Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450.645
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(11): 2875-2892.e21, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38626770

RESUMO

Ubiquitylation regulates most proteins and biological processes in a eukaryotic cell. However, the site-specific occupancy (stoichiometry) and turnover rate of ubiquitylation have not been quantified. Here we present an integrated picture of the global ubiquitylation site occupancy and half-life. Ubiquitylation site occupancy spans over four orders of magnitude, but the median ubiquitylation site occupancy is three orders of magnitude lower than that of phosphorylation. The occupancy, turnover rate, and regulation of sites by proteasome inhibitors are strongly interrelated, and these attributes distinguish sites involved in proteasomal degradation and cellular signaling. Sites in structured protein regions exhibit longer half-lives and stronger upregulation by proteasome inhibitors than sites in unstructured regions. Importantly, we discovered a surveillance mechanism that rapidly and site-indiscriminately deubiquitylates all ubiquitin-specific E1 and E2 enzymes, protecting them against accumulation of bystander ubiquitylation. The work provides a systems-scale, quantitative view of ubiquitylation properties and reveals general principles of ubiquitylation-dependent governance.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitinação , Humanos , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteólise , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Camundongos , Linhagem Celular
2.
Cell ; 187(11): 2746-2766.e25, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38631355

RESUMO

Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.


Assuntos
Fatores de Transcrição , Animais , Humanos , Camundongos , Regulação da Expressão Gênica , Mutação , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular
3.
Cell ; 187(11): 2735-2745.e12, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723628

RESUMO

Hepatitis B virus (HBV) is a small double-stranded DNA virus that chronically infects 296 million people. Over half of its compact genome encodes proteins in two overlapping reading frames, and during evolution, multiple selective pressures can act on shared nucleotides. This study combines an RNA-based HBV cell culture system with deep mutational scanning (DMS) to uncouple cis- and trans-acting sequence requirements in the HBV genome. The results support a leaky ribosome scanning model for polymerase translation, provide a fitness map of the HBV polymerase at single-nucleotide resolution, and identify conserved prolines adjacent to the HBV polymerase termination codon that stall ribosomes. Further experiments indicated that stalled ribosomes tether the nascent polymerase to its template RNA, ensuring cis-preferential RNA packaging and reverse transcription of the HBV genome.


Assuntos
Vírus da Hepatite B , Transcrição Reversa , Humanos , Genoma Viral/genética , Vírus da Hepatite B/genética , Mutação , Ribossomos/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Linhagem Celular
4.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181741

RESUMO

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Assuntos
Neoplasias Pulmonares , Proteogenômica , Carcinoma de Pequenas Células do Pulmão , Humanos , Linhagem Celular , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/química , Carcinoma de Pequenas Células do Pulmão/genética , Xenoenxertos , Biomarcadores Tumorais/análise
5.
Cell ; 187(13): 3445-3459.e15, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38838668

RESUMO

Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.


Assuntos
Mecanotransdução Celular , Imagem Individual de Molécula , Animais , Humanos , Camundongos , Fenômenos Biomecânicos , Adesão Celular , DNA/química , DNA/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Microscopia de Força Atômica/métodos , Imagem Individual de Molécula/métodos , Linhagem Celular , Sobrevivência Celular , Pareamento de Bases , Calibragem
6.
Cell ; 187(13): 3236-3248.e21, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772369

RESUMO

Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.


Assuntos
Redes Reguladoras de Genes , Análise de Célula Única , Animais , Feminino , Humanos , Camundongos , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Vetores Genéticos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/citologia , Análise de Célula Única/métodos , Transcriptoma/genética , Linhagem Celular , Transcrição Gênica
7.
Cell ; 187(9): 2236-2249.e17, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38614100

RESUMO

Unlike those of double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and ssRNA viruses, the mechanism of genome packaging of dsRNA viruses is poorly understood. Here, we combined the techniques of high-resolution cryoelectron microscopy (cryo-EM), cellular cryoelectron tomography (cryo-ET), and structure-guided mutagenesis to investigate genome packaging and capsid assembly of bluetongue virus (BTV), a member of the Reoviridae family of dsRNA viruses. A total of eleven assembly states of BTV capsid were captured, with resolutions up to 2.8 Å, with most visualized in the host cytoplasm. ATPase VP6 was found underneath the vertices of capsid shell protein VP3 as an RNA-harboring pentamer, facilitating RNA packaging. RNA packaging expands the VP3 shell, which then engages middle- and outer-layer proteins to generate infectious virions. These revealed "duality" characteristics of the BTV assembly mechanism reconcile previous contradictory co-assembly and core-filling models and provide insights into the mysterious RNA packaging and capsid assembly of Reoviridae members and beyond.


Assuntos
Vírus Bluetongue , Proteínas do Capsídeo , Capsídeo , Microscopia Crioeletrônica , RNA Viral , Empacotamento do Genoma Viral , Vírus Bluetongue/genética , Vírus Bluetongue/fisiologia , Vírus Bluetongue/metabolismo , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Animais , RNA Viral/metabolismo , RNA Viral/genética , Genoma Viral/genética , Montagem de Vírus , Tomografia com Microscopia Eletrônica , Vírion/metabolismo , Vírion/genética , Vírion/ultraestrutura , Modelos Moleculares , Linhagem Celular , Cricetinae
8.
Cell ; 186(25): 5486-5499.e13, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37951212

RESUMO

Germinal centers (GCs) form in lymph nodes after immunization or infection to facilitate antibody affinity maturation and memory and plasma cell (PC) development. PC differentiation is thought to involve stringent selection for GC B cells expressing the highest-affinity antigen receptors, but how this plays out during complex polyclonal responses is unclear. We combine temporal lineage tracing with antibody characterization to gain a snapshot of PCs developing during influenza infection. GCs co-mature B cell clones with antibody affinities spanning multiple orders of magnitude; however, each generates PCs with similar efficiencies, including weak binders. Within lineages, PC selection is not restricted to variants with the highest-affinity antibodies. Differentiation is commonly associated with proliferative expansion to produce "nodes" of identical PCs. Immunization-induced GCs generate fewer PCs but still of low- and high-antibody affinities. We propose that generating low-affinity antibody PCs reflects an evolutionary compromise to facilitate diverse serum antibody responses.


Assuntos
Afinidade de Anticorpos , Linfócitos B , Centro Germinativo , Plasmócitos , Formação de Anticorpos , Linfócitos B/citologia , Linfócitos B/imunologia , Linfonodos , Linhagem Celular , Humanos , Animais , Camundongos , Cricetinae , Vírus da Influenza A/imunologia , Diferenciação Celular
9.
Cell ; 186(25): 5587-5605.e27, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38029745

RESUMO

The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal. By leveraging 2D and 3D differentiation, we efficiently generated progenitor subsets with distinct first, anterior, and posterior second heart field identities. This advance enabled the reproducible generation of cardioids with compartment-specific in vivo-like gene expression profiles, morphologies, and functions. We used this platform to unravel the ontogeny of signal and contraction propagation between interacting heart chambers and dissect how mutations, teratogens, and drugs cause compartment-specific defects in the developing human heart.


Assuntos
Cardiopatias , Ventrículos do Coração , Coração , Humanos , Transcriptoma/genética , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias/genética , Cardiopatias/metabolismo
10.
Cell ; 186(25): 5656-5672.e21, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38029746

RESUMO

Molecular signals interact in networks to mediate biological processes. To analyze these networks, it would be useful to image many signals at once, in the same living cell, using standard microscopes and genetically encoded fluorescent reporters. Here, we report temporally multiplexed imaging (TMI), which uses genetically encoded fluorescent proteins with different clocklike properties-such as reversibly photoswitchable fluorescent proteins with different switching kinetics-to represent different cellular signals. We linearly decompose a brief (few-second-long) trace of the fluorescence fluctuations, at each point in a cell, into a weighted sum of the traces exhibited by each fluorophore expressed in the cell. The weights then represent the signal amplitudes. We use TMI to analyze relationships between different kinase activities in individual cells, as well as between different cell-cycle signals, pointing toward broad utility throughout biology in the analysis of signal transduction cascades in living systems.


Assuntos
Proteínas , Transdução de Sinais , Animais , Humanos , Camundongos , Linhagem Celular , Corantes Fluorescentes , Microscopia de Fluorescência/métodos , Fosforilação , Sobrevivência Celular
11.
Cell ; 186(25): 5569-5586.e21, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016469

RESUMO

CD4+ T cells play fundamental roles in orchestrating immune responses and tissue homeostasis. However, our inability to associate peptide human leukocyte antigen class-II (HLA-II) complexes with their cognate T cell receptors (TCRs) in an unbiased manner has hampered our understanding of CD4+ T cell function and role in pathologies. Here, we introduce TScan-II, a highly sensitive genome-scale CD4+ antigen discovery platform. This platform seamlessly integrates the endogenous HLA-II antigen-processing machinery in synthetic antigen-presenting cells and TCR signaling in T cells, enabling the simultaneous screening of multiple HLAs and TCRs. Leveraging genome-scale human, virome, and epitope mutagenesis libraries, TScan-II facilitates de novo antigen discovery and deep exploration of TCR specificity. We demonstrate TScan-II's potential for basic and translational research by identifying a non-canonical antigen for a cancer-reactive CD4+ T cell clone. Additionally, we identified two antigens for clonally expanded CD4+ T cells in Sjögren's disease, which bind distinct HLAs and are expressed in HLA-II-positive ductal cells within affected salivary glands.


Assuntos
Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Humanos , Células Apresentadoras de Antígenos , Antígenos CD4/metabolismo , Antígenos HLA/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linhagem Celular , Genoma Humano
12.
Cell ; 186(26): 5784-5797.e17, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38101408

RESUMO

Cannabis activates the cannabinoid receptor 1 (CB1), which elicits analgesic and emotion regulation benefits, along with adverse effects, via Gi and ß-arrestin signaling pathways. However, the lack of understanding of the mechanism of ß-arrestin-1 (ßarr1) coupling and signaling bias has hindered drug development targeting CB1. Here, we present the high-resolution cryo-electron microscopy structure of CB1-ßarr1 complex bound to the synthetic cannabinoid MDMB-Fubinaca (FUB), revealing notable differences in the transducer pocket and ligand-binding site compared with the Gi protein complex. ßarr1 occupies a wider transducer pocket promoting substantial outward movement of the TM6 and distinctive twin toggle switch rearrangements, whereas FUB adopts a different pose, inserting more deeply than the Gi-coupled state, suggesting the allosteric correlation between the orthosteric binding pocket and the partner protein site. Taken together, our findings unravel the molecular mechanism of signaling bias toward CB1, facilitating the development of CB1 agonists.


Assuntos
Arrestina , Receptor CB1 de Canabinoide , Transdução de Sinais , Arrestina/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo , Microscopia Crioeletrônica , Receptor CB1 de Canabinoide/metabolismo , Humanos , Animais , Linhagem Celular
13.
Cell ; 186(25): 5517-5535.e24, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37992713

RESUMO

Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galQ and manQ, respectively. However, biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, QTGAL and QTMAN, and successfully reconstituted Q-glycosylation of tRNAs using nucleotide diphosphate sugars. Ribosome profiling of knockout cells revealed that Q-glycosylation slowed down elongation at cognate codons, UAC and GAC (GAU), respectively. We also found that galactosylation of Q suppresses stop codon readthrough. Moreover, protein aggregates increased in cells lacking Q-glycosylation, indicating that Q-glycosylation contributes to proteostasis. Cryo-EM of human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylations. Furthermore, zebrafish qtgal and qtman knockout lines displayed shortened body length, implying that Q-glycosylation is required for post-embryonic growth in vertebrates.


Assuntos
RNA de Transferência , Animais , Humanos , Ratos , Anticódon , Linhagem Celular , Códon , Glicosilação , Nucleosídeo Q/química , Nucleosídeo Q/genética , Nucleosídeo Q/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Suínos , Peixe-Zebra/metabolismo , Conformação de Ácido Nucleico
14.
Cell ; 186(25): 5500-5516.e21, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016470

RESUMO

Most animals require sleep, and sleep loss induces serious pathophysiological consequences, including death. Previous experimental approaches for investigating sleep impacts in mice have been unable to persistently deprive animals of both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Here, we report a "curling prevention by water" paradigm wherein mice remain awake 96% of the time. After 4 days of exposure, mice exhibit severe inflammation, and approximately 80% die. Sleep deprivation increases levels of prostaglandin D2 (PGD2) in the brain, and we found that elevated PGD2 efflux across the blood-brain-barrier-mediated by ATP-binding cassette subfamily C4 transporter-induces both accumulation of circulating neutrophils and a cytokine-storm-like syndrome. Experimental disruption of the PGD2/DP1 axis dramatically reduced sleep-deprivation-induced inflammation. Thus, our study reveals that sleep-related changes in PGD2 in the central nervous system drive profound pathological consequences in the peripheral immune system.


Assuntos
Privação do Sono , Animais , Camundongos , Citocinas/metabolismo , Inflamação , Prostaglandina D2 , Sono/fisiologia , Privação do Sono/genética , Privação do Sono/metabolismo , Síndrome , Humanos , Ratos , Linhagem Celular , Tempestades Ciclônicas , Neutrófilos/metabolismo
15.
Cell ; 185(13): 2279-2291.e17, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35700730

RESUMO

The isolation of CCoV-HuPn-2018 from a child respiratory swab indicates that more coronaviruses are spilling over to humans than previously appreciated. We determined the structures of the CCoV-HuPn-2018 spike glycoprotein trimer in two distinct conformational states and showed that its domain 0 recognizes sialosides. We identified that the CCoV-HuPn-2018 spike binds canine, feline, and porcine aminopeptidase N (APN) orthologs, which serve as entry receptors, and determined the structure of the receptor-binding B domain in complex with canine APN. The introduction of an oligosaccharide at position N739 of human APN renders cells susceptible to CCoV-HuPn-2018 spike-mediated entry, suggesting that single-nucleotide polymorphisms might account for viral detection in some individuals. Human polyclonal plasma antibodies elicited by HCoV-229E infection and a porcine coronavirus monoclonal antibody inhibit CCoV-HuPn-2018 spike-mediated entry, underscoring the cross-neutralizing activity among ɑ-coronaviruses. These data pave the way for vaccine and therapeutic development targeting this zoonotic pathogen representing the eighth human-infecting coronavirus.


Assuntos
Coronavirus Humano 229E , Infecções por Coronavirus , Coronavirus , Animais , Antígenos CD13/química , Antígenos CD13/metabolismo , Gatos , Linhagem Celular , Coronavirus/metabolismo , Coronavirus Humano 229E/metabolismo , Cães , Humanos , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos
16.
Cell ; 185(3): 447-456.e11, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026151

RESUMO

The rapid spread of the SARS-CoV-2 Omicron variant suggests that the virus might become globally dominant. Further, the high number of mutations in the viral spike protein raised concerns that the virus might evade antibodies induced by infection or vaccination. Here, we report that the Omicron spike was resistant against most therapeutic antibodies but remained susceptible to inhibition by sotrovimab. Similarly, the Omicron spike evaded neutralization by antibodies from convalescent patients or individuals vaccinated with the BioNTech-Pfizer vaccine (BNT162b2) with 12- to 44-fold higher efficiency than the spike of the Delta variant. Neutralization of the Omicron spike by antibodies induced upon heterologous ChAdOx1 (Astra Zeneca-Oxford)/BNT162b2 vaccination or vaccination with three doses of BNT162b2 was more efficient, but the Omicron spike still evaded neutralization more efficiently than the Delta spike. These findings indicate that most therapeutic antibodies will be ineffective against the Omicron variant and that double immunization with BNT162b2 might not adequately protect against severe disease induced by this variant.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Imunidade Adaptativa , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Masculino , Ligação Proteica , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinação , Células Vero
17.
Cell ; 184(25): 6157-6173.e24, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34856126

RESUMO

Chromosome loops shift dynamically during development, homeostasis, and disease. CCCTC-binding factor (CTCF) is known to anchor loops and construct 3D genomes, but how anchor sites are selected is not yet understood. Here, we unveil Jpx RNA as a determinant of anchor selectivity. Jpx RNA targets thousands of genomic sites, preferentially binding promoters of active genes. Depleting Jpx RNA causes ectopic CTCF binding, massive shifts in chromosome looping, and downregulation of >700 Jpx target genes. Without Jpx, thousands of lost loops are replaced by de novo loops anchored by ectopic CTCF sites. Although Jpx controls CTCF binding on a genome-wide basis, it acts selectively at the subset of developmentally sensitive CTCF sites. Specifically, Jpx targets low-affinity CTCF motifs and displaces CTCF protein through competitive inhibition. We conclude that Jpx acts as a CTCF release factor and shapes the 3D genome by regulating anchor site usage.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromossomos/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Células-Tronco Embrionárias , Camundongos , Ligação Proteica
18.
Cell ; 184(10): 2525-2531, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33989545

RESUMO

Human cell lines (CLs) are key assets for biomedicine but lack ancestral diversity. Here, we explore why genetic diversity among cell-based models is essential for making preclinical research more equitable and widely translatable. We lay out practical actions that can be taken to improve inclusivity in study design.


Assuntos
Pesquisa Biomédica/ética , Negro ou Afro-Americano/genética , Linhagem Celular , Medicina de Precisão/ética , População Branca/genética , Variação Genética , Humanos , Testes Farmacogenômicos
19.
Cell ; 184(22): 5653-5669.e25, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34672952

RESUMO

Cells repair DNA double-strand breaks (DSBs) through a complex set of pathways critical for maintaining genomic integrity. To systematically map these pathways, we developed a high-throughput screening approach called Repair-seq that measures the effects of thousands of genetic perturbations on mutations introduced at targeted DNA lesions. Using Repair-seq, we profiled DSB repair products induced by two programmable nucleases (Cas9 and Cas12a) in the presence or absence of oligonucleotides for homology-directed repair (HDR) after knockdown of 476 genes involved in DSB repair or associated processes. The resulting data enabled principled, data-driven inference of DSB end joining and HDR pathways. Systematic interrogation of this data uncovered unexpected relationships among DSB repair genes and demonstrated that repair outcomes with superficially similar sequence architectures can have markedly different genetic dependencies. This work provides a foundation for mapping DNA repair pathways and for optimizing genome editing across diverse modalities.


Assuntos
Quebras de DNA de Cadeia Dupla , Genômica , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular , Análise por Conglomerados , Reparo do DNA/genética , Edição de Genes , Regulação da Expressão Gênica , Genoma Humano , Humanos , Fenótipo , RNA Guia de Cinetoplastídeos/metabolismo , Reprodutibilidade dos Testes
20.
Cell ; 184(4): 1110-1121.e16, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606980

RESUMO

Electron cryotomography (cryoET), an electron cryomicroscopy (cryoEM) modality, has changed our understanding of biological function by revealing the native molecular details of membranes, viruses, and cells. However, identification of individual molecules within tomograms from cryoET is challenging because of sample crowding and low signal-to-noise ratios. Here, we present a tagging strategy for cryoET that precisely identifies individual protein complexes in tomograms without relying on metal clusters. Our method makes use of DNA origami to produce "molecular signposts" that target molecules of interest, here via fluorescent fusion proteins, providing a platform generally applicable to biological surfaces. We demonstrate the specificity of signpost origami tags (SPOTs) in vitro as well as their suitability for cryoET of membrane vesicles, enveloped viruses, and the exterior of intact mammalian cells.


Assuntos
Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , DNA/ultraestrutura , Tomografia com Microscopia Eletrônica , Animais , Aptâmeros de Nucleotídeos/química , Fenômenos Biofísicos , Linhagem Celular , Feminino , Fluorescência , Humanos , Nanopartículas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa