , Hypocreales/genética , Larva/efeitos dos fármacos , Larva/microbiologia , Larva/imunologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa