Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.896
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Cell ; 187(10): 2375-2392.e33, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653238

RESUMO

Lysine lactylation is a post-translational modification that links cellular metabolism to protein function. Here, we find that AARS1 functions as a lactate sensor that mediates global lysine lacylation in tumor cells. AARS1 binds to lactate and catalyzes the formation of lactate-AMP, followed by transfer of lactate to the lysince acceptor residue. Proteomics studies reveal a large number of AARS1 targets, including p53 where lysine 120 and lysine 139 in the DNA binding domain are lactylated. Generation and utilization of p53 variants carrying constitutively lactylated lysine residues revealed that AARS1 lactylation of p53 hinders its liquid-liquid phase separation, DNA binding, and transcriptional activation. AARS1 expression and p53 lacylation correlate with poor prognosis among cancer patients carrying wild type p53. ß-alanine disrupts lactate binding to AARS1, reduces p53 lacylation, and mitigates tumorigenesis in animal models. We propose that AARS1 contributes to tumorigenesis by coupling tumor cell metabolism to proteome alteration.


Assuntos
Carcinogênese , Ácido Láctico , Proteína Supressora de Tumor p53 , Animais , Feminino , Humanos , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Ácido Láctico/metabolismo , Lisina/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53/metabolismo , Masculino
2.
Cell ; 186(21): 4528-4545.e18, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788669

RESUMO

MLL/KMT2A amplifications and translocations are prevalent in infant, adult, and therapy-induced leukemia. However, the molecular contributor(s) to these alterations are unclear. Here, we demonstrate that histone H3 lysine 9 mono- and di-methylation (H3K9me1/2) balance at the MLL/KMT2A locus regulates these amplifications and rearrangements. This balance is controlled by the crosstalk between lysine demethylase KDM3B and methyltransferase G9a/EHMT2. KDM3B depletion increases H3K9me1/2 levels and reduces CTCF occupancy at the MLL/KMT2A locus, in turn promoting amplification and rearrangements. Depleting CTCF is also sufficient to generate these focal alterations. Furthermore, the chemotherapy doxorubicin (Dox), which associates with therapy-induced leukemia and promotes MLL/KMT2A amplifications and rearrangements, suppresses KDM3B and CTCF protein levels. KDM3B and CTCF overexpression rescues Dox-induced MLL/KMT2A alterations. G9a inhibition in human cells or mice also suppresses MLL/KMT2A events accompanying Dox treatment. Therefore, MLL/KMT2A amplifications and rearrangements are controlled by epigenetic regulators that are tractable drug targets, which has clinical implications.


Assuntos
Epigênese Genética , Proteína de Leucina Linfoide-Mieloide , Adulto , Animais , Humanos , Lactente , Camundongos , Doxorrubicina/farmacologia , Rearranjo Gênico , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia/metabolismo , Lisina/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Translocação Genética
3.
Annu Rev Biochem ; 90: 245-285, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33848425

RESUMO

Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.


Assuntos
Lisina/metabolismo , Mamíferos/metabolismo , Sirtuínas/química , Sirtuínas/metabolismo , Acetilação , Acilação , Animais , Cromatina/genética , Cromatina/metabolismo , Histona Acetiltransferases/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
4.
Cell ; 184(2): 352-369.e23, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33357448

RESUMO

Repetitive elements (REs) compose ∼50% of the human genome and are normally transcriptionally silenced, although the mechanism has remained elusive. Through an RNAi screen, we identified FBXO44 as an essential repressor of REs in cancer cells. FBXO44 bound H3K9me3-modified nucleosomes at the replication fork and recruited SUV39H1, CRL4, and Mi-2/NuRD to transcriptionally silence REs post-DNA replication. FBXO44/SUV39H1 inhibition reactivated REs, leading to DNA replication stress and stimulation of MAVS/STING antiviral pathways and interferon (IFN) signaling in cancer cells to promote decreased tumorigenicity, increased immunogenicity, and enhanced immunotherapy response. FBXO44 expression inversely correlated with replication stress, antiviral pathways, IFN signaling, and cytotoxic T cell infiltration in human cancers, while a FBXO44-immune gene signature correlated with improved immunotherapy response in cancer patients. FBXO44/SUV39H1 were dispensable in normal cells. Collectively, FBXO44/SUV39H1 are crucial repressors of RE transcription, and their inhibition selectively induces DNA replication stress and viral mimicry in cancer cells.


Assuntos
Replicação do DNA/genética , Proteínas F-Box/metabolismo , Neoplasias/genética , Sequências Repetitivas de Ácido Nucleico/genética , Adulto , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Quebras de DNA de Cadeia Dupla , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade , Interferons/metabolismo , Lisina/metabolismo , Masculino , Metilação , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Neoplasias/imunologia , Nucleossomos/metabolismo , Transdução de Sinais , Transcrição Gênica , Resultado do Tratamento
5.
Cell ; 184(16): 4186-4202.e20, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216540

RESUMO

Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.


Assuntos
Linhagem da Célula , Poliaminas/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Colite/imunologia , Colite/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Epigenoma , Histonas/metabolismo , Inflamação/imunologia , Inflamação/patologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ornitina Descarboxilase/metabolismo , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Fatores de Transcrição/metabolismo
6.
Cell ; 182(1): 127-144.e23, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32502394

RESUMO

Before zygotic genome activation (ZGA), the quiescent genome undergoes reprogramming to transition into the transcriptionally active state. However, the mechanisms underlying euchromatin establishment during early embryogenesis remain poorly understood. Here, we show that histone H4 lysine 16 acetylation (H4K16ac) is maintained from oocytes to fertilized embryos in Drosophila and mammals. H4K16ac forms large domains that control nucleosome accessibility of promoters prior to ZGA in flies. Maternal depletion of MOF acetyltransferase leading to H4K16ac loss causes aberrant RNA Pol II recruitment, compromises the 3D organization of the active genomic compartments during ZGA, and causes downregulation of post-zygotically expressed genes. Germline depletion of histone deacetylases revealed that other acetyl marks cannot compensate for H4K16ac loss in the oocyte. Moreover, zygotic re-expression of MOF was neither able to restore embryonic viability nor onset of X chromosome dosage compensation. Thus, maternal H4K16ac provides an instructive function to the offspring, priming future gene activation.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Ativação Transcricional/genética , Acetilação , Animais , Sequência de Bases , Segregação de Cromossomos/genética , Sequência Conservada , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Evolução Molecular , Feminino , Genoma , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Masculino , Mamíferos/genética , Camundongos , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Oócitos/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Cromossomo X/metabolismo , Zigoto/metabolismo
7.
Cell ; 181(6): 1329-1345.e24, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32445698

RESUMO

Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.


Assuntos
Ependimoma/genética , Ependimoma/metabolismo , Epigenoma/genética , Neoplasias Infratentoriais/genética , Neoplasias Infratentoriais/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Proliferação de Células/genética , Metilação de DNA/genética , Epigenômica/métodos , Histonas/genética , Histonas/metabolismo , Humanos , Lactente , Lisina/genética , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética
8.
Cell ; 183(6): 1617-1633.e22, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33259802

RESUMO

Histone H3.3 glycine 34 to arginine/valine (G34R/V) mutations drive deadly gliomas and show exquisite regional and temporal specificity, suggesting a developmental context permissive to their effects. Here we show that 50% of G34R/V tumors (n = 95) bear activating PDGFRA mutations that display strong selection pressure at recurrence. Although considered gliomas, G34R/V tumors actually arise in GSX2/DLX-expressing interneuron progenitors, where G34R/V mutations impair neuronal differentiation. The lineage of origin may facilitate PDGFRA co-option through a chromatin loop connecting PDGFRA to GSX2 regulatory elements, promoting PDGFRA overexpression and mutation. At the single-cell level, G34R/V tumors harbor dual neuronal/astroglial identity and lack oligodendroglial programs, actively repressed by GSX2/DLX-mediated cell fate specification. G34R/V may become dispensable for tumor maintenance, whereas mutant-PDGFRA is potently oncogenic. Collectively, our results open novel research avenues in deadly tumors. G34R/V gliomas are neuronal malignancies where interneuron progenitors are stalled in differentiation by G34R/V mutations and malignant gliogenesis is promoted by co-option of a potentially targetable pathway, PDGFRA signaling.


Assuntos
Neoplasias Encefálicas/genética , Carcinogênese/genética , Glioma/genética , Histonas/genética , Interneurônios/metabolismo , Mutação/genética , Células-Tronco Neurais/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Neoplasias Encefálicas/patologia , Carcinogênese/patologia , Linhagem da Célula , Reprogramação Celular/genética , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glioma/patologia , Histonas/metabolismo , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Gradação de Tumores , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas/genética , Prosencéfalo/embriologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transcrição Gênica , Transcriptoma/genética
9.
Nat Rev Mol Cell Biol ; 23(5): 329-349, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35042977

RESUMO

Lysine acetylation is a widespread and versatile protein post-translational modification. Lysine acetyltransferases and lysine deacetylases catalyse the addition or removal, respectively, of acetyl groups at both histone and non-histone targets. In this Review, we discuss several features of acetylation and deacetylation, including their diversity of targets, rapid turnover, exquisite sensitivity to the concentrations of the cofactors acetyl-CoA, acyl-CoA and NAD+, and tight interplay with metabolism. Histone acetylation and non-histone protein acetylation influence a myriad of cellular and physiological processes, including transcription, phase separation, autophagy, mitosis, differentiation and neural function. The activity of lysine acetyltransferases and lysine deacetylases can, in turn, be regulated by metabolic states, diet and specific small molecules. Histone acetylation has also recently been shown to mediate cellular memory. These features enable acetylation to integrate the cellular state with transcriptional output and cell-fate decisions.


Assuntos
Histonas , Lisina Acetiltransferases , Acetilação , Histonas/metabolismo , Lisina/metabolismo , Lisina Acetiltransferases/metabolismo , Processamento de Proteína Pós-Traducional
10.
Cell ; 176(3): 491-504.e21, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30612740

RESUMO

Increased protein synthesis plays an etiologic role in diverse cancers. Here, we demonstrate that METTL13 (methyltransferase-like 13) dimethylation of eEF1A (eukaryotic elongation factor 1A) lysine 55 (eEF1AK55me2) is utilized by Ras-driven cancers to increase translational output and promote tumorigenesis in vivo. METTL13-catalyzed eEF1A methylation increases eEF1A's intrinsic GTPase activity in vitro and protein production in cells. METTL13 and eEF1AK55me2 levels are upregulated in cancer and negatively correlate with pancreatic and lung cancer patient survival. METTL13 deletion and eEF1AK55me2 loss dramatically reduce Ras-driven neoplastic growth in mouse models and in patient-derived xenografts (PDXs) from primary pancreatic and lung tumors. Finally, METTL13 depletion renders PDX tumors hypersensitive to drugs that target growth-signaling pathways. Together, our work uncovers a mechanism by which lethal cancers become dependent on the METTL13-eEF1AK55me2 axis to meet their elevated protein synthesis requirement and suggests that METTL13 inhibition may constitute a targetable vulnerability of tumors driven by aberrant Ras signaling.


Assuntos
Metiltransferases/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Adulto , Idoso , Animais , Carcinogênese , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Feminino , Células HEK293 , Xenoenxertos , Humanos , Lisina/metabolismo , Masculino , Metilação , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fator 1 de Elongação de Peptídeos/genética , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteômica , Transdução de Sinais
11.
Cell ; 174(4): 803-817.e16, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30057114

RESUMO

Acquired chromosomal DNA amplifications are features of many tumors. Although overexpression and stabilization of the histone H3 lysine 9/36 (H3K9/36) tri-demethylase KDM4A generates transient site-specific copy number gains (TSSGs), additional mechanisms directly controlling site-specific DNA copy gains are not well defined. In this study, we uncover a collection of H3K4-modifying chromatin regulators that function with H3K9 and H3K36 regulators to orchestrate TSSGs. Specifically, the H3K4 tri-demethylase KDM5A and specific COMPASS/KMT2 H3K4 methyltransferases modulate different TSSG loci through H3K4 methylation states and KDM4A recruitment. Furthermore, a distinct chromatin modifier network, MLL1-KDM4B-KDM5B, controls copy number regulation at a specific genomic locus in a KDM4A-independent manner. These pathways comprise an epigenetic addressing system for defining site-specific DNA rereplication and amplifications.


Assuntos
Cromatina/metabolismo , Variações do Número de Cópias de DNA , Metilação de DNA , Histonas/metabolismo , Lisina/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Ciclo Celular , Células HEK293 , Humanos , Proteína 2 de Ligação ao Retinoblastoma/genética
12.
Cell ; 173(2): 456-469.e16, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576453

RESUMO

Following a previous microbial inoculation, plants can induce broad-spectrum immunity to pathogen infection, a phenomenon known as systemic acquired resistance (SAR). SAR establishment in Arabidopsis thaliana is regulated by the Lys catabolite pipecolic acid (Pip) and flavin-dependent-monooxygenase1 (FMO1). Here, we show that elevated Pip is sufficient to induce an FMO1-dependent transcriptional reprogramming of leaves that is reminiscent of SAR. In planta and in vitro analyses demonstrate that FMO1 functions as a pipecolate N-hydroxylase, catalyzing the biochemical conversion of Pip to N-hydroxypipecolic acid (NHP). NHP systemically accumulates in plants after microbial attack. When exogenously applied, it overrides the defect of NHP-deficient fmo1 in acquired resistance and acts as a potent inducer of plant immunity to bacterial and oomycete infection. Our work has identified a pathogen-inducible L-Lys catabolic pathway in plants that generates the N-hydroxylated amino acid NHP as a critical regulator of systemic acquired resistance to pathogen infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxigenases/metabolismo , Ácidos Pipecólicos/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Cromatografia Gasosa-Espectrometria de Massas , Lisina/metabolismo , Oomicetos/patogenicidade , Oxigenases/genética , Ácidos Pipecólicos/análise , Ácidos Pipecólicos/farmacologia , Folhas de Planta/enzimologia , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Pseudomonas syringae/patogenicidade , Transaminases/genética , Transaminases/metabolismo
13.
Cell ; 174(4): 818-830.e11, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30057113

RESUMO

Rtt109 is a unique histone acetyltransferase acetylating histone H3 lysine 56 (H3K56), a modification critical for DNA replication-coupled nucleosome assembly and genome stability. In cells, histone chaperone Asf1 is essential for H3K56 acetylation, yet the mechanisms for H3K56 specificity and Asf1 requirement remain unknown. We have determined the crystal structure of the Rtt109-Asf1-H3-H4 complex and found that unwinding of histone H3 αN, where K56 is normally located, and stabilization of the very C-terminal ß strand of histone H4 by Asf1 are prerequisites for H3K56 acetylation. Unexpectedly, an interaction between Rtt109 and the central helix of histone H3 is also required. The observed multiprotein, multisite substrate recognition mechanism among histone modification enzymes provides mechanistic understandings of Rtt109 and Asf1 in H3K56 acetylation, as well as valuable insights into substrate recognition by histone modification enzymes in general.


Assuntos
Aspergillus fumigatus/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/química , Lisina/metabolismo , Chaperonas Moleculares/metabolismo , Acetilação , Sequência de Aminoácidos , Histona Acetiltransferases/química , Histonas/metabolismo , Lisina/química , Chaperonas Moleculares/química , Conformação Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência , Especificidade por Substrato
14.
Mol Cell ; 84(9): 1802-1810.e4, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701741

RESUMO

Polyphosphate (polyP) is a chain of inorganic phosphate that is present in all domains of life and affects diverse cellular phenomena, ranging from blood clotting to cancer. A study by Azevedo et al. described a protein modification whereby polyP is attached to lysine residues within polyacidic serine and lysine (PASK) motifs via what the authors claimed to be covalent phosphoramidate bonding. This was based largely on the remarkable ability of the modification to survive extreme denaturing conditions. Our study demonstrates that lysine polyphosphorylation is non-covalent, based on its sensitivity to ionic strength and lysine protonation and absence of phosphoramidate bond formation, as analyzed via 31P NMR. Ionic interaction with lysine residues alone is sufficient for polyP modification, and we present a new list of non-PASK lysine repeat proteins that undergo polyP modification. This work clarifies the biochemistry of polyP-lysine modification, with important implications for both studying and modulating this phenomenon. This Matters Arising paper is in response to Azevedo et al. (2015), published in Molecular Cell. See also the Matters Arising Response by Azevedo et al. (2024), published in this issue.


Assuntos
Amidas , Lisina , Ácidos Fosfóricos , Polifosfatos , Lisina/metabolismo , Lisina/química , Polifosfatos/química , Polifosfatos/metabolismo , Fosforilação , Humanos , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/metabolismo , Proteínas/genética
15.
Mol Cell ; 84(9): 1811-1815.e3, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701742

RESUMO

Post-translational modifications of proteins (PTMs) introduce an extra layer of complexity to cellular regulation. Although phosphorylation of serine, threonine, and tyrosine residues is well-known as PTMs, lysine is, in fact, the most heavily modified amino acid, with over 30 types of PTMs on lysine having been characterized. One of the most recently discovered PTMs on lysine residues is polyphosphorylation, which sees linear chains of inorganic polyphosphates (polyP) attached to lysine residues. The labile nature of phosphoramidate bonds raises the question of whether this modification is covalent in nature. Here, we used buffers with very high ionic strength, which would disrupt any non-covalent interactions, and confirmed that lysine polyphosphorylation occurs covalently on proteins containing PASK domains (polyacidic, serine-, and lysine-rich), such as the budding yeast protein nuclear signal recognition 1 (Nsr1) and the mammalian protein nucleolin. This Matters Arising Response paper addresses the Neville et al. (2024) Matters Arising paper, published concurrently in Molecular Cell.


Assuntos
Lisina , Fosfoproteínas , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA , Fosforilação , Lisina/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/química , Nucleolina , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Animais , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Polifosfatos/metabolismo , Polifosfatos/química , Concentração Osmolar
16.
Mol Cell ; 84(3): 538-551.e7, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176415

RESUMO

Metabolic reprogramming is an important feature of cancers that has been closely linked to post-translational protein modification (PTM). Lysine succinylation is a recently identified PTM involved in regulating protein functions, whereas its regulatory mechanism and possible roles in tumor progression remain unclear. Here, we show that OXCT1, an enzyme catalyzing ketone body oxidation, functions as a lysine succinyltransferase to contribute to tumor progression. Mechanistically, we find that OXCT1 functions as a succinyltransferase, with residue G424 essential for this activity. We also identified serine beta-lactamase-like protein (LACTB) as a main target of OXCT1-mediated succinylation. Extensive succinylation of LACTB K284 inhibits its proteolytic activity, resulting in increased mitochondrial membrane potential and respiration, ultimately leading to hepatocellular carcinoma (HCC) progression. In summary, this study establishes lysine succinyltransferase function of OXCT1 and highlights a link between HCC prognosis and LACTB K284 succinylation, suggesting a potentially valuable biomarker and therapeutic target for further development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , beta-Lactamases , Humanos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lisina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional
17.
Genes Dev ; 38(1-2): 46-69, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286657

RESUMO

Approximately 20% of head and neck squamous cell carcinomas (HNSCCs) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The former group exhibits reduced proliferation, genome instability, and heightened sensitivity to genotoxic agents like PARP1/2 inhibitors. Conversely, H3K36M HNSCC models with constant H3K27me3 levels lack these characteristics unless H3K27me3 is elevated by DNA hypomethylating agents or inhibiting H3K27me3 demethylases KDM6A/B. Mechanistically, H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, aberrant H3K27me3 levels induced by H3K36M expression are not a bona fide epigenetic mark because they require continuous expression of H3K36M to be inherited. Moreover, increased sensitivity to PARP1/2 inhibitors in H3K36M HNSCC models depends solely on elevated H3K27me3 levels and diminishing BRCA1- and FANCD2-dependent DNA repair. Finally, a PARP1/2 inhibitor alone reduces tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a model with consistent H3K27me3, a combination of PARP1/2 inhibitors and agents that up-regulate H3K27me3 proves to be successful. These findings underscore the crucial balance between H3K36 and H3K27 methylation in maintaining genome instability, offering new therapeutic options for patients with H3K36me-deficient tumors.


Assuntos
Neoplasias de Cabeça e Pescoço , Histonas , Humanos , Histonas/metabolismo , Lisina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Metilação , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Instabilidade Genômica/genética
18.
Genes Dev ; 38(9-10): 455-472, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38866557

RESUMO

Monomethylation of lysine 20 of histone H4 (H4K20me1) is catalyzed by Set8 and thought to play important roles in many aspects of genome function that are mediated by H4K20me binding proteins. We interrogated this model in a developing animal by comparing in parallel the transcriptomes of Set8 null , H4 K20R/A , and l(3)mbt mutant Drosophila melanogaster We found that the gene expression profiles of H4 K20A and H4 K20R larvae are markedly different than Set8 null larvae despite similar reductions in H4K20me1. Set8 null mutant cells have a severely disrupted transcriptome and fail to proliferate in vivo, but these phenotypes are not recapitulated by mutation of H4 K20 , indicating that the developmental defects of Set8 null animals are largely due to H4K20me1-independent effects on gene expression. Furthermore, the H4K20me1 binding protein L(3)mbt is recruited to the transcription start sites of most genes independently of H4K20me even though genes bound by L(3)mbt have high levels of H4K20me1. Moreover, both Set8 and L(3)mbt bind to purified H4K20R nucleosomes in vitro. We conclude that gene expression changes in Set8 null and H4 K20 mutants cannot be explained by loss of H4K20me1 or L(3)mbt binding to chromatin and therefore that H4K20me1 does not play a large role in gene expression.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Histona-Lisina N-Metiltransferase , Histonas , Lisina , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Histonas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Metilação , Lisina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Mutação , Transcriptoma/genética , Larva/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento
19.
Nat Rev Mol Cell Biol ; 20(3): 156-174, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30467427

RESUMO

Nε-lysine acetylation was discovered more than half a century ago as a post-translational modification of histones and has been extensively studied in the context of transcription regulation. In the past decade, proteomic analyses have revealed that non-histone proteins are frequently acetylated and constitute a major portion of the acetylome in mammalian cells. Indeed, non-histone protein acetylation is involved in key cellular processes relevant to physiology and disease, such as gene transcription, DNA damage repair, cell division, signal transduction, protein folding, autophagy and metabolism. Acetylation affects protein functions through diverse mechanisms, including by regulating protein stability, enzymatic activity, subcellular localization and crosstalk with other post-translational modifications and by controlling protein-protein and protein-DNA interactions. In this Review, we discuss recent progress in our understanding of the scope, functional diversity and mechanisms of non-histone protein acetylation.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Acetilação , Animais , Histonas/metabolismo , Humanos , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteômica , Transdução de Sinais
20.
Cell ; 165(6): 1389-1400, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27212235

RESUMO

Bivalent promoters in embryonic stem cells (ESCs) carry methylation marks on two lysine residues, K4 and K27, in histone3 (H3). K4me2/3 is generally considered to promote transcription, and Polycomb Repressive Complex 2 (PRC2) places K27me3, which is erased at lineage-restricted genes when ESCs differentiate in culture. Molecular defects in various PRC2 null adult tissues lack a unifying explanation. We found that epigenomes in adult mouse intestine and other self-renewing tissues show fewer and distinct bivalent promoters compared to ESCs. Groups of tissue-specific genes that carry bivalent marks are repressed, despite the presence of promoter H3K4me2/3. These are the predominant genes de-repressed in PRC2-deficient adult cells, where aberrant expression is proportional to the H3K4me2/3 levels observed at their promoters in wild-type cells. Thus, in adult animals, PRC2 specifically represses genes with acquired, tissue-restricted promoter bivalency. These findings provide new insights into specificity in chromatin-based gene regulation.


Assuntos
Células-Tronco Embrionárias/metabolismo , Complexo Repressor Polycomb 2/genética , Regiões Promotoras Genéticas , Animais , Diferenciação Celular/genética , Metilação de DNA , Regulação da Expressão Gênica , Histonas/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citologia , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Complexo Repressor Polycomb 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa